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Abstract.  The relevance of turbulent mixing in estuarine numerical models for stratified two-layer shallow 

water flows is analysed in this paper. A one-dimensional numerical model was developed for this purpose by 

extending an immiscible two-layer model with an additional source term, which accounts for turbulent 

mixing effects, namely the entrainment of fluid from the lower to the upper layer. The entrainment rate is 

quantified by an empirical equation as a function of the bulk Richardson number. A finite volume method 

based on an approximated Roe solver was used to solve the governing coupled system of partial differential 

equations. A comparison of numerical results with and without entrainment is presented to illustrate the 

influence of entrainment on both the salt-water intrusion length and lower layer dynamics. Furthermore, one 

example is given to demonstrate how entrainment terms may help to stabilize the numerical scheme and 

prevent a possible loss of hyperbolicity. Finally, the model with entrainment is validated by comparing the 

numerical results to field measurements. 
 

Keywords:  turbulent mixing; entrainment; two-layer flow; finite volume method; shallow water flow; 
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1. Introduction 
 

Stratified estuaries develop at coastal river mouths where the freshwater flow suppresses the 

mixing caused by tidal motions (Hansen and Rattray 1966). In these environments, a two-layer 

flow is usually established, where the freshwater flows downstream towards the river mouth, over 

a denser saltwater that intrudes upstream. These two layers are separated by a sharp density and 

salinity gradient, i.e., pycnocline and halocline. A strong vertical stratification occurs in many 

estuaries worldwide, such as the Mississippi, Merrimack, Fraser, Ebre and Rhone River (Geyer 

and MacCready 2014, Ibanez et al. 1997). Under such conditions, the dynamics of the saltwater 

propagation may be simulated and predicted by coupled systems of two-layer shallow water 
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equations (Krvavica 2016). 

Layered shallow water models are widely used to describe gravity currents (Ungarish 2009), as 

well as flows in sea straits (Castro et al. 2004) and stratified estuaries (Krvavica et al. 2017a). 

These models are usually based on shock-capturing numerical methods and include friction 

effects. However, turbulent mixing is often neglected from the governing equations. The reason for 

this may be found in the fact that stratification suppresses the intensity of vertical mixing between 

the layers. Even for highly dynamics flow conditions, when shear stress is known to locally 

generate interfacial instabilities and intensify turbulent mixing, the resulting processes occur on a 

much smaller scale in comparison to the thickness of the upper and lower layer (MacDonald and 

Geyer 2004). In highly stratified estuaries, however, even a week entrainment may change the 

dynamics of a nearly-stagnant salt-water layer. Therefore, at least some aspects of the turbulent 

mixing should be introduced in the governing equations for a two-layer flow. 

Krvavica et al. (2017) previously presented a one-dimensional numerical model for a two-layer 

shallow water flow in stratified estuaries. The model accounted for variable channel geometry and 

shear stress between fluid and channel bed, as well as between two fluids of different density. The 

proposed model showed satisfactory agreement when compared to field measurements at the 

Rječina River estuary, especially for near steady-state scenarios. The main drawback of that model 

was the assumption of immiscible layers, so that no fluid was allowed to cross the interface that 

separates two layers. The model was later extended by Krvavica et al. (2017b), to analyse the 

response of a stratified estuary to highly dynamics flow conditions, by including the main effects 

of the turbulent mixing through entrainment, i.e., the vertical transport of salt-water across the 

interface from a less to a more turbulent layer. The entrainment term resulted in more accurate 

results, which were confirmed by a comparison to field measurements. 

In this paper the relevance of turbulent mixing effects in stratified estuaries, namely 

entrainment of fluid from the lower to the upper layer, is analysed in more detail. These effects 

should be noticeable for steady-state solutions, when entrainment may result in lower layer 

recirculation. Furthermore, entrainment may also help to maintain a locally compromised 

hyperbolic character of the governing system under highly dynamics flow conditions, when 

interfacial instabilities are known to appear. 

The paper is organized as follows. First, the governing equations for a two-layer shallow water 

flow with friction and entrainment are derived. Next, a shock-capturing numerical scheme based 

on the finite volume method is described. And finally, several examples are presented, in which 

numerical results with and without entrainment are compared to each other and to field 

measurements at the Rječina River estuary in Croatia. 

 

 

2. Methodology 
 

2.1 Governing equations 
 

Let us consider two layers of fluid with different densities flowing through a channel defined 

by arbitrary cross-sections (Fig. 1). In stratified estuaries, the upper layer represents the fresh-

water of density ρ1 and thickness h1, whereas the lower layer represents the salt-water of density ρ2 

and thickness h2. An upper layer flows over a denser lower layer towards the river mouth, where 

internally critical flow is usually established (Krvavica et al. 2012, 2017a). 

The governing equations for a one-dimensional coupled two-layer shallow water flow in  
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Fig. 1 Longitudinal and cross section of a two-layer flow in a stratified estuary 

 

 

channels with arbitrary cross-sections, including friction and entrainment, are derived from the 

conservation laws for the mass and linear momentum.  

Under the shallow water hypothesis (White 2003), the following system of hyperbolic partial 

differential equations (PDE) is obtained (Castro et al. 2004, Krvavica 2016) 

∂𝐰

∂𝑡
+
∂𝐟(𝐰, 𝝈)

∂𝑥
= 𝐁(𝐰, 𝝈)

∂𝐰

∂𝑥
+ 𝐯(𝐰, 𝝈) + 𝐠(𝐰, 𝝈) + 𝐬(𝐰, 𝝈), (1) 

with the vector of conserved quantities w defined as 

𝐰 = {𝐴1   𝑄1   𝐴2   𝑄2}
𝑇 , (2) 

and the flux vector 𝐟(𝐰, 𝝈) defined as follows 

𝐟(𝐰, 𝝈) = {𝑄1    
𝑄1
2

𝐴1
+

𝑔

2𝜎1
𝐴1
2   𝑄2    

𝑄2
2

𝐴2
+

𝑔

2𝜎2
𝐴2
2}

𝑇

, (3) 

where 𝐴𝑗 is the layer wetted cross-section area, 𝑄𝑗 = 𝐴𝑗𝑢𝑗 is the layer flow rate, 𝑢𝑗  is the layer 

horizontal velocity, 𝜎𝑗 is the channel cross section breadth, 𝑔 is acceleration of gravity, and index 

𝑗 = 1, 2 denotes the respective upper and lower layer. The first source term appears as a result of 

coupling the two-layer system, in which 𝐁(𝐰) is defined as (Castro et al. 2004) 

𝐁(𝐰) =

[
 
 
 
 
 
0 0 0 0

0 0 −𝑔
𝐴1
𝜎1

0

0 0 0 0

−𝑔
𝐴2
𝜎1

0 0 0
]
 
 
 
 
 

, (4) 

and 𝑟 = 𝜌1/𝜌2 is the ratio between the upper and lower layer density. The second source term 

defines the derivatives of 𝝈 (Castro et al. 2004) 

𝐯(𝝈,𝐰) = {0   
𝑔

2

∂

∂𝑥
(
1

𝜎1
)𝐴1

2   0   
𝑔

2

∂

∂𝑥
(
1

𝜎2
)𝐴2

2}
𝑇

 (5) 

whereas the third source term defines the irregular channel geometry (Castro et al. 2004) 

𝐠(𝐰, 𝝈) = {0   
𝑔𝐴1
𝜎1

(𝐼3,1 + 𝐼3,2)   0   
𝑟𝑔𝐴2
𝜎1

𝐼3,1 +
𝑔𝐴2
𝜎2

𝐼3,2}
𝑇

, (6) 
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where 𝐼3,1  and 𝐼3,2  are cross-section geometry integrals (see Castro et al. (2004) or Krvavica 

(2016) for more details). The remaining source term 𝐬 = 𝐬𝐹 + 𝐬𝐸  accounts for the respective 

friction and entrainment, as follows (Krvavica 2016) 

𝐬𝐹(𝝈,𝐰) = {0   
𝜏𝑤

𝜌1
𝑃1 +

𝜏𝑖

𝜌1
𝜎3   0   

𝜏𝑏

𝜌2
𝑃2 −

𝜏𝑖

𝜌2
𝜎3}

𝑇
 and 

𝐬𝐸(𝝈,𝐰) = {
1

𝑟
𝐸Δ𝑢𝜎3𝑢1   𝐸Δ𝑢𝜎3   − 𝐸Δ𝑢𝜎3   −𝑢2𝐸Δ𝑢𝜎3}

𝑇

 

(7) 

where 𝑃𝑗 is the layer wetted perimeter, 𝜏𝑤, 𝜏𝑏 and 𝜏𝑖 are the respective wall, bed and interfacial 

shear stress, 𝐸 = 𝑤𝑒/|Δ𝑢| is the entrainment rate, 𝑤𝑒 is the entrainment velocity, and Δ𝑢 = 𝑢1 −
𝑢2 is the relative velocity difference. 

The shear stresses are defined by the quadratic friction law (White 2003) 

𝜏𝑤 = −𝑐𝑤𝜌1𝑢1|𝑢1|

𝜏𝑏 = −𝑐𝑏𝜌2𝑢2|𝑢2|

𝜏𝑖 = −𝑐𝑖𝜌1(𝑢1 − 𝑢2)|𝑢1 − 𝑢2|,
 (8) 

where 𝑐𝑤, 𝑐𝑏 and 𝑐𝑖 are the respective wall, bed and interfacial friction coefficients, which relate to 

the Darcy-Weisbach friction factor as 𝑐 =
1

8
𝑓 (White 2003). The friction factor between fluid and 

the channel wall/bed is given by the Colebrook and White’s equation (White 2003) or Yen’s (2002) 

explicit approximation for wide open channels 

𝑓 =
1

4
[−log (

𝑘𝑠
12Re

+
1.95

Re0.9
)], (9) 

where 𝑘𝑠 is the absolute roughness, Re = 𝑢𝑗𝑅𝑗/𝜐𝑗 is the Reynolds number of the 𝑗-th layer, 𝑅𝑗 is 

the layer hydraulic radius, and 𝜐𝑗 is the layer kinematic viscosity. The coefficient between two 

fluids of different densities is usually given by the Arita and Jirka (1987) equation or by fitting the 

results to field measurements (Krvavica et al. 2016). 

The main effects of the turbulent mixing are accounted for by the source term 𝐬𝐸(𝝈,𝐰) and 

entrainment rate 𝐸 which defines the vertical mass and momentum transfer through the interface 

from a more to a less turbulent layer (Christodoulou 1986). When the upper layer velocity is 

greater than the lower one Δ𝑢 > 0, source term 𝐬𝐸 is positive in the upper layer and negative in the 

lower layer, and vice versa. The entrainment rate may be parametrized by a number of semi-

empirical equations, depending on the type and regime of the stratified flow. Most commonly used 

are the equations by Christodoulou (1986), who found a power-law dependence of 𝐸  on bulk 

Richardson number 𝑅𝑖 = 𝑔(1 − 𝑟)ℎ1/Δ𝑢
2, which is defined as follows 

𝐸 = { 
0.07 for  𝑅𝑖 < 10−2

0.007𝑅𝑖−1/2 for  10−2 < 𝑅𝑖 < 1
0.007𝑅𝑖−3/2 for  𝑅𝑖 > 1

. (10) 

Richardson number represents the ratio of the stratification strength to the velocity shear, i.e., 

ratio of stabilizing to destabilizing effects. Note that the vertical mixing is included only through 

the transfer of mass and momentum, whereas the density remains constant in time and space. The 

assumption of constant density 𝜌𝑖(𝑥, 𝑡) = 𝜌𝑖  in each layer is a first step approximation of the 

turbulent mixing process necessary to derive a governing PDE system in a conservative form. The 

downside of such an approximation is that densities in both layers are unaffected by the 
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entrainment of fluid, and in practice only the volume of fluid is conserved inside the domain, 

instead of the actual mass. However, laboratory and field measurements indicate that in highly 

stratified environments, the mixing effects are confined to the interfacial layer (MacDonald and 

Geyer 2004), whose thickness varies according to the intensity of the vertical transport. Therefore, 

if the thickness of the interfacial layer is much smaller than the thickness of the upper and lower 

layer, this approximation can be considered as justified. 

 

2.2 Numerical scheme 
 

The governing system (1) is solved by a Finite Volume Method and an approximate Roe solver. 

Note that the Eq. (1) is not a conservation law, because of source terms on the right-hand size. 

However, a modified Q-scheme can still be applied to solve this system (Castro et al. 2004). The 

idea of Castro et al. (2004) was to treat source terms locally as flux terms. By expanding the 

following derivative 

∂𝐟(𝝈,𝐰)

∂𝑥
=
∂𝐟

∂𝐰

∂𝐰

∂𝑥
+
∂𝐟

∂𝜎

∂𝜎

∂𝑥
= 𝐉(𝝈,𝐰)

∂𝐰

∂𝑥
+ 𝐯(𝝈,𝐰), (11) 

Eq. (1) can be rewritten in the following quasi-linear form (Castro et al. 2004) 

∂𝐰

∂𝑡
+ 𝓠(𝐰, 𝝈)

∂𝐰

∂𝑥
= 𝐠(𝐰, 𝝈) + 𝐬(𝐰,𝝈), (12) 

where 𝓠(𝐰, 𝝈) = 𝐉(𝐰, 𝝈) − 𝐁(𝐰, 𝝈)  is the global Jacobian matrix. Therefore, a modified Q-

scheme can be applied, in which all remaining source terms are upwinded (Krvavica et al. 2017b). 

This method is explicit in time, shock-capturing and second-order accurate for steady solutions 

(Castro et al. 2004). 

The following numerical scheme is proposed to solve Eq. (1) (Krvavica 2016) 

𝐰𝑖
𝑛+1 = 𝐰𝑖

𝑛 +
Δ𝑡

Δ𝑥
(𝐟𝑖−1/2 − 𝐟𝑖+1/2) +

Δ𝑡

2Δ𝑥
[𝐁𝑖−1/2(𝐰𝑖

𝑛 −𝐰𝑖−1
𝑛 ) + 𝐁𝑖+1/2(𝐰𝑖+1

𝑛 −𝐰𝑖
𝑛)]

+
Δ𝑡

2Δ𝑥
(𝐯𝑖−1/2 + 𝐯𝑖+1/2) +

Δ𝑡

Δ𝑥
(𝐏𝑖−1/2

+ 𝐠𝑖−1/2 + 𝐏𝑖+1/2
− 𝐠𝑖+1/2)

+Δ𝑡(𝐏𝑖−1/2
+ 𝐬𝑖−1/2 + 𝐏𝑖+1/2

− 𝐬𝑖+1/2),

 (13) 

where intermediate numerical fluxes are approximated by a Q-scheme (Castro et al. 2004) 

𝐟𝑖+1/2 =
1

2
[𝐟(𝐰𝑖

𝑛) + 𝐟(𝐰𝑖+1
𝑛 )] −

1

2
|𝓠𝑖+1/2|(𝐰𝑖+1

𝑛 −𝐰𝑖
𝑛), (14) 

𝐟𝑖−1/2 =
1

2
[𝐟(𝐰𝑖−1

𝑛 ) + 𝐟(𝐰𝑖
𝑛)] −

1

2
|𝓠𝑖−1/2|(𝐰𝑖

𝑛 −𝐰𝑖−1
𝑛 ), (15) 

with |𝓠𝑖−1/2| = 𝓠𝑖−1/2
+ − 𝓠𝑖−1/2

−  and 𝓠𝑖−1/2
± = 𝐊𝑖+1/2𝚲𝑖+1/2

± 𝐊𝑖+1/2
−1 , where 𝐊𝑖−1/2 is the matrix 

whose columns are the eigenvectors of the matrix 𝓠𝑖+1/2, and 𝚲𝑖+1/2 is a diagonal matrix whose 

coefficients 𝜆𝑖+1/2,𝑙  (1 ≤ 𝑙 ≤ 4 ) are the eigenvalues of 𝓠𝑖+1/2 . The projection matrices for 

upwinding the source terms are defined as (Castro et al. 2004) 

𝐏𝑖+1/2
± =

1

2
𝐊𝑖+1/2(𝐈𝐝 ± sgn(𝚲𝑖+1/2))𝐊𝑖+1/2

−1 , (16) 
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𝐏𝑖−1/2
± =

1

2
𝐊𝑖−1/2(𝐈𝐝 ± sgn(𝚲𝑖−1/2))𝐊𝑖−1/2

−1 , (17) 

where 𝐈𝐝 is the 4 × 4 identity matrix. Note that the projection matrices are also derived from the 

eigenvalues of the matrix 𝓠𝑖+1/2 . The analytical solutions for the eigenvalues are non-trivial, 

therefore the QZ algorithm (Moler and Stewart 1973) was used for their computation. 

The intermediate values (denoted by index 𝑖 + 1/2) are computed at intercells to linearise the 

system. The Roe’s approximations for intermediate states are defined as follows (Castro et al. 

2004) 

𝐰𝑖+1/2 = {𝐴𝑖+1/2,1   𝑄𝑖+1/2,1   𝐴𝑖+1/2,2   𝑄𝑖+1/2,2}
𝑇
, (18) 

where 

𝑢𝑖+1/2,𝑗 =

𝑢𝑖,𝑗
𝑛 √𝐴𝑖,𝑗

𝑛 + 𝑢𝑖+1,𝑗
𝑛 √𝐴𝑖+1,𝑗

𝑛

√𝐴𝑖,𝑗
𝑛 +√𝐴𝑖+1,𝑗

𝑛
, (19) 

𝐴𝑖+1/2,𝑗 =
𝐴𝑖,𝑗
𝑛 + 𝐴𝑖+1,𝑗

𝑛

2
,    𝑄𝑖+1/2,𝑗 = 𝑢𝑖+1/2,𝑗𝐴𝑖+1/2,𝑗, (20) 

𝜎𝑖+1/2,1 =
𝜎𝑖,1
𝑛 + 𝜎𝑖+1,1

𝑛

2
,    𝜎𝑖+1/2,3 =

𝜎𝑖,3
𝑛 + 𝜎𝑖+1,3

𝑛

2
,    

1

𝜎𝑖+1/2,2
=

1 − 𝑟

𝜎𝑖+1/2,3
+

𝑟

𝜎𝑖+1/2,1
, (21) 

and also 

𝓠𝑖+1/2 = 𝐉𝑖+1/2 − 𝐁𝑖+1/2, (22) 

where matrices 𝐉𝑖+1/2  and 𝐁𝑖+1/2  correspond to 𝐉(𝐰𝑖+1/2, 𝝈𝑖+1/2,𝑗)  and 𝐁(𝐰𝑖+1/2, 𝝈𝑖+1/2,𝑗) , 

respectively. 

Note that to exactly preserve the steady-state solution for water at rest (the so-called C-

property, defined by Bermudez and Vazquez 1994), the following equality must be true at every 

time step (Castro et al. 2004) 

𝓠𝑖+1/2(𝐰𝑖+1 −𝐰𝑖) = 𝐟(𝐰𝑖+1) − 𝐟(𝐰𝑖) − 𝐯𝑖+1/2 − 𝐁𝑖+1(𝐰𝑖+1 −𝐰𝑖). (23) 

The C-property (23) is satisfied when 𝐯𝑖+1/2 = {0   𝑣𝑖+1/2,1   0   𝑣𝑖+1/2,2}
T, where (Castro et al. 

2004) 

𝑣𝑖+1/2,𝑗 =
𝑔

2
(

1

𝜎𝑖+1,𝑗
𝑛 −

1

𝜎𝑖+1/2,𝑗
) (𝐴𝑖+1,𝑗

𝑛 )
2
+
𝑔

2
(

1

𝜎𝑖+1/2,𝑗
−
1

𝜎𝑖,𝑗
𝑛 ) (𝐴𝑖,𝑗

𝑛 )
2
,    𝑗 = 1,2. (24) 

The source term corresponding to irregular geometry is first simplified by replacing the 

integrals by the corresponding derivatives, which gives the following expression (Castro et al. 

2004) 

𝐠(𝝈,𝐰) =

{
 
 

 
 

0

𝑔𝐴1 [
1

𝜎1

∂

∂𝑥
(𝐴1 + 𝐴2) −

∂

∂𝑥
(𝑏 + ℎ2 + ℎ1)]

0

𝑔𝐴2 [
1

𝜎2

∂𝐴2
∂𝑥

+
𝑟

𝜎1

∂𝐴1
∂𝑥

−
∂

∂𝑥
(𝑏 + ℎ2 + 𝑟ℎ1)]}

 
 

 
 

, (25) 

100



 

 

 

 

 

 

The relevance of turbulent mixing in estuarine numerical models for two-layer shallow water flow 

where 𝑏 is the bed elevation, and then the intermediate values of Eq. (25) are approximated as 

(Castro et al. 2004) 

𝐠𝑖+1/2 = {0   𝑔𝑖+1/2,1   0   𝑔𝑖+1/2,2}
𝑇
, (26) 

where 

𝑔𝑖+1/2,1 = 𝑔
𝐴𝑖+1/2,1

𝜎𝑖+1/2,1
(𝐴𝑖+1,1

𝑛 + 𝐴𝑖+1,2
𝑛 − 𝐴𝑖,1

𝑛 − 𝐴𝑖,2
𝑛 )

−𝑔𝐴𝑖+1/2,1(𝑏𝑖+1 + ℎ𝑖+1,2
𝑛 + ℎ𝑖+1,1

𝑛 − 𝑏𝑖 − ℎ𝑖,2
𝑛 − ℎ𝑖,1

𝑛 ),

𝑔𝑖+1/2,2 =
𝑔𝐴𝑖+1/2,2

𝜎𝑖+1/2,2
(𝐴𝑖+1,2

𝑛 − 𝐴𝑖,2
𝑛 ) +

𝑟𝑔𝐴𝑖+1/2,2

𝜎𝑖+1/2,1
(𝐴𝑖+1,1

𝑛 − 𝐴𝑖,1
𝑛 )

−𝑔𝐴𝑖+1/2,2(𝑏𝑖+1 + ℎ𝑖+1,2
𝑛 + 𝑟ℎ𝑖+1,1

𝑛 − 𝑏𝑖 − ℎ𝑖,2
𝑛 − 𝑟ℎ𝑖,1

𝑛 ).

 (27) 

The intermediate states for friction and entrainment terms are approximated in an equivalent 

manner (Krvavica 2016) 

𝐬𝑖+1/2 = {𝑠𝑖+1/2,1[1]   𝑠𝑖+1/2,1[2]   𝑠𝑖+1/2,2[1]   𝑠𝑖+1/2,2[2]}
𝑇
, (28) 

where 

𝑠𝑖+1/2,1[1] =
1

𝑟
𝐸𝑖+1/2(𝑢𝑖+1/2,1 − 𝑢𝑖+1/2,2)𝜎𝑖+1/2,3,

𝑠𝑖+1/2,2[1] = −𝐸𝑖+1/2(𝑢𝑖+1/2,1 − 𝑢𝑖+1/2,2)𝜎𝑖+1/2,3,

𝑠𝑖+1/2,1[2] = −𝑐𝑤𝑢𝑖+1/2,1|𝑢𝑖+1/2,1|𝑃𝑖+1/2,1

−𝑐𝑖(𝑢𝑖+1/2,1 − 𝑢𝑖+1/2,2)|𝑢𝑖+1/2,1 − 𝑢𝑖+1/2,2|𝜎𝑖+1/2,3

+𝑢𝑖+1/2,1𝐸𝑖+1/2(𝑢𝑖+1/2,1 − 𝑢𝑖+1/2,2)𝜎𝑖+1/2,3,

𝑠𝑖+1/2,2[2] = −𝑐𝑏𝑢𝑖+1/2,2|𝑢𝑖+1/2,2|𝑃𝑖+1/2,2

+𝑟𝑐𝑖(𝑢𝑖+1/2,1 − 𝑢𝑖+1/2,2)|𝑢𝑖+1/2,1 − 𝑢𝑖+1/2,2|𝜎𝑖+1/2,3

−𝑢𝑖+1/2,2𝐸𝑖+1/2(𝑢𝑖+1/2,1 − 𝑢𝑖+1/2,2)𝜎𝑖+1/2,3.

 (29) 

 
2.3 The stability and the loss of hyperbolicity 

 

Explicit numerical schemes are stable only if Δ𝑥 and Δ𝑡 satisfy the Courant-Friedrichs-Lewy 

(CFL) condition (Toro 2001). In this case the eigenvalues of the matrix 𝓠 are included in a CFL-

like condition to ensure the scheme’s stability (Castro et al. 2004) 

max(|𝜆𝑖+1/2,𝑙|)
Δ𝑡

Δ𝑥
≤ 𝐶𝐹𝐿 ≤ 1.0, (30) 

with 1 ≤ 𝑙 ≤ 4. Additionally, to prevent the appearance of negative depths in the lower layer when 

entrainment terms are active, we propose the following upper limit for the entrainment rate 

𝐸𝑖+1/2 ≤
1

Δ𝑡

𝐴𝑖+1/2,2

Δ𝑢𝑖+1/2𝜎𝑖+1/2,3
. (31) 
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Eigenvalues of matrix 𝓠𝑖+1/2 are categorized as external, which correspond to the barotropic 

flow, and internal, which correspond to the baroclinic flow (Castro et al. 2004). If the signs of 

internal eigenvalues are the same, the flow is internally supercritical, and if the signs differ, the 

flow is internally subcritical. However, when one of the eigenvalues becomes equal to zero, the 

flow is either internally or externally critical. To prevent the loss of numerical viscosity when 

critical flow appears, the Harten (1984) regularization is applied, which modifies the diagonal 

coefficients of the matrix 𝚲𝑖+1/2 . From the definition of the characteristic polynomial 𝑝(𝜆) =

det(𝓠 − 𝜆𝐈𝐝) it follows that one of the eigenvalues is equal to zero when the following condition 

is satisfied (Castro et al. 2004) 

𝐺2 = 𝐹𝑑1
2 + 𝐹𝑑2

2 − (1 − 𝑟)
𝜎2
𝜎3
𝐹𝑑1

2𝐹𝑑2
2 = 1, (32) 

with 

𝐹𝑑1
2 =

𝑄1
2𝜎1

𝑔(1 − 𝑟)𝐴1
3

𝜎3
𝜎2
    and    𝐹𝑑2

2 =
𝑄2
2𝜎3

𝑔(1 − 𝑟)𝐴2
3, (33) 

where 𝐹𝑑1 and 𝐹𝑑2 are respective upper and lower layer densimetric Froude numbers in channels 

with arbitrary cross section geometry (Castro et al. 2004). Furthermore, it follows that for 𝐺 < 1 

the flow is subcritical, and for 𝐺 > 1 the flow is supercritical. 

Sometimes internal eigenvalues may become complex and then the system loses its hyperbolic 

character. This problem is related to the occurrence of shear driven instabilities, such as the 

Kelvin-Helmholtz or Holmboe waves (Castro et al. 2011). In real flows, these instabilities appear 

under strong shear stress, and they usually initiate interfacial mixing, which then dissipates some 

of the turbulent energy. Unfortunately, the considered model breaks down if complex eigenvalues 

appear, and cannot simulate unstable flows. However, the numerical scheme can be modified to 

compute the solutions even in the presence of complex eigenvalues. Castro et al. (2011) proposed 

to apply a real Jacobian decomposition of the matrix 𝓠 = 𝐊𝐽𝚲𝐽(𝐊𝐽)−1 , where 𝚲𝐽  is a block 

diagonal matrix whose blocks are either real eigenvalues or the following 2×2 block 

[
𝑎 𝑏
−𝑏 𝑎

] (34) 

if the eigenvalues are the complex conjugate numbers 𝑎 ± 𝑏𝑖 , and 𝐊𝐽  is the matrix, whose 

columns are the corresponding eigenvectors. Under this modification the following definition 

applies |𝓠| = 𝐊𝐽|𝚲𝐽|(𝐊𝐽)−1 , where |𝚲𝐽|  is constructed by replacing the eigenvalues by their 

absolute values if they are real or by replacing the block (Eq. (34)) by the diagonal values 

computed as the Euclidean norm of the complex conjugate numbers √𝑎2 + 𝑏2. However, even if 

this modification is applied and the numerical scheme is able to march in time in the presence of 

complex eigenvalues, it may still produce spurious oscillations and eventually blow up (Castro et 

al. 2011). 

Another possible solution for the loss of hyperbolicity is given by additional source terms that 

account for friction effects, which can reduce some of the locally confined shear instabilities 

through the reduction of velocities. The practical problem is that too much friction may result in 

excessively diffused results and even produce unphysical oscillations in the flow. A different 

strategy (Castro et al. 2011) was proposed for maintaining the hyperbolic character of the system, 

by adding extra friction terms only to those cells where complex eigenvalues appeared at a specific 

time step. However, this method is justified only if instabilities are confined in both space and 

time. 
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Fig. 2 Computed longitudinal interface profile for Scenario 1 and 2, with and without entrainment 

 

 
Fig. 3 Computed flow rates in the upper and lower layer for Scenario 1 and 2, with and without entrainment 

 

 

A general solution to this problem should include a more physically realistic interpretation of 

interfacial processes. A first step in this direction, is to demonstrate that additional source terms 

that account for turbulent mixing, i.e., vertical transfer of mass and momentum, can help to 

maintain the hyperbolic character of the system in cases where strong shear stress usually results in 

interfacial instabilities and complex eigenvalues in the numerical scheme. 

 

 

3. Results and discussion 
 

Three numerical tests are presented to illustrate the relevance of the turbulent mixing in a two-

layer shallow water flow. First, a steady-state flow with and without entrainment was computed in 

an ideal channel to show the impact of 𝐸 on the overall interface profile and lower layer dynamics 

in a highly stratified estuary. The second example demonstrates the importance of mixing terms 

when dealing with a possible loss of the hyperbolicity. And finally, the third example is given to 

validate the proposed model with entrainment by comparing the numerical results with field 

measurements in the Rječina River estuary. 

 

3.1 Test 1: Steady-state solutions with and without entrainment 
 

A 10 km long horizontal channel was considered, defined by a uniform rectangular cross-

section with 𝜎 = 20 m. The spatial step was set to Δ𝑥 = 10 m and the time step was chosen to 

satisfy the stability condition CFL = 0.9, also 𝑔 = 9.81 m s−2 and 𝑟 = 0.975. The downstream 
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boundary condition was forced by a constant total depth 𝐻 = 1.5 m, and ℎ1 was computed from 

the internally critical flow condition (Eq. (32)). Two scenarios were considered; the upstream 

boundary condition was forced by a constant flow rate, 𝑄 = 1.5 m3 s−1 for Scenario 1 and 𝑄 =
2.5 m3 s−1 for Scenario 2. The bed friction factor was computed from the Yen’s Eq. (9), the 

interfacial friction factor was set to 𝑐𝑖 = 10
−3, and 𝐸  was computed from the Christodoulou’s 

entrainment Eq. (10). The simulation ran until quasi-steady flow conditions were established. 

The numerical solutions - interface profiles and flow rates in both layers - are respectively 

shown in Figs. 1 and 2. The results suggest that the computed salt-water intrusion length is shorter 

when entrainment terms are included (Fig. 1). As expected, the influence of entrainment is more 

pronounced over longer reaches; in Scenario 1 the intrusion length computed by the model with 

entrainment is 𝐿  = 5760 m in comparison to 𝐿  = 9460 m obtained by the model without 

entrainment, which is almost a 40% decrease; on the other hand, in Scenario 2 the intrusion length 

difference was 14% (𝐿 = 2690 m with entrainment and 𝐿 = 3140 m without entrainment). These 

differences are mainly caused by the lower layer dynamics, i.e., the entrainment of fluid from the 

lower to the upper layer results in a return flow in the lower layer and a gradual increase of the 

flow in the upper layer. Therefore, steeper interface profiles and shorter intrusion lengths develop 

as a results of larger velocity differences between the layers. Fig. 2 shows how the flow rates in 

both layers gradually increase in the downstream direction. For Scenario 1 and the river flow rate 

𝑄 = 1.5 m3 s−1, the computed flow rates at the mouth were 𝑄1 = 1.97 m3 s−1 in the upper layer 

and 𝑄2 = −0.47  m3 s−1  in the lower layer. For Scenario 2 and the river flow rate 𝑄 = 2.5 

m3 s−1, the computed flow rates at the mouth were 𝑄1 = 2.79 m3 s−1 in the upper layer and 𝑄2 =
−0.29 m3 s−1 in the lower layer. Note that the local entrainment rate is larger for Scenario 2 in 

comparison to Scenario 1, due to higher flow rate, velocity and consequently the Richardson 

number; however, the overall influence is more pronounced in Scenario 2, because of a longer 

span of the interface on which the entrainment acts. 
 

3.2 Test 2: Loss of hyperbolicity 
 

To demonstrate the behaviour of the model under a possible loss of hyperbolicity, we 

considered a sudden freshwater flow rate increase in the Rječina River estuary. As the upper layer 

flow rate increases, the lower salt-water is gradually driven out of the channel. Since the geometry 

of Rječina River, especially the bed elevation, is irregular, the propagation of the salt-water front 

may result in strong velocity differences and a loss of hyperbolicity (Krvavica 2016). 

A similar model set-up was used as in the previous example, except that a realistic channel 

geometry was used instead of an ideal one. The spatial step was set to Δ𝑥 = 10 m and the time 

step was chosen to satisfy CFL = 0.9. The relative density was set to 𝑟 = 0.975 , and  𝑔 =
9.81 m s−2 . The bed friction factor was computed from the Yen’s explicit Eq. (9) and the 

interfacial friction factor was calibrated to fit the field measurements (Krvavica et al. 2016). The 

entrainment rate 𝐸 was computed from the Christodoulou’s entrainment Eq. (10). The downstream 

boundary condition was forced by a constant total depth defined by the sea level +0.0 m a.s.l., and 

ℎ1 was computed from the internally critical flow condition (Eq. (32)). The upstream boundary 

condition was forced by a variable flow rate, i.e., an increase from 𝑄 = 4.3 m3 s−1 at 𝑡 = 0 min to 

𝑄 = 9.7 m3 s−1 at 𝑡 = 15 min. 

The numerical results with and without entrainment (applying a real Jordan decomposition) at 

different time steps are shown in Fig. 3. The initial solution of the longitudinal interface profile is 

shown in Fig. 3(A) for 𝑄 = 4.3 m3 s−1. As the flow rate in the upper layer gradually increases, the  

104



 

 

 

 

 

 

The relevance of turbulent mixing in estuarine numerical models for two-layer shallow water flow 

  
  

  

  

 
Fig. 4 Test 2: Computed interface profiles in the Rječina River estuary during a freshwater increase from Q 

= 4.3 m3 s-1 at t = 0 min to Q = 9.7 m3 s-1 at t = 15 min. A) Initial condition, B) result without entrainment, 

C-F) results with entrainment 

 

 

lower layer retreats towards the river mouth. At 𝑡 = 12  min the model without entrainment 

exhibits un-physical oscillations near the front and the solution blows up (Fig. 3(B)). On the other 

hand, the model with entrainment successfully computed the solution at 𝑡 = 12 min (Fig. 3(C)), 

and remained stable until 𝑡 = 120 min when steady-state solution was reached (Fig. 3(F)). 
 

3.3 Test 3: Comparison with field measurements 
 

The third test is presented to validate the proposed model with entrainment, by comparing two 

results to field measurements in the Rječina River Estuary. We considered those scenarios in which 

near steady-state was reached in the estuary; the flow rate was constant for several hours before 

the measurements, sea level varied minimally (±2 cm in one hour period), and there was almost no 

influence of waves and winds. A similar model set-up was used as previously; Δ𝑥 = 10 m,  
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Fig. 5 Test 3, Scenario 1: Computed and observed interface profile in the Rječina River estuary 

 

  
Fig. 6 Test 3, Scenario 1: A) Measured and approximated density profile near the river mouth, B) Measured 

and computed velocity profile near the river mouth 

 

 

CFL=0.9, 𝑔 = 9.81 m s−2 and 𝑟 = 0.974. The bed friction factor was computed from the Yen’s 

explicit Eq. (9), the interfacial friction factor was calibrated to fit the field measurements 

(Krvavica et al. 2016), and 𝐸 was computed from the Christodoulou’s entrainment Eq. (10). The 

downstream boundary condition was forced by a constant total depth defined by the sea level 

+0.05 m a.s.l. for Scenario 1 and -0.04 m a.s.l. for Scenario 2, and ℎ1 was computed from the 

internally critical flow condition (Eq. (32)). The upstream boundary condition was forced by 

constant flow rates, 𝑄 = 9.77  m3 s−1  for Scenario 1 and 4.36 m3 s−1  for Scenario 2. The 

simulation ran until quasi-steady flow conditions were established. 

The numerical steady-state results are compared to field measurements to validate the proposed 

model. Fig. 4 shows the computed interface profile in the Rječina River estuary for 𝑄 = 9.77 

m3 s−1 (Scenario 1) and the observed depths of the interface at several points along the estuary. 

The agreement between the numerical results and field observations is excellent, which should not 

be surprising since the interfacial friction coefficient was previously calibrated to fit the field 

measurements (Krvavica et al. 2016). Fig. 5(A) shows the measured vertical density profile and  
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Fig. 7 Test 3, Scenario 2: Computed and observed interface profile in the Rječina River estuary 

 

  
Fig. 8 Test 3, Scenario 2: A) Measured and approximated density profile near the river mouth, B) Measured 

and computed velocity profile near the river mouth 

 

 

approximated two-layer profile used as a model input. We can notice a typical two-layer structure 

with homogeneous upper and lower layer of different densities, and a very thin interface layer (~15 

cm) defined by a strong density gradient. This type of profile suggests a stable stratification and 

week entrainment effects. Fig. 5(B) shows a measured vertical velocity profile near the mouth 

compared to the computed average velocities in the upper and lower layer. The upper layer shows 

a typical turbulent profile defined by positive velocities (directed downstream, towards the river 

mouth), whereas the lower layer is almost stagnant, which additionally confirms week entrainment 

effects. The agreement between numerical results and measured profiles is satisfactory. Computed 

flow rates at the mouth were 𝑄1 = 9.97 m3 s−1 in the upper layer and 𝑄2 = −0.27 m3 s−1 in the 

lower layer. 

 

 
4. Conclusions 
 

A numerical analysis of turbulent mixing effects in stratified estuaries was presented here. For 
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this purpose, a one-dimensional numerical model was developed by extending traditional two-

layer shallow water models by additional source terms, which accounted for the entrainment of 

fluid from a less to a more turbulent layer. The entrainment rate can be quantified by several 

known empirical laws; in this work, the Christodoulou’s equations were used, which relate the 

entrainment rate to the bulk Richardson number. These equations predict that the entrainment rate 

increases as the Richardson number decreases. 

The influence of the turbulent mixing in stratified estuaries was demonstrated by several 

numerical examples. First numerical test in an ideal prismatic channel showed that even a week 

entrainment rate may have considerable influence on the computed intrusion length over longer 

reaches. The entrainment in the model is accounted for by a vertical transport of mass and 

momentum, which results in a return flow in the lower layer and increased flow in the upper layer. 

Consequently, the velocity difference between the layer increases and the slope of the interface is 

steepened. Including entrainment terms may also have beneficiary influence on the stability of the 

numerical scheme in cases when a loss of hyperbolicity is known to occur. Second example 

demonstrate one such case, where the model without entrainment displayed unphysical oscillations 

in the results, whereas the model with entrainment successfully computed the solution at every 

time step. Finally, the predicted influence of entrainment on initiating the return flow and the lower 

layer dynamics is confirmed by comparing the numerical results with field measurements in the 

Rječina River estuary. For short intrusion lengths, entrainment shows almost no effect on the lower 

layer dynamics. However, over longer reaches, even a week entrainment may result in a return 

flow in the lower layer. These findings suggest that entrainment, although week in stratified 

estuaries, is an important aspect of two-layer models, and should be accounted for. 

In conclusion, the presented model represents a good compromise between computational 

speed and accuracy, and as such can be considered a valuable tool in predicting salt-water 

intrusion in stratified estuaries. The model can be further improved, without significant loss of 

complexity, by including a third intermediate layer, which should additionally increase its accuracy 

and physical credibility. 
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