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Abstract.  Behavior of soil is usually described with continuum type of failure models such as Mohr-

Coulomb or Drucker-Prager model. The main advantage of these models is in a relatively simple and 

efficient way of predicting the main tendencies and overall behavior of soil in failure analysis of interest for 

engineering practice. However, the main shortcoming of these models is that they are not able to capture 

post-peak behavior of soil nor the corresponding failure modes under extreme loading. In this paper we will 

significantly improve on this state-of-the-art. In particular, we propose the use of a discrete beam lattice 

model to provide a sharp prediction of inelastic response and failure mechanisms in coupled soil-foundation 

systems. In the discrete beam lattice model used in this paper, soil is meshed with one-dimensional 

Timoshenko beam finite elements with embedded strong discontinuities in axial and transverse direction 

capable of representing crack propagation in mode I and mode II. Mode I relates to crack opening, and mode 

II relates to crack sliding. To take into account material heterogeneities, we determine fracture limits for each 

Timoshenko beam with Gaussian random distribution. We compare the results obtained using the discrete 

beam lattice model against those obtained using the modified three-surface elasto-plastic cap model. 
 

Keywords:  discrete beam lattice model; modified three-surface elasto-plastic cap model; Timoshenko 

beam; Gaussian distribution; failure mechanisms 

 
 
1. Introduction 
 

Nonlinear behavior of soil subjected to extreme loading is highly complex, with numerous 

factors affecting the final response. To take into account inelastic behavior and all the phenomena 

that can occur in different types of soils exposed to extreme loading, the phenomenological 

constitutive model requires a large number of parameters. For a more successful application in 

engineering practice, the model should be described with only few parameters that have clear 

physical meaning and that can be obtained from standard tests. In addition, numerical 
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implementation of the model should give efficient performance in terms of used computational 

time and rates of convergence. Some of the most commonly used soil models are Mohr-Coulomb 

model, Drucker-Prager model, Hardening soil model, cap models etc. (DiMaggio and Sandler 

1971, Hofstetter et al. 1993, Schanz et al. 1999, Doherty and Muir Wood 2013, Truty and Obrzud 

2015). These models are homogenized, continuum-type models with strength and deformability 

defined at the macroscale. There are many problems in which these models are successfully used 

e.g. experimental tests simulations, deep excavations, shallow and deep foundations etc. 

Frequently, in the problems of soil-foundation interaction where the influence of the settlement on 

the response of the structure is to be analyzed, a linear elastic model of the soil is used (Chore 

2014, Chore and Siddiqui 2016). The main drawback of these models is their inability to capture 

the post-peak behavior and failure mechanisms in soil subjected to extreme loading. This could 

have as a consequence of underestimating the risk of final failure. 

Continuum models have been extended to take into account the softening part of the response. 

For modeling the failure in soils, non-local elasto-viscoplastic constitutive model has been used 

(Conte et al. 2010, 2013). In this model, a failure in soil occurs as a result of the reduction in 

strength parameters of the Mohr-Coulomb model with the increase in the value of plastic strain. 

For modeling fracturing in rocks, anisotropic viscodamage-viscoplastic consistency constitutive 

model with a parabolic cap has been used in which Drucker-Prager yield function and Rankine 

criterion have been incorporated (Saksala and Ibrahimbegovic 2014). Localized failure in saturated 

and partially saturated soils has been modeled by introducing a strong discontinuity in the 

displacement field with Drucker-Prager model governing the continuum response (Callari and 

Armero 2004, Callari et al. 2010) Embedded strong discontinuity in combination with continuum 

damage model has been used to model failure in rocks (Saksala et al. 2015, 2016). 

In this paper, we propose the use of the discrete beam lattice model for predicting localized 

failure in soils contrary to the contiuum models. Discrete lattice models have been previously 

successfully used in predicting macroscale response and failure mechanisms in concrete and rocks, 

both in 2D and 3D setting. In discrete lattice models, a solid body is represented as an assembly of 

particles held together with cohesive links. Failure in a cohesive link actually means formation of a 

crack in the solid body. The accurate macroscale response of the solid body is obtained by proper 

modeling the microscale i.e. cohesive links. Truss bar elements with embedded strong 

discontinuity in axial direction have been used as cohesive links to model behavior and fracturing 

in concrete (Benkemoun et al. 2010, 2012). In this discrete lattice model, truss bar elements were 

able to fail in mode I that relates to crack opening. Beside mode I, crack can also propagate in 

mode II that relates to crack sliding. To be able to capture both mode I and mode II of failure, 

Timoshenko beam finite elements with embedded strong discontinuity in axial and transverse 

direction have to be used instead of truss bar elements. This type of discrete beam lattice model 

has been successfully used to describe behavior and fracturing in rocks (Nikolic et al. 2015, 

Nikolic and Ibrahimbegovic 2015). In the discrete beam lattice model proposed in (Nikolic et al. 

2015), a distinction between two phases has been made. Phase I is intact rock which is not likely to 

fail. This phase is represented with standard linear elastic Timoshenko beam finite element. Phase 

II represents weak phase or initial discontinuities in rocks. Inelastic Timoshenko beam finite 

elements with enhanced kinematics are used to model this phase. Different types of failure 

mechanisms in soils are, among other, result of material heterogeneities, loading and boundary 

conditions. 

The main novelty in this paper is to extend two-dimensional plain-strain discrete beam lattice 

model proposed in (Nikolic et al. 2015), in which all Timoshenko beams are likely to fail. Also, in 

28



 

 

 

 

 

 

Failure mechanisms in coupled soil-foundation systems 

order to better take into account material heterogeneities, we determine fracture limits for each 

Timoshenko beam with Gaussian random distribution. We compare the results obtained with the 

discrete beam lattice model against those provided by a modified three-surface elasto-plastic cap 

model (Dolarevic and Ibrahimbegovic 2007). 

The outline of the paper is as follows: In Section 2, we describe the discrete beam lattice model 

and give a short overview of finite element formulation for a Timoshenko beam finite element with 

embedded discontinuity in axial and transverse direction. In section 3, we give a short overview of 

modified three-surface elasto-plastic cap model. In section 4, we give a set of numerical examples 

where we compare the macroscale responses obtained with the discrete beam lattice model and 

modified three-surface elasto-plastic cap model. In section 5, we give concluding remarks. 

 

 

2. Discrete beam lattice model 
 

In the discrete beam lattice model proposed in (Nikolic et al. 2015) a solid body is represented 

as an assembly of one-dimensional Timoshenko beam finite elements with embedded strong 

discontinuity in axial and transverse direction capable of representing crack propagation in mode I 

and mode II. The meshing of the domain is done using Delaunay triangulation (Edelsbrunner 

2001). Delaunay triangulation is based on the Delaunay criterion. This criterion, also called the 

empty circum-circle criterion, states that the cirum-circle associated with each triangle does not 

contain vertices of any other triangle in its interior. The end result of Delaunay triangulation is a 

mesh of triangles. The discrete model of a solid body is obtained by positioning Timoshenko beam 

finite elements along the edge of every Delaunay triangle. Cross sectional properties of the 

Timoshenko beams are determined from Voronoi diagram. For a given set of points, Voronoi 

diagram divides the region into a set of subregions or Voronoi cells. Voronoi cell is a set of all 

points that are the closest to the given point than to any other point. One of the most important 

property of the Voronoi discretization is that it can represent homogenized linear elastic responses. 

Here, we extend this goal further to representing the corresponding failure mechanisms. Namely, 

we first recall that Delaunay triangulation is dual to Voronoi cell representation. In other word, a 

center of every Voronoi cell is at the same time a vertex of a Delaunay triangle. For this reason, 

Voronoi diagram is constructed from a set of points that corresponds to the vertices of triangles 

obtained from the Delaunay triangulation. Each Timoshenko beam connects centers of two 

neighboring Voronoi cells and is perpendicular to their shared edge. The height of the cross 

section of any Timoshenko beam can then be determined from the length of that shared edge. This 

kind of cross section properties computation has been successfully used previously in 

(Ibrahimbegovic and Delaplace 2003). The discrete lattice model constructed in this way can 

successfully reproduce the linear elastic response of the equivalent standard continuum model as 

shown in (Nikolic et al. 2015). What needs to be emphasized is that the center of the Timoshenko 

beam is located at the edge shared between two neighboring Voronoi cells. This is a very 

convenient property for simulating crack propagation in materials. If we see Voronoi cells as parts 

of the material that are held together with cohesive links, then cracks in mode I and/or mode II can 

only occur at their interconnection. Next, we give governing equations for inelastic Timoshenko 

beam with enhanced kinematics. More details can be found in (Ibrahimbegovic 2009, Nikolic et al. 

2015, Nikolic and Ibrahimbegovic 2015, Do et al. 2015, Imamovic et al. 2015). 
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2.1 Kinematics 
 
Consider a standard, straight Timoshenko beam finite element of a length Le and cross section 

Ae. The element has two nodes with three degrees of freedom at each node: axial displacement, 

transverse displacement and rotation of cross section. To represent crack propagation in mode I 

and mode II, strong discontinuities are introduced both in axial and in transverse directions. 

Interpolation of displacement fields in matrix notation is written 

u Nd M    (1) 
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Interpolation of deformation fields in matrix notation is written 

Bd G    (4) 
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where x is the Dirac function 

  0 0     
 

e

x

, x , x x, L
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 (7) 

 

2.2 Equilibrium 
 

The equilibrium equations are derived from the principle of virtual work, which states that the 

body is in equilibrium if virtual works of internal and external forces are equal. Taking into 

account the contribution of each element to the global equilibrium, we get two sets of equations. 

The first represents the equilibrium in the bulk, and the second represents the equilibrium at the 

discontinuity.  

   f f 0A
n

int,e ext,e

e=1

 (8) 

: h 0
ee  (9) 
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2.3 Constitutive equations 
 

The constitutive law for a Timoshenko beam finite element in axial and transverse direction 

consists of three parts (Fig. 1). The first part is the linear elastic part described with Hooke's linear 

elastic law. After reaching the yield limit, the behavior of the element is governed by plasticity 

with linear isotropic hardening. Post-peak behavior of an element is described with exponential 

softening. Behavior of the element in bending in all three parts is linear elastic. 

Governing equations for plasticity with linear isotropic hardening: 

-Additive decomposition of total deformation in elastic ε e  and plastic part ε p : 
e p     

-Strain energy function in terms of strains ε  and internal variables, plastic deformation ε p  and 

strain-like hardening variable ξ: 

     
1 1

2 2

p p p, , C K              

where C is the elastic constant (E or G), and K the hardening modulus. 

-Yield function in terms of stress σ and dual variable q: 

   y 0   , q q     

where σy is the yield limit, and q=  Kξ is a stress-like variable. 

-Evolution equations for internal variables ε p  and ξ: 

 
p

sign ,
t t t t

 


   
 

   
 

where  is the plastic multiplier. 

-Loading/unloading conditions: 
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 
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, ,
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   

-Consistency condition: 

0
 


 t t



 
 

 

 

Fig. 1 Constitutive model for Timoshenko beam finite element for axial and transverse direction 
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Governing equations for exponential softening: 

-Yield function in terms of stress  σ and dual variable q : 

   t 0   u, q q    

where t is the internal force acting at the discontinuity. 

-Stress-like softening variable q  for exponential softening: 

1
  

    
  
  

u
u

f

q exp
G


   

where σu  is the ultimate stress, and Gf is the fracture energy. 

-Evolution equations for internal variables, displacement jump α and strain-like softening  

variable  : 

 t
   
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t t t t
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where  is the plastic multiplier. 

-Loading/unloading conditions: 

0 0 0
 

  
 

, ,
t t

   

-Consistency condition: 

0
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3. Modified three-surface elasto-plastic cap model 
 

The yield function of a cap model consists of three surfaces. The first surface is Drucker-Prager 

frictional failure envelope, which defines the shear strength of the material. The position of the 

Drucker-Prager failure envelope is fixed in stress space. The second surface of the cap model is a 

strain-hardening cap in compression. The position of the cap in stress space is defined with the 

current value of plastic volumetric strain. The cap can be of a circular or elliptical shape. Also, the 

cap in a form of vertical line with behavior governed by damage model instead of plasticity has 

also been used (Ibrahimbegovic et al. 2003). In order to limit tensile stresses to the value of the 

tensile strength of the soil, a cut-off plane is introduced as a third surface of the cap model. The 

yield function of a cap model at the intersection of these surfaces is not smooth, which causes 

difficulties in numerical computation due to singularity of the tangent operator in the corner 

regions (Fig. 2(a)). For this reason in (Dolarevic and Ibrahimbegovic 2007), a modified version of 

the cap model is proposed in which the intersection point of the elliptic cap and failure cone is 

moved to the point where the tangent line of the ellipse coincides with the meridian of the cone. In 

order to eliminate the second corner region, the cut-off plane is replaced by a circle (Fig. 2(b)). 

These modifications result in a smooth yield function, which ensures efficient numerical 

performance of the model without big changes in the behavior compared to the non-smooth cap 

models. Formulation of the cap models is usually given in I1 - √J2 diagram, where I1 is the first 

invariant of the stress tensor and J2 is the second invariant of the deviatoric part of the stress 

tensor. The first invariant of the stress tensor I1 controls the volumetric deformations of the 
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specimen, while the second invariant of the deviatoric part J2 controls the change in the shape of 

the specimen. 

 1 I tr   (10) 

 2 devJ   (11) 

The Drucker-Prager loading function for the modified cap model is written as 

 1 1 2 1 2 1 1 10     T cf I , J I J k , I I I  (12) 

where α and k are strength parameters specifying soil cohesion and angle of internal friction. 

The strain-hardening elliptic cap function is written as 

  
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where  p

v   is the hardening law defined with 
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1
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p v
v ln

D W





 
  

 
 (14) 

In previous equations, R, W and D are hardening material parameters, a(ξ) is an ordinate of the 

ellipse center, b(ξ) is the main radius of the ellipse. 

The function for the third surface i.e., the cut-off plane is written as 

   
2 2

3 1 2 1 1 1     T

T Tf I , J I T R R , I I  (15) 

where T is the tension cut-off limit, and RT is the radius center. 
 

 

  
(a) (b) 

Fig. 2 Cap model (a) non-smooth cap model (b) modified cap model (Dolarevic and Ibrahimbegovic 2007) 

 

 

4. Numerical simulations 
 

In this section we give the results obtained for a set of numerical examples. First, we simulate 

the direct shear test commonly used in geotechnical engineering to determine strength parameters 

of soil and weak rocks. Second, we simulate the response of the soil under both rigid and flexible 

footing. The mesh in all examples is generated in GMSH using Delaunay triangulation (Geuzine 
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and Remacle 2009). The corresponding Voronoi diagram is derived from Delaunay vertices. The 

area of Timoshenko beam finite element is calculated from the length of the edge shared between 

two neighbouring Voronoi cells. All numerical computations are preformed with the research 

version of the computer code FEAP, developed by R.L.Taylor (Zienkiewicz and Taylor 2005). 

 

4.1 Direct shear test 
 

Direct shear test is a commonly used test for determining Mohr-Coulomb strength parameters 

of soils and weak rocks, cohesion and angle of internal friction. We preform the direct shear test on 

the specimen of very stiff clay. The dimensions of the specimen are 60×25 mm with unit thickness 

(Fig. 3(a) and 3(b)). The mechanical properties used in numerical simulations are given in Table 1. 

The ultimate values of stresses are randomly assigned to every element using Gaussian random 

distribution with parameters: mean μ and standard deviation σ. The test is conducted in two phases 

(Fig. 4(a)). In the first phase, we apply normal pressure. In the second phase, we impose horizontal 

displacements on the upper part of the specimen while keeping the normal pressure constant. 

 

 

  
(a) (b) 

Fig. 3 Discretization of the specimen (a) mesh (b) Voronoi diagram 

 
Table 1 Mechanical properties of the Timoshenko beam finite element 

Young’s 

modulus 

(MPa) 

Poisson’s ratio 
Yield limit 

(MPa) 

Hardening 

modulus 

(MPa) 

Fracture limit 

(MPa) 

Fracture 

energy 

(N/mm) 

E=100 ν=0.2 

σy,t =0.18 Kt =5.0 
μt =0.22 

σt =0.01 
Gf,t =0.1 

σy,c =1.80 Kc =5.0 
μc =2.20 

σc =0.10 
Gf,c =2.0 

σy,s =0.22 Ks =5.0 
μs =0.26 

σs =0.01 
Gf,s =5.0 

 

 

To investigate the influence of applied normal pressure on the shear strength we repeat 

computation for three different values of normal pressure: 50 kPa, 100 kPa and 200 kPa. We can 

conclude that the increase in normal pressure results in the increase of the shear strength, as stated 

in Mohr-Coulomb law (Fig. 4(b)). From the obtained results, we then form a Mohr-Coulomb 

envelope to determine the values of cohesion and angle of internal friction of the specimen. The 

cohesion represents the value of the shear stress at zero normal pressure, whereas the angle of 

internal friction represents the slope of the Mohr-Coulombs envelope. The computed values of 

cohesion and angle of internal friction are 360 kPa and 23° which fall in the range of the values for 

very stiff clays (Fig. 4(c)). In experimental direct shear tests, the horizontal failure surface at the 
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mid-height of the specimen is pre-imposed with the test set-up. The formed macrocrack in 

numerical simulation, shown in Fig. 5, splits the specimen in two parts as in experimental direct 

shear tests. 
 

 

 

  
(a) (b) (c) 

Fig. 4 Direct shear test: (a) loading and boundary conditions (b) computed stress - displacement curves   (c) 

computed Mohr-Coulomb envelope 
 

 

  
(a) (b) 

Fig. 5 Elements with increasing damage (a) mode I (b) mode II (note that we mark the cohesive links that 

are activated by cracks) 
 

 

We also preform a numerical simulation of a direct shear test on a specimen with dimensions 

100×25 mm. The value of normal pressure for which we do the computation is 100 kPa. The mesh 

density is similar to the one used in previous computations with a total of 611 elements compared 

to 572 elements in the mesh shown in Fig. 3(a). In Fig. 6(a), the computed stress-displacement 

curves for specimens sizes 100×25 mm and 60×25 mm are shown. The specimen with dimensions 

100×25 mm is slightly more resistant in the post-peak part of the response. This finding is in 

agreement with the probability-based explanation of the size effect (Ibrahimbegovic et al. 2010). 
 
 

  
(a) (b) 

Fig. 6(a) Comparison of stress-displacement curves in direct shear tests for two types of specimens (b) 

Typical stress-displacement curve obtained with cap model 
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A simulation of the shear test is also done in (Dolarevic and Ibrahimbegovic 2007) using the 

proposed modified cap model. In Fig. 6b, a typical stress-displacement curve is shown. After the 

specimen reaches shear strength, further response is governed by perfect plasticity. The cap model 

cannot describe the softening part of the response of the specimen i.e. the decrease in the values of 

stresses with the increase of the displacements after the strength of the material has been reached. 

 

4.2 Coupled soil-foundation system 
 

In this section, we give a numerical simulation of a rigid and flexible footing on a soil stratum. 

We preform the computation for a coarse mesh with 418 finite elements and a fine mesh with 1547 

finite elements. The geometry, mesh and boundary conditions are shown in Figs. 7 and 8. We 

choose mechanical properties of the Timoshenko beam finite element in both cases by matching 

the computed force-displacement curve with the one obtained in (Dolarevic and Ibrahimbegovic 

2007) using the modified three-surface elasto-plastic cap model. In (Dolarevic and Ibrahimbegovic 

2007), the force-displacement curve is obtained for the case of the flexible footing. This has its 

effect on the choice of the linear elastic parameters for the Timoshenko beam finite element, which 

is addressed in the next subsection. 

 

 

 
Fig. 7 Coarse mesh 

 

 

Fig. 8 Fine mesh 

 
 
4.2.1 Rigid footing 
Vertical displacements of a rigid footing are uniform. To simulate the response of a rigid 

footing, we impose uniform vertical displacement along the length of the footing. For solving the 

global phase of the computation, we use the Newton-Raphson method in combination with the line 

search alogrithm. The values of mechanical properties of the Timoshenko beam finite element 

obtained by matching the curve given in (Dolarevic and Ibrahimbegovic 2007) are shown in Table 

2. Young’s modulus for the Timoshenko beam finite element does not match the one used in 

(Dolarevic and Ibrahimbegovic 2007) and is somewhat smaller. This is due to different loading 

conditions because the computation in (Dolarevic and Ibrahimbegovic 2007) is carried out for the 

case of flexible footing. 
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Table 2 Mechanical properties of the Timoshenko beam finite element 

Young’s 

modulus 

(MPa) 

Poisson’s ratio 
Yield limit 

(MPa) 

Hardening 

modulus 

(MPa) 

Fracture limit 

(MPa) 

Fracture 

energy 

(MN/m) 

E=160 ν=0.3 

σy,t =0.03 Kt =60 σu,t =0.09 Gf,t =0.0006 

σy,c =0.30 Kc =60 σu,c =0.90 Gf,c =0.06 

σy,s =0.07 Ks =60 σu,s =0.13 Gf,s =0.02 

 

 

Computed reaction-displacement curves are shown in Fig. 9. Linear elastic parts of the 

responses for the coarse and the fine mesh do not differ significantly. After first cracks start to 

form, responses for two different types of the mesh start to differ in the end resulting with the 

different ultimate load values. In the post-peak behavior, a macrocrack of a similar pattern is 

formed in both cases, leading to the failure of soil under the footing. The macrocrack propagation 

occurs dominantly in mode II in the case of the coarse mesh, whereas in the case of the fine mesh 

macrocrack propagation occurs in both modes I and II. The shape of the formed macrocrack under 

the footing corresponds to the commonly observed shape of the failure wedge (Figs. 10, 11). 

 

 

 
Fig. 9 Comparison of computed force-displacement curves for rigid footing 

 

  
(a) (b) 

Fig. 10 Coarse mesh: Elements with increasing damage (a) mode I (b) mode II 

 

  
(a) (b) 

Fig. 11 Fine mesh: Elements with increasing damage (a) mode I (b) mode II 
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Computed reaction-displacement curves are shown in Fig. 9. Linear elastic parts of the 

responses for the coarse and the fine mesh do not differ significantly. After first cracks start to 

form, responses for two different types of the mesh start to differ in the end resulting with the 

different ultimate load values. In the post-peak behavior, a macrocrack of a similar pattern is 

formed in both cases, leading to the failure of soil under the footing. The macrocrack propagation 

occurs dominantly in mode II in the case of the coarse mesh, whereas in the case of the fine mesh 

macrocrack propagation occurs in both modes I and II. The shape of the formed macrocrack under 

the footing corresponds to the commonly observed shape of the failure wedge (Figs. 10, 11). 

 

4.2.2 Flexible footing 
Contact pressure distribution under flexible footing is uniform. To simulate the response of a 

flexible footing, we apply forces at the nodes along the length of the footing. For solving the 

global phase of the computation, we use the arclength method. The values of mechanical 

properties of the Timoshenko beam finite element obtained by matching the curve given in 

(Dolarevic and Ibrahimbegovic 2007) are shown in Table 3. Computed reaction-displacement 

curves are shown in Fig. 12. Linear elastic parameters of the Timoshenko beam finite element, 

Young’s modulus and Poisson’s coefficient, match the linear elastic parameters used for the 

computation of the response under the flexible footing in (Dolarevic and Ibrahimbegovic 2007). 

This confirms that the discrete beam lattice model can successfully reproduce the linear elastic part 

of the reponse of an equvivalent continuum model. With the appropriate selection of mechanical 

properties of the Timoshenko beam finite elements, the discrete beam lattice model can also 

closely match the plastic part of the response and predict the value of ultimate load. Contrary to 

the continuum model, with the discrete beam lattice model we are able to capture the post-peak 

behavior and failure mechanisms. 
 

 

Table 3 Mechanical properties of the Timoshenko beam finite element 

Young’s 

modulus 

(MPa) 

Poisson’s ratio 
Yield limit 

(MPa) 

Hardening 

modulus 

(MPa) 

Fracture limit 

(MPa) 

Fracture 

energy 

(MN/m) 

E=205 ν=0.3 

σy,t =0.04 Kt =60 
μt =0.113 

σt =0.005 
Gf,t =0.0006 

σy,c =0.40 Kc =60 
μc =1.130 

σc =0.05 
Gf,c =0.05 

σy,s =0.07 Ks =60 
μs =0.133 

σs =0.005 
Gf,s =0.02 

 

 

Computed responses obtained with the discrete beam lattice model prior to reaching the 

ultimate load level are practically mesh-independent. In the post-peak part of the response, in the 

case of a coarse mesh, a macrocrack has formed resulting in the decrease of the load carrying 

capacity of the soil under the footing (Fig. 13). In the case of fine mesh, a macrocrack was not 

formed due to localized failure in elements, thus the softening part of the response could not be 

captured (Fig. 14). 
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Fig. 12 Comparisson of the computed force-displacement curve with the curve provided by the modified cap 

model for flexible footing 
 

 

  
(a) (b) 

Fig. 13 Coarse mesh: Elements with increasing damage (a) mode I (b) mode II 
 

 

  
(a) (b) 

Fig. 14 Fine mesh: Elements with increasing damage (a) mode I (b) mode II 

 

 

In the Fig. 15, stress states under footing obtained with the modified cap model in (Dolarevic 

and Ibrahimbegovic 2008) are shown. We can conclude that a failure wedge of similar shape as in 

the case of the discrete model is also noticed. However, the plastic zone in the cap model is 

smeared across a large area of the domain. 
 

 

 
Fig. 15 Stress state under footing for modified cap model (Dolarevic and Ibrahimbegovic 2008) 

 

 

To compare the results for rigid and flexible footing, we repeat computation for flexible footing 

with the values of mechanical properties of the Timoshenko beam finite element given in table 2. 

From computed curves, shown in figure 16, we can state that the value of ultimate load is higher in 

the case of a rigid footing. We can also conclude that the response of the discrete beam lattice 

model exibits some mesh dependency. A certain level of mesh-dependency is also observed in the 

continuum model in (Dolarevic and Ibrahimbegovic 2007). 
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Fig. 16 Comparison of computed force-displacement curves for rigid and flexible footing 

 
 
5. Conclusions 
 

In this paper we used a discrete beam lattice model based on inelastic Timoshenko beam finite 

elements with enhanced kinematics to describe the response and failure mechanisms in coupled 

soil-foundation system. The soil model is constructed with Voronoi cells, with cohesive links 

represented by Timoshenko beams. We have shown that with the appropriate selection of 

parameters of Timoshenko beam finite elements, the discrete beam lattice model is able to 

reproduce the reponse of an equivalent continuum model and predict the corresponding ultimate 

load value. However, the proposed discrete model can also describe post-peak behavior and 

capture failure mechanisms in soil subjected to footing load. Thus, we can obtain the ultimate load 

in (much) more solvable manner, without any ambiguity between the (potential) lack of 

convergence and real peak resistance.  

The advantage of this discrete beam lattice model is that the true failure modes are captured 

with one-dimensional elements. This ensures relativly simple and efficient numerical 

implementation of the model. One of the drawbacks of these models is that some of the parameters 

for Timoshenko beam finite elements can not be obtained directly as a result of experimental tests, 

but rather more elaborate parameter identification methods should be used where material 

heterogenities can also play a role. The discrete beam lattice models also represent a good basis for 

the application of probability methods from which probability density function of soil collapse can 

be predicted. The models of this kind can provide the sound, probability-based explanation of size 

effect, where the ultimate load and failure mechanisms are affected by the size of the structure.  

Because the response of the soil is highly influenced by the presence of water, in future works we 

plan to study the influence of coupling between soil and fluid on the behavior and failure 

mechanisms in coupled soil-foundation systems. 
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