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Abstract.  A fully-coupled thermodynamic-based transient finite element formulation is proposed in this 

article for electric, magnetic, thermal and mechanic fields interactions limited to the linear case. The 

governing equations are obtained from conservation principles for both electric and magnetic flux, 

momentum and energy. A full-interaction among different fields is defined through Helmholtz free-energy 

potential, which provides that the constitutive equations for corresponding dual variables can be derived 

consistently. Although the behavior of the material is linear, the coupled interactions with the other fields are 

not considered limited to the linear case. The implementation is carried out in a research version of the 

research computer code FEAP by using 8-node isoparametric 3D solid elements. A range of numerical 

examples are run with the proposed element, from the relatively simple cases of piezoelectric, 

piezomagnetic, thermoelastic to more complicated combined coupled cases such as piezo-pyro-electric, or 

piezo-electro-magnetic. In this paper, some of those interactions are illustrated and discussed for a simple 

geometry. 
 

Keywords:  electromagnetic-thermomechanical coupling; elasticity; thermodynamics; finite element 
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1. Introduction 
 

Multi-coupled sensors and actuators are currently used in many state-of-the-art technological 

applications. The main interest of these materials does not reside in their strong primary 

interactions but in their secondary coupled interactions. In this paper, we are studying full-

coupling of four different fields: thermal, electric, magnetic and mechanic. 

Although the secondary coupled interactions are not as potent as the primary ones, with the 

proper conditioning can be suitable for sensing or triggering some circuits; for instance, by means 

of an electric amplifier or a relay. The main advantages of these materials are that their response is 

fast, trustworthy and, in a reasonable interval, linear. In addition, they can be inserted directly in a 

structure due to their reduced dimensions. 
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This work seeks to provide a consistent thermodynamic development (Moreno-Navarro et al. 

2017) for fully-coupled dielectric materials. First a set of state variables and their corresponding 

dual ones are defined for each field in establishing the governing equations based on conservation 

principles. Second, by settling a full quadratic form of the free-energy potential, the linear 

constitutive equations can be derived from it in a consistent way, providing a hyperelastic response 

instead of a hypoelastic. Finally, the theoretical formulation is accompanied by the discrete 

approximation, based upon 3D Finite Elements with thermo-electro-magneto-mechanic degrees of 

freedom, along with simultaneous solution procedures of the weak form for all governing 

equations. 

In the literature there are numerous scientific articles on the coupling formulation of just two or 

three of the mentioned fields, such as piezoelectric (Allik and Hughes 1970), (Lezgy-Nazargah et 

al. 2013), (Safari and Akdogan 2008) and a special mention to (Duczek and Gabbert 2013) for the 

development of a piezoelectric element based on p-version finite element formulation first 

introduced in (Babuska et al. 1981); thermo-electro-elastic as in (Ryu et al. 2001), (Wang and 

Zhong 2003), (Ferrari and Mittica 2013); or electro-magneto-elastic as in (Ramirez et al. 2006), 

(Görnandt and Gabbert 2002), (Fung et al. 2000), (Rao and Sunar 1993), (Jiang and Li 2007), 

(Hou et al. 2006) and (Pan 2001). Others couple all fields but without a very consistent 

thermodynamic approach as in (Li 2000) or (Aboudi 2001). The recent ones that come closest to 

this work, not only because of their full-interaction approach but also for their thermodynamic 

framework are (Chen et al. 2004), (Pérez-Aparicio et al. 2015). 

The outline of this paper is as follows. In Section 2, the theoretical formulation for thermo-

electro-magnetic-mechanical coupling is presented first by giving all pertinent conservation 

principles and then by introducing the Helmholtz free-energy potential to obtain the constitutive 

equations for dual variables. The details for finite element implementation are given in Section 3 

for 3D cases, using a discrete approximation constructed with isoparametric finite elements along 

with the time-integration Newmark scheme introduced in Section 4. Several numerical simulations 

are presented in Section 5, and the concluding remarks are given in Section 6. 

 

 

2. Formulation 
 

2.1 Kinematic equations 
 

Four fields are considered in formulating the thermo-electro-magneto-mechanic coupling: 

displacement u, temperature T, electric potential V and magnetic scalar potential 𝜑. The state 

variables are obtained as the corresponding gradients of these fields. The set of resulting 

“kinematic” equations can be written as 

 

(1) 

where 𝜺 is the strain tensor, E is the electric field, H is the magnetic field, while a convenient 

notation for the nabla operator of partial derivatives ∇ =  [𝜕/𝜕x 𝜕/𝜕y 𝜕/𝜕z]T is used. With the 

hypothesis of small displacement gradient theory, we are limited here to strains defined in terms of 

the symmetric part of displacement gradient. Hence, the operator ∇s can be used to define the 
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strain tensor, which can be written in Voigt notation as 

 

(2) 

 

2.2 Conservation principles 
 

2.2.1 Conservation of electric and magnetic flux 
The conservation of electric flux is given by the Gauss Law for electric field pertaining to a 

closed Gaussian surface, written by the following integral relationship 

 

(3) 

Here, 𝛷e is the electric flux given by the closed surface integral of the electric field and the 

differential surface vector (normal to the outer surface Γ) scalar product. The flux is also equal to 

the total electric charge Q inside this surface divided by the vacuum (denoted by 0 subscript) 

permittivity 𝜖0. 

It is possible to obtain the equivalent differential expression from (3) by applying the 

divergence theorem to the closed surface integral, and by identifying Q = ∭ 𝜌𝑞  dΩ
Ω

 with 𝜌𝑞, the 

electric charge density 

 

(4) 

In the absence of other fields and by taking into account the constitutive relation between E and 

the electric displacement D = ϵ0E + P (P is the polarization), it is possible to rewrite the result in 

(4) in terms of D, which is more suitable for macroscopic description 

 
(5) 

Finally, the decomposition 𝜌𝑞 =  𝜌𝑞
𝑓

+  𝜌𝑞
𝑏 into free and bound terms is introduced; the free 

term is associated with the movements of electrons in a conductor material and the bound term is 

related to the orientation of dipoles in a dielectric. By bringing in now the relation ∇ ⋅ P =  −𝜌𝑞
𝑏, 

the result in (5) can be recast as 

 
(6) 
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An analogous expression can be found for the magnetic flux in terms of the Gauss Law for 

magnetism 

 
(7) 

where 𝛷h is the magnetic flux, given by the closed surface integral of the scalar product of the 

magnetic induction B  with the differential surface vector, that is equal to 0 stating the non-

existence of magnetic monopoles. The local form of (7) can be obtained as the differential 

expression 

 (8) 

Both Eqs. (6) and (8) belong to Maxwell’s equations in terms of the set of partial differential 

equations that fully define the electromagnetic behavior. These equations can be written in 

differential form (e.g., Balanis 1989) as follows 

 

(9) 

where j is the free electric charge flux. Since the targeted applications are dielectric materials, it 

can be assumed from here on that j = 0 and 𝜌𝑞
𝑓

= 0 due to the absence of free electric charges 

(Balanis 1989). 

 

2.2.2 Conservation of momentum 
The classical approach to conservation of momentum (e.g., Ibrahimbegovic 2009) is now 

generalized to account for the electromagnetic field. First, by enforcing the angular momentum 

conservation we obtain the symmetry of stress tensor (e.g., Ibrahimbegovic 2009). Second, by 

postulating the linear momentum conservation principle for a domain, and in the limit case of the 

domain shrinking to a point, we obtain the local form of momentum conservation equation (de 

Groot and Mazur 1984) 

 

(10) 

where 𝜌𝑚  is the mass density, p
m

 the mechanical linear momentum, S = E × H  the Poynting 

vector, p
eh

 the electromagnetic linear momentum, 𝝈c the Cauchy stress tensor, 𝝈M the Maxwell 

electromagnetic stress tensor, b  the volume forces and c the speed of light, related to the 

permeability and permittivity of the vacuum through the following expression 

 

(11) 

This expression can be changed to transform the Maxwell stress tensor and the electromagnetic 
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linear momentum into a single corresponding force. With the definition of the dielectric 

constitutive relations for electromagnetic field 

 
(12) 

with I  being unit second order tensor, χe , χh  the electric and magnetic susceptibilities, 𝛜  the 

permittivity tensor and 𝝁 the permeability tensor. For dielectric materials, the polarization P and 

the magnetization M  are proportional to E  and H , respectively. Taking into account the last 

expression, the time derivative of the electromagnetic momentum (10) can be expanded into 

 
(13) 

By using the Maxwell’s Eq. (9) and the following identity 

 (14) 

it is possible to obtain an alternative expression for the first term of the right-hand sid 

 
(15) 

The last equation can also be transformed by using the following 

 

(16) 

By introducing all these identities into Eq. (15), we can write 

 

(17) 

With these results at hand, we return to Eq. (13), with three terms set apart 

 (18) 

where by identification 

 

(19) 

The electromagnetic force beh, which accounts for the distributed electric and magnetic force 

that can arise due to the possible presence of a non-uniform electrical or magnetic field in the 

material (Ferrari and Mittica 2013). Finally, the conservation of momentum (10) can be expressed 

in terms of beh simply as 

 (20) 
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where the Cauchy superscript C has been drop from 𝝈 for simplicity. 

 

2.2.3 Conservation of energy 
The global form of the first principle of thermodynamics can be stated in a closed domain Ω 

 
(21) 

where E is the total energy, Wm is the mechanical power, Weh is the electromagnetic power and Q 

is the total heat supplied to that domain. The total energy can be split into potential P and kinetic K 

energy terms 

 
(22) 

where e is the scalar potential of the internal energy density that depends on the state variables. 

The list of state variables is defined in Table 1, along with their corresponding dual variables (with 

s as the entropy per unit volume). 

 

 
Table 1 List of the state variables and their corresponding dual variables for coupled thermoelasticity and 

electromagnetism 

Fields Mechanic Thermal Electric Magnetic 

State variable 𝜺 s D B 

Dual variable 𝝈 T E H 

 

 

The source of mechanical power inserted within the particular domain Ω can be written as 

 

(23) 

where n is unit normal vector. The last term is defined from the boundary traction vector t𝑛 by the 

Cauchy principle t𝑛 = 𝝈 n ; this vector has been transformed into the corresponding volume 

integral with the divergence theorem. A similar integral transformation can be done for the 

boundary term of the electromagnetic power source (see Balanis 1989), and it is defined as 

 
(24) 

We note in passing that the negative sign is in agreement with the above expression 

representation of total power exiting the volume Ω  bounded by the surface Γ . Similar 

transformation can finally be made for the heat power source that stems from the outgoing heat 

flux q, along with the heat source r, which results in 

 
(25) 

In the limit case of Ω shrinking to a point, we obtain from (21) the local form of the first 
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principle, which can be written as 

 (26) 

Furthermore, by substituting the kinematic equations in (1) and the equation of motion in (20), 

along with the identity ∇ ⋅ (𝝈 𝒖̇) = (𝝈 ∇) ⋅ 𝒖̇ + 𝝈 ⋅ (∇ ⊗ 𝒖̇), we can obtain the reduced form of the 

first principle or energy conservation 

 (27) 

The final ingredient left is to provide the definition of the heat flux through Fourier’s law 

 (28) 

where 𝜅 is the thermal conductivity. 

By scalar multiplication of the first two Maxwell’s equations of (9) with H and E respectively, 

and by exploiting the following identity 

 
(29) 

the reduced form of energy conservation (27) can be recast in an equivalent format 

 (30) 

The second principle of thermodynamics imposes that the rate of increase of entropy 𝑆̇ should 

never be smaller than the amount of heat divided by the absolute temperature. For a particular 

domain Ω we can write 

 
(31) 

In the limit case of shrinking the domain to a point, we can obtain the local form of the second 

principle. In the simplest case of a rigid conductor (corresponds to neglecting all fields but the 

thermal), the second principle provides the proper definition of dissipation by conduction Dc 

(Ibrahimbegovic 2009), which always remains positive as long as Fourier’s law applies 

 

(32) 

The second principle, combined with the result of the first principle in (30) can be used to 

define the local dissipation, which always remains non-negative 

 
(33) 

In the result above we dropped the dissipation by conduction. We can introduce the free energy 

potential by appealing to the Legendre transformation (e.g., Ibrahimbegovic 2009), which allows 

to exchange the roles between the state variables and their dual, s, D, B versus T, E, H 

 (34) 

Deriving with respect to time the last expression we can obtain 
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(35) 

With this result on hand, the dissipation (33) can be expressed as 

 
(36) 

The dissipation inequality will become an equality providing the set of constitutive equations to 

be defined in agreement with the chosen free energy potential. Here, we choose a quadratic form 

of the free energy potential, which can be written as follows 

 

(37) 

where C is the elasticity tensor, cv the specific heat, 𝜷 = CαTI the thermal isotropic stress tensor 

(with αT as the expansion coefficient), ee the piezoelectric tensor, eh the piezomagnetic tensor, 𝝅e 

the pyroelectric vector, 𝝅h  the piezomagnetic vector and 𝝊  the magnetoelectric tensor. The 

corresponding hyperelastic constitutive equations can easily be obtained by derivatives of such a 

potential with respect to the state variables 

 

(38) 

Again, with these results on hand, we can write from (32) the heat equation for an elastic case 

as 

 (39) 

where all terms in the expression for dissipation (36) are zero due to the constitutive equation 

definitions. Furthermore, by using the entropy s from (38), we can rewrite the heat equation 

 
(40) 
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In summary, the strong form of the balance equations regroups the results written in (6), (8), 

(20) and (40), here restated in tensor notation 

 

(41) 

 

 

3. Finite element implementation 
 

In this section, we present the details of the discrete approximation constructed by the finite 

element method, as a particular case of the Galerkin method. The starting point is provided by the 

weak form of the conservation equations, which can be stated in tensor notation as follows 

 

(42) 

The overbar denotes prescribed magnitudes. We can readily obtain the discrete approximations 

for all the fields (Ibrahimbegovic 2009), along with their space and time derivatives by appealing 

to separation of variables in Einstein summation convention 

 

(43) 

where a represents the nodal values of different fields (often called degrees of freedom), whereas 

w represents the nodal values of their variations or virtual nodal degrees of freedom. In the last 

expression, Na denotes the standard isoparametric shape function for node a (e.g. Ibrahimbegovic 

2009). The subscript a and b respond to the need of splitting the shape functions associated with 

virtual nodal values and real nodal values for posterior summations. The gradients of the shape 

functions are gathered in convenient forms as 

 
(44) 
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By introducing the corresponding finite element approximations into the weak form of the 

conservation equations, and by changing from tensors to matrices by means of the Voigt notation, 

we can finally obtain 

 

(45) 

where we introduced the discrete approximations into the dual variables 

 

(46) 

By considering that the nodal values of virtual field ∀w can be picked up arbitrarily, it is 

possible to obtain from (45) the final set of residuals equations that need to be solved 

 

(47) 

 

 

4. Time discretization by Newmark scheme 
 

The Newmark scheme is used for the time discretization of the global solution step. This 

scheme requires two parameters 𝛾 and 𝛽 that will determine the numerical damping and order of 

the scheme (e.g., Ibrahimbegovic 2009) 

 

(48) 

14



 

 

 

 

 

 

Linear elastic mechanical system interacting with coupled thermo-electro-magnetic fields 

where we denoted the time step as Δ𝑡 = 𝑡𝑛+1 − 𝑡𝑛 . These expressions, often referred to as 

Newmark equations and are accompanied by the equation enforcing the zero value of the residuals 

at time step n + 1, which can be explicitly written as 

 

(49) 

Thus, this type of time stepping scheme will render the set of nonlinear algebraic equations. To 

solve such a nonlinear problem, we use Newton's iterative method where at each iteration (i + 1) 

we perform the consistent linearization of residuals leading to 

 

(50) 

where 𝛿bb  are iterative contributions to nodal values of the degrees of freedom and its time 

derivatives. In this case, we are using the displacement description b ≔ a. At each iterative sweep, 

we can then perform the corresponding state variable updates according to 

 
(51) 

In the first iteration within each time step we will assume the starting guess equal to the 

converged value at the previous step 

 
(52) 

The mechanical part of the residual vector at particular iteration (i)  can be compressed, 

reducing it to the form presented explicitly in (49). Namely, the derivative term in (50) can be 

reduced to so-called effective tangent stiffness for the mechanical part, which is directly used to 

compute the iterative contributions to the displacement increments 

 
(53) 

where the time-step subscript n + 1 was dropped to simplify notation. By exploiting the relations 

between the nodal displacements and its first and second derivatives provided by the Newmark 

scheme, we can write the closed form final linearized problem to be solved. More precisely, in 

view of the Newmark result for constructing discrete approximations for nodal velocities and 

accelerations in (48), we can write 

 
(54) 
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Thus, the final form of the tangent operator for the mechanical part can now be written as 

 
(55) 

where  is the tangent stiffness matrix, is the damping matrix and 

 is the mass matrix. 

Given the solution for displacement increment at iteration (i), we proceed to compute the 

displacement updates a𝑛+1
(𝑖+1)

 by using the result in (51). The corresponding values for 𝒂̇𝑛+1
(𝑖+1)

 and 

𝒂̈𝑛+1
(𝑖+1)

 are obtained by isolating 𝒂̈𝑛+1
(𝑖+1)

 from the first of (48), and 𝒂̇𝑛+1
(𝑖+1)

 directly from the second, 

resulting with 

 

(56) 

 

 

5. Numerical examples 
 

In this section, several applications are studied as examples of the constructed element 

capabilities. All computations are performed in a research version of the well-known computer 

code FEAP (Zienkiewicz and Taylor 2005). 

The polarized and magnetized materials have a preferential direction due to their internal 

structure (Smith 2005). As a result, a transverse isotropic model is taken into consideration, model 

that leads into vectors for 𝝅e  and 𝝅h , diagonal tensors for 𝝁, 𝛜, 𝝊 and 𝜷, the last four with a 

component different than the others (the polarized direction). For the remaining coefficients, a 

simplification from a full form tensor into a symmetric one with many null entries is necessary; the 

non-zero coefficients are related among them. All strain related coefficients are expressed in what 

follows in Voigt notation: 𝜷, ee, eh, C. 

Introducing the notation of a second order diagonal tensor 

 

(57) 

unless otherwise said, the properties extracted from (Ferrari and Mittica 2013), (Ramirez et al. 

2006) and (Pérez-Aparicio et al. 2015) for the materials studied in this section are presented in 

(58). These properties correspond to different materials: PZT, Terfenol-D, BaTiO3 or CoFe2O4; 

however, in this paper, they artificially belong to the same material just for calculation purposes. 

 

(58) 
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Fig. 1 Sketch of the boundary conditions considered for the actuator validation example. Three planes of 

symmetry considered in x = y = z = 0 ; electric potential prescriptions at the top and bottom planes. 

Measures in mm 
 

 

Fig. 2 Displacement in directions x and z and electric potential distributions for the actuator validation 

piezoelectric case 
 

 

5.1 Piezoelectricity 
 

A piezoelectric material is considered having null coefficients and tensors in (38) except for C, 

ee and 𝛜. Therefore, only electric and mechanic field variables matter in this section. This material 

works two ways: as actuator, which can induce movements when an electric field is applied, or as 

generator, for which when a displacement or a force is applied, an electric potential distribution is 

generated. 

In Fig. 1, the boundary conditions for the first validation example can be seen with the 

piezoelectric working as actuator. Regarding the mechanical field, symmetry conditions have been 

taken into account so that an eighth of a simple box geometry with dimensions 6 × 6 × 2 mm is 

represented. As for the electric field, V = 10 V at the top and ground at the z symmetry plane have 

been set. 

The voltage difference between the top and the bottom faces is generating a component of E in 

direction z while the others remain zero. The piezoelectric coefficient couples the electric with the 

mechanic field generating displacements. Since the z direction is the polarized, the induced 

displacements in all directions are proportional to coefficients ee,31, ee,32 and ee,33 respectively. As 

the boundary conditions do not prevent these movements, no stresses appear and the equality  

C𝛜 = eeE holds. 

The appearance of strains modifies the electric displacement D field. However, no change is 

expected in E since the electric potential is not affected by the coupling in this particular example. 

In Fig. 2, a summary of all relevant distributions calculated by FEAP is shown; these distributions 

are linear as expected. All displacements are proportional to the piezoelectric coefficients  

17



 

 

 

 

 

 

Pablo Moreno-Navarro, Adnan Ibrahimbegovic and José L. Pérez-Aparicio 

 

Fig. 3 Displacement in directions x and z and electric potential distributions for the generator validation 

piezoelectric case 
 

 

Fig. 4 Sketch of the boundary conditions considered for the third piezoelectric example. Two planes of 

symmetry considered in x = y = 0; electric potential prescriptions at the top and bottom planes; the latter 

face clamped. Measures in mm 
 

 

mentioned before (y direction distribution not displayed but equal to the one of x). Note that uz is 

negative while ux and uy are positive, due to the numerical values assigned to ee,31 and ee,32. The 

also linear V cause a constant distribution of Ez, not shown in the figure for simplicity. 

The complementary case, for which the piezoelectric material is used as generator is also run 

for another validation. The problem is set with the same boundary conditions as in Fig. 1, but 

instead of V = 10 V, a vertical uniform displacement of a hundredth of the z length is prescribed at 

the top. 

The displacement uz  is linear due to the applied prescription (see Fig. 3), while ux  appears 

because of the crossed coefficients C13  and C23  being negative due to the Poisson ratio. The 

piezoelectric coupling generates a linear V distribution and therefore a constant Ez. Analogously to 

the previous example, the boundary conditions enforce a zero D, therefore ee𝜺 = −𝛜E. 

Another example, not so straightforward, is run under the boundary conditions prescribed of 

Fig. 4. This time a quarter of the box is being modeled, due to the non-symmetric mechanic 

boundary conditions: at the bottom, all the degrees of freedom, including the electric potential, are 

set to zero. The other boundary conditions remain equal, that is, with symmetry in planes x = y =
0 and voltage of 10 V at the top. 

In this case, the plane z = 0 is clamped, concentrating all stresses there as can be seen in Fig. 5. 

Both ux and uy displacements are skewed due to the boundary conditions. To fully appreciate the 

movement, the deformed configuration is also given. 
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Fig. 5 Displacement in directions x and z, deformed configuration amplified 105, electric potential, electric 

field and stresses in directions x and z distributions for piezoelectric clamped case 
 

 

The electric potential may seem linear, but it can be appreciated in the figure that near the 

bottom the isolines are closer among themselves than at the top; near the right free edge the 

isolines are also closer and not straight. Hence, the Ez component is not constant and for Ex some 

concentrations appear near the lower frontal edge (the distribution for Ey is the same). The value of 

the latter is an order of magnitude lower than the former. 

 

5.2 Piezo-electro-magnetism 
 

First, a simple piezomagnetic case with the same configurations as before is studied; the only 

non-zero tensors are C, eh  and 𝛍 . Instead of electric potential for the boundary conditions, 

magnetic potential is applied. The obtained results give similar values to the previous ones, but 

with different numbers due to the difference in eh and 𝛍 with respect to ee and 𝛜. This coincidence 

is due to the similarities between the electric and magnetic fiel. 

A more complex piezo-electro-magnetic material is simulated; therefore, all the previous 

piezoelectricity and piezomagnetism tensors and also 𝝊 are active now. With this hypothetical 

material, the same example as in Fig. 4 but with 𝜑 = 10 C/m at the top and 𝜑 = 0 C/m at the 

bottom is run. 

In Fig. 6, a mosaic with the most important magnitudes calculated by FEAP can be seen. The 

displacements come from the superposition of electric and magnetic fields; for instance, the 

electric field generates positive ux while the magnetic field induces negative ones. Since eh,31 is  
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Fig. 6 Displacement in directions x and z, electric potential, magnetic potential, deformed configuration 

amplified 105, electric and magnetic fields in directions x and z distributions for piezo-electro-magnetic 

clamped case 
 

 

higher than ee,31, the sum of both displacements is a negative one. Otherwise, both fields generate 

negative displacements for uz , so that all contribute are in the same direction. The deformed 

configuration amplified by 2 × 104  times, and it is given in the central figure for better 

understanding of the displacements. 

As for the electric and magnetic fields, their distributions are basically the same: for Ex and Hx 

a concentration appears near the bottom front edge due to the boundary conditions, and for Ez and 

Hz the concentration is near the bottom plane; in the free edge a homogeneous distribution can be 

seen. The higher value of 𝛍 with respect to 𝛜 is what causes the almost insignificant variation of Hz 

and a negligible Hx. For the electric field, Ex is only one order of magnitude lower than Ez. Since 

H is the predominant field, the uz distribution is more regular than the one displayed in Fig. 5. 

 

5.3 Thermoelasticity 
 

For the thermoelastic behavior the only tensors or coefficients not null from the constitutive 

(38) are 𝜷, C and 𝜌mcv. A first benchmark example is calculated under the same geometry and 

mechanical boundary conditions as in Fig. 1. Temperature boundary conditions are required 

instead of the electric ones: the value for T at the top and the bottom is T0 + 20 K and the other 

faces have adiabatic boundary conditions. 

20



 

 

 

 

 

 

Linear elastic mechanical system interacting with coupled thermo-electro-magnetic fields 

 

Fig. 7 Displacement in directions x and z and temperature distributions for the thermoelastic validation case 
 

 

Fig. 8 Left, transient temperature distribution at the top of the geometry of a thermoelastic case; right, 

temperature distribution along the vertical direction for time slightly lower than 1 and 2 s 
 

 

This example is run in FEAP for static case obtaining the results in Fig. 7. Since T is both a 

degree of freedom and a dual variable, the regular benchmark result could only be obtained with 

constant temperature. In this case, a linear distribution for all displacements is obtained and the 

distributions are the same as expected from analytical results. All displacements are positive since 

T is greater than the reference temperature. Despite the fact that the expansion coefficient is 

isotropic,  𝜷 is not due to the elasticity tensor C. 

An opposite benchmark result could be obtained imposing a constant and homogeneous value 

for 𝜺̇ = 0.01 and keeping only the boundary for T = T0  at the bottom, imposing the adiabatic 

condition also at the top side so that the temperature can change. The imposed displacement is 

introduced at the top first with an increasing ramp until t = 1 s and then returning to zero with the 

same pace until t = 2 s; the movement at the bottom is restrained. 

In Fig. 8 left the transient distributions of T on the top surface are plot for two different heights 

measured along the coordinate z. When 𝜺̇ is positive T significantly decreases up to 0.25 s and 

after remains constant until the ramp sign is changed, stabilizing the temperature in a steady-state 

that can be calculated analytically. When 𝜺̇ is negative a smooth transition to a T symmetric 

increase is observed. The effect is much less pronounced when the height is small (l = 1 mm), 

since it is analytically demonstrated that it depends on l
 2

. 

This analytic solution is obtained solving an easier version of the heat equation with constant 𝜺̇, 

assuming that Poisson modulus is null and unidimensionality. The temperature expression derived 

is 

 
(59) 
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Fig. 9 Scheme of the geometry considered and the pulse applied to the left end of the bar 
 

 

Fig. 10 Computed displacement, electric potential, magnetic potential and temperature in the bar middle 

point z = l/2  

 

 

In the right figure, results for this solution (solid line) and for the numerical FEAP (circles) 

along the height are shown; the bottom two lines are at an instant right before 1 s, the top ones 

right before 2 s, all of them when T is stabilized. It is clear that this temperature varies 

quadratically with the height and that again the effect of the thermoelasticity coupling is much 

more evident for the large height. 

 

5.4 Elastic pulse under complete coupling 
 

In this example, we consider a transient problem for which different coupling effects can be 
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presented, thus providing the sort of qualitative benchmark result. Namely, we compute a thermo-

electro-magneto-mechanical coupling in 3D domain in the form of a bar, with z dimension 

significantly larger than the other two (1 × 1 × 100 mm); this dimension is chosen for preferential 

polarization and magnetization. The boundary conditions are chosen taking into account the 

propagation to be studied along the bar: a displacement varying in time is imposed at the bar left 

end, while the right end is free. We also impose adiabatic boundaries for the thermal and isolated 

contours for the electromagnetic fields (see Fig. 9). The choice of Newmark scheme parameters 

𝛾 = 0.5 and 𝛽 = 0.25 is in agreement with the trapezoidal second order scheme. 

The bar is set in motion by a sinusoidal displacement pulse imposed on the left end of 

maximum amplitude uz = 10 mm; this pulse propagates through the bar, with a period much lower 

than that of the bar. This displacement produces the corresponding local change in strain and in its 

time derivative, which further generates the couplings in (38). 

In Fig. 10 we present the computed response for the displacement in the longitudinal direction 

of the bar, for the electric potential, for the magnetic potential and for the temperature in the 

middle z = l/2, through the transient sequence. The time scale used for all of them is the step size 

Δt = 5 × 10−8 s. 

Regarding the evolution of the mechanical field (first figure), this problem can be examined as 

a wave propagation: when the wave arrives to the right end, the reflected wave keeps the same 

sign due to the free end of the bar. However, when the reflected wave arrives to the left, the sign 

changes due to the built-in boundary. Since there is no dissipation implemented in the formulation, 

the wave conserves its maximum value and its period along the simulation. 

This displacement wave creates perturbations in the other dual variables through the tensors ee, 

eh and 𝜷, creating variations in the other degrees of freedom. 

The temperature is analyzed first; this degree of freedom is proportional to the strain rate and 

also depends on the direction of the wave through (40). Thus, when a wave of positive 

displacement comes from the left to the right (inducing a positive heat gradient), T experiences 

first a decrease and second an increase, driven by first a negative strain rate and second a positive 

one in the same wave. After the wave bounces off the free end, the heat gradient is now negative, 

then T first increases and second decreases. The contrary happens when the displacement wave is 

negative. 

As for the electric and magnetic fields, their response cannot be interpreted directly since the 

absence of essential boundary conditions prevents the uniqueness of the solution. In Fig. 11, the 

waves in a contour plot from FEAP for both V and 𝜑 can be appreciated. The images are taken at 

the instant when the maximum value of uz is at the bar middle. The shape of both waves is equal to 

that of the elastic field, but the zones outside this wave influence have values different than zero. 

 

 

6. Conclusions 
 

In this paper, several novelties have been implemented for linear elastic mechanical system 

coupled with thermo-electro-magnetic in dielectrics. In particular, a complete formulation is 

developed in a consistent manner by using conservation principles along with the quadratic form 

of the free-energy potential, providing a hyperelastic response (rather than a hypoelastic) with the 

full coupling between all state variables and their duals. The proposed coupling results in the 

corresponding linear constitutive expressions for this kind of behavior. However, this still allows 

for nonlinear evolution of other field variables. 
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The formulation has been implemented in a 3D framework by using 8-node hexahedral finite 

elements, as the first basic equal-order discrete approximation. The time integration is performed 

by using the second order Newmark scheme with the optimal choice of the parameters. The 

nonlinear part of the system is handled by Newton-Raphson iterative scheme. 

The main novelty of such a comprehensive formulation is in providing the basis for the analysis 

of practical cases going beyond the classical ones such as piezoelectric, thermoelastic or 

magnetostrictive towards more complex combinations of the coupled fields. The chosen numerical 

simulations have tested the model capabilities to represent for piezoelectric and piezomagnetic 

static cases, as well as their combination. The results illustrate the wealth of coupled responses 

simulations, including the transient fully-coupled pulse propagation in 3D setting. 
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