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Abstract.  This paper investigates the approximate solution bounds of radon diffusion equation in soil pore 

matrix coupled with uncertainty. These problems have been modeled by few researchers by considering the 

parameters as crisp, which may not give the correct essence of the uncertainty. Here, the interval 

uncertainties are handled by parametric form and solution of the relevant uncertain diffusion equation is 

found by using Galerkin’s Method. The shape functions are taken as the linear combination of orthogonal 

polynomials which are generated based on the parametric form of the interval uncertainty. Uncertain bounds 

are computed and results are compared in special cases viz. with the crisp solution. 
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1. Introduction 
 

Radon is an inert gas with chemical symbol Rn222, and atomic number 86. It is a radioactive, 

colorless, orderless, tasteless noble gas, occurring naturally as a decay product of uranium. Recent 

research has shown that radon is the second leading cause of lung cancer. Radon in the soil, 

groundwater, or building materials is emitted and diffused in the working and living species and 

then disintegrates into its decay products. So, there is a need to trace the variability of radon levels 

in different soils. Many experimental researches for soil radon transport have been modelled by 

diffusion equation through various mediums. There exist variety of physical factors on which 

radon generation depends viz. radium concentration, porosity and diffusion coefficients which are 

usually measured experimentally. As such, one may obtain uncertain values or bounds of the 

parameters rather than exact values. So, the equation describing diffusion of radon in soil pore 

matrix coupling with uncertain parameters (as intervals) is solved in this work by using the 

Galerkin’s Method with shape functions taken as the linear combination of orthogonal 

polynomials in uncertain environment. 

First, we discuss related important literature based on radon diffusion. The determination of 

222 Rn exhalation and effective 226 Ra activity in soil samples are explained by Escobaret et al. 
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(1999). Ren (2001) explained the regional variations of indoor, outdoor 222Rn concentrations. 

Kozak et al. (2003) developed one-dimensional flow and transport model to describe the 

movement of two fluid phases, gas and water within a porous medium. 

The release of radon isotopes under conditions of combined diffusion and flow from a 

fractured, semi-infinite medium such as soil is analysed by Schery et al. (1988). Nazaroff (1992) 

described the mechanism of radon generated within the upper few meters of the earth surface by 

the radioactive decay of radium and nature of the diffusion and advection coefficients. Validation 

of radon transport in soil, measurements of combined advective and diffusive radon transport 

under well-defined and controlled conditions studied by Van der Spoel et al. (1998). Dimbylow et 

al. (1985) modeled radon diffusion equation describing the flow of radon from soil through cracks 

in concrete slabs using numerical methods. As regards, mathematical model describing steady 

state diffusion of radon-222 daughters, based on a uniform distribution of radon has been 

developed by Wrenn et al. (1969), solutions are generated for four coupled, non-homogenous 

differential equations satisfying the boundary conditions. Coupling between CO2, water vapor, 

temperature, and radon and their fluxes in an idealized equilibrium boundary layer over land have 

been investigated by Betts et al. (2004). On the other hand, Dulaiova et al. (2010) have studied 

coupled radon, methane    and nitrate sensors for large-scale assessment of groundwater discharge.  

In general, while doing experiment the values of involved parameters may deviate significantly 

from the actual values. Such insufficient information may be considered as uncertain viz. intervals 

or fuzzy numbers. So, there is a need of solving differential equations when coupled with interval 

parameters. As such, we include few literature related to interval uncertainty in differential 

equations. Introduction to interval computations given by Alefeld and Herzberger (1983). Moore 

et al. (2009) analysed the basic concepts of interval numbers (Interval Analysis). The basic 

concepts of fuzzy differential equations, fuzzy fractional differential equations and its applications 

described by Chakraverty et al. (2016). Stefanini and Bede (2009) proposed Hukuhara 

differentiability of interval differential equations. An interval difference method for solving the 

Poisson equation based on the conventional central-difference has been given by Hoffmann and 

Marciniak (2013). Nickel (1986) described interval methods for the numerical solution of ODE’s. 

A new technique to solve n-th order linear uncertain interval differential equations with uncertain 

initial conditions using the interval midpoint, a new approach to solve nth order fuzzy differential 

equations has been proposed by Tapaswini and Chakraverty (2014, 2017).  

As such the present section gives the introduction related to the problem. Interval arithmetic 

and parametric concepts have been discussed in sections 2 and 3 respectively. Then the Galerkin’s 

method to solve uncertain boundary value problem is explained in section 4. Section 5 presents the 

radon diffusion mechanism with crisp parameters. The radon diffusion mechanism with 

uncertainty has been described in section 6. Section 7 includes results and discussions. Finally, 

conclusions are drawn in the last section. 

 

 

2. Interval arithmetic 
 

An interval may be denoted as ],[~ ppp  , where p and p  represent the lower and upper 

bounds of interval p~ . Any two intervals are said to be equal if their corresponding end points are 

equal (Alefeld et al. 1983, Moore et al. 2009). The basic interval arithmetic operations are as 

follows) 
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3. Parametric approach 
 

Parametric approach is used here to represent an interval in crisp form. In this approach, the 

interval ],[
~

ZZZ   may be written as (Behera and Chakraverty 2015, Tapaswini and Chakraverty 

2013) 

           ZZZZ  )(
~

 , where 10   is a parameter. 

It can also be written as 

2

)(
,2

~ ZZ
ZZZZ


  , 

The lower and upper bounds of the solution can then be obtained by substituting 0  and 1 

respectively as follows 

ZZ 
~  when ,0  

ZZ 
~  when  .1  

 

 

4. Galerkin’s method for boundary value problems coupled with uncertainty 
 

Let us consider a second order uncertain boundary value problem in [a, b] (Rodriguez 1992) 

)(~~~~
21 xqyaya   (1) 
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subject to the uncertain boundary conditions in terms of intervals as 

43
~)(~,~)(~ abyaay   

where ][~
, iii aaa  are interval values for i=1,2,3 ,4.   

The above involved interval values can be represented as follow by using parametric concept 

i
kaaa iiii   2~

, where 
2

)( ii

i

aa
a


  and 10  i   for i=1, 2, 3, 4. Here 

i
k is the crisp representation of ia~ , 

i
k  represents crisp values for a fixed ]1,0[i .    

We assume an approximate solution satisfying the boundary conditions and involving unknown 

constants nkkkk ,,, 210   of Eq. (1) as 
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  (2) 

where )(xi , are linearly independent orthogonal polynomials with interval uncertainty. It may 

be worth mentioning that the functions i ’s actually involve interval uncertainties represented by

i
k . As such one may use the interval computations given in section II. 

Generating Orthogonal Polynomials (where the interval uncertainties of involved parameters 

represented in terms of
i

k ): 

Let us assume a function )(xf (which involves uncertainty to be represented in parametric 

form), that satisfies the boundary conditions of Eq. (1). We start with functions,

,,,1 2

210 xfxff   for the approximation of orthogonal polynomials.  Assume that 

),(0 x )(1 x , )(2 x ,   are linearly independent orthogonal polynomials with interval 
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By using Gram Schmidt orthogonalisation procedure (Bhat and Chakraverty 2004), 
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Here  ,  are inner product defined for any two functions as below  



b

a

jiji dxxxxx )()()(),(   (3) 

From Eq. (1) and Eq. (2) we may find the residual ‘R’ as 
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Eq. (5) is (n+1) simultaneous equations in (n+1) unknowns, which can be solved by any 

standard method. Finally, by substituting the evaluated constants nkkkk 210 ,,  in Eq. (2) we 

may get the approximate solutions for the uncertain boundary value problem (Eq. (1)) by varying

10  i for i=1,2,3,4. 

 

 

5. Radon diffusion mechanism   
 

In pore matrix such as soil, radon is continuously released to the pore volume of the matrix due 

to the emanation from the grains containing 226Ra. Let us consider that radon diffusion occurs in 

vertical direction i.e., in x direction after emanating from soil grain to pore space. Let C(x) be the 

steady state concentration in the soil pore space. Soil properties and radioactivity distributions are 

assumed to be homogeneous. Then the profile C(x) satisfies the following steady state diffusion 

equation (Savovic et al. 2011, Hafez and Awad 2016) 

,0)(
)(

2

2





CxC

x

xC
D   (7) 

where, C(x)= Radon concentration (Bq kg-1) in the soil, 

D= The diffusion coefficient of radon in the soil matrix (m2s-1), 

λ = The radon decay constant (s-1), 

C∞= The radon concentration when x→−∞. 

The first term and second term of Eq. (7) represents the loss of radon in the pore space of the 

soil matrix by the process of diffusion and radioactive decay respectively, while the third term 

represents the production of radon due to emanation from soil grain to pore volume. The boundary 

491



 

 

 

 

 

 

T.D. Rao and S. Chakraverty 

conditions, are supposed to be 

.)(

,)0( 0





CLxC

CxC
 

 Analytical solution of this equation may easily be obtained as 

,)()( 0   CeCCxC
x

D



 (8) 

The above is for the radon diffusion equation without uncertainty which is well known. Our 

target is here to investigate the same when the involved parameters are uncertain in terms of 

intervals.   

 

 

6. Radon diffusion mechanism coupling with interval uncertainty 
 

The general diffusion equation is obtained by a limiting process of the rate of change of radon 

activity in an infinitesimal pore volume, arising as a result of the difference between the generation 

rate of radon and losses. Different models have been developed based on these transport 

mechanisms to study the anomalous behavior of soil radon. These models have been employed to 

estimate process driven parameters from the measured data of soil radon. Estimation of parameters 

(such as (D,
C  )) may deviate significantly from the true values. So, there is a need to handle 

radon diffusion equation coupling with uncertainty. 

As such the uncertain second order diffusion equation may be written as follow  
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subject to the uncertain boundary conditions 

.
~

)(
~

,)0( 0  CLxCCxC  

By using parametric form, D
~

and 
C

~
 can be represented as 

,2
~

11  KDDD   
2

)( DD
D


  

222
~

 KCCC  
,  

2

)( 






CC
C   for all  1,0, 21  . 

Here
1

K , 
2

K  are the controlling parameters for the interval uncertainty’s of D
~

and C
~

. For 

fixed values of  1,0, 21  , 
1

K and 
2

K represents crisp values.   

An approximate uncertain solution of Eq. (9) is assumed as 

)()(
~

0
xAxC i

n

i i 
  (10) 

Here )(0 x , )(1 x are orthogonal polynomials with interval uncertainty, which satisfies the 

given boundary conditions (involved interval values may be represented in terms of 
1

K and
2

K ) 

and 0A , 1A , nA  are real constants. 
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Generating Orthogonal Polynomials (for uncertain radon diffusion equation): 

Let us choose ,)()(
220  KeKCxf x   which satisfies the boundary conditions involving 

the parameters in terms of 
2

K . We start with two functions, xff  10 ,1  for two term 

approximation. Assume that ),(0 x )(1 x  are two orthogonal polynomials (involved uncertainty 

represented by
2

K ) generated by using polynomials )(),( 10 xLxL of the form, 
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By using Gram Schmidt orthogonalisation procedure we have 
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Galerkin’s Method to solve uncertain radon diffusion equation by using orthogonal 

polynomials: 

We consider two term approximation based on interval uncertainty to approximate the solution 

of the said diffusion Eq. (9) as  

),()()(
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1100 xAxAxC    (13) 

Now, from Eq. (9) and Eq. (13) we have   
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From Eq. (14) the residual ‘R’ can be represented as 
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Here the residual R is orthogonalized to the functions )(),( 10 xx  . 
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0)(),,,;( 1
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From Eq. (15)                          
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By solving Eq. (18) and Eq. (19) we may get   
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So, final two term solution of Eq. (9) is 
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One my note that  111 ,, cba  and 222 ,, cba  contain the parameters in terms of 
1

K  and
2

K , 

where  1,0, 21   which control the uncertainty. Eq. (20) represents the uncertain (interval) 
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solutions of the diffusion Eq. (9). The uncertain band of the diffusion equation (Eq. (9)) may be 

obtained by varying the values of   1,0, 21    

                                                                        

   

7. Results and discussions   
 

Here, the results are presented based on radon diffusion equation (Eq. (9)) solved by Galerkin’s 

Method using uncertainty based orthogonal polynomials. A soil pore matrix is considered with 

depth (L=10m), in which the radon diffusion occurs in vertical direction x. It is assumed that the 

initial radon concentration in soil pore matrix at 0x  as )/(10 3

0 mBqC   and radon concentration at

Lx  is supposed to be exposed to high radon concentration )/(1000 3mBqC 
. The value 

)/(101.2 26 smD   was used for the radon diffusion coefficient in soil and the decay constant (

 ) of radon taken as 16101.2  s .  

Table 1 lists the numerical values of the involved crisp and interval parameters when the radon 

diffusion equation is coupled with interval uncertainty. 

 

 
Table 1 Numerical values for involved parameters of uncertain based diffusion equation (Savovic et al. 

2011)  

Parameter Crisp Value Interval Value 

C  )/(1000 3mBq    )/(1020,980 3mBq  

D )/(101.2 26 sm  [ 66 107.2,105.1   ] 

C0 )/(10 3mBq  )/(10 3mBq  

  16101.2  s  16101.2  s  

 

 
Fig. 1 Analytical solution of crisp diffusion equation 

 

 

Fig. 1 presents the analytical solution of the crisp radon diffusion Eq. (7).  Fig. 2 depicts the 

comparison of analytical solution of the crisp diffusion equation (Eq. (7)) with the center solution 

obtained by solving the uncertain diffusion equation (Eq. (9)) by using Galerkin’s Method (when 
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5.0,5.0 21    ). The lower, center and upper radon concentration of Eq. (9) solved by using 

Galerkin’s Method with orthogonal polynomials for a fixed value of 01   and 1:5.0:02   

are presented in Fig. 3. Similarly, Figs. 4 and 5 represent the lower, center and upper radon 

concentrations of Eq. (9) solved by using Galerkin’s Method with orthogonal polynomials for a 

fixed values of 1,5.01   and 1:5.0:02  . Finally, the upper and lower bounds of radon 

concentration along with the center radon concentration of the uncertain diffusion equation for all 

the possible combinations by varying  1,0, 21    illustrated in Fig. 6. 

 

 

 
Fig. 2 Comparison of center solution of interval diffusion equation obtained by Galerkins Method when 

5.0,5.0 21    with analytical solution of crisp diffusion equation 

 

 
Fig. 3 Lower, center, upper radon concentration when 1:5.0:0,0 21    

 

 
Fig. 4 Lower, center, upper radon concentration when 1:5.0:0,5.0 21    
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Fig. 5 Lower, center, upper radon concentration when 1:5.0:0,1 21    

       

 
Fig. 6 Lower, upper bounds and center radon concentration from all the possible combinations

,1:5.0:01   1:5.0:02   

 

 

Table 2 presents the different radon concentrations for a typical fixed depths

10,5,1(  xxx ) by varying .1,0 21     

 

 
Table 2 Radon concentration for different combinations of  1,0, 21   at fixed depths                                                    

)10,5,1(  xxx  

Parametric values Concentration 

1  
2  1x  5x  10x  

0 

0 633.2081 989.1446 995.7145 

0.4 638.3467 997.2189 1003.8 

0.8 643.4854 1005.3 1012 

0.4 

0 625.1409 976.5602 983.0687 

0.4 630.2139 984.5316 991.0938 

0.8 635.2870 992.5030 999.1188 

0.8 

0 617.2813 964.2931 970.7332 

0.4 622.2905 972.1642 978.6574 

0.8 627.2997 980.0353 986.5817 
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From the above presented Table, one may observe the increase of radon concentration with 

respect to the depth of the soil and the effect of diffusion coefficient (for the lower values of 

diffusion coefficient concentration giving high).  

 

 

8. Conclusions 
 

In this paper, we presented a new approach to solve radon diffusion equation when coupled 

with uncertainty (Eq. (9)). Here the approximate solution of the same is assumed first as a linear 

combination of orthogonal polynomials with interval uncertainty. The involved parameters with 

interval uncertainty are represented by using the parametric concept. Then the uncertain radon 

diffusion equation has been solved by using Galerkin’s Method. Finally, we depicted different 

uncertainty bands of radon diffusion equation (Eq. (9)) by varying  1,0, 21  . For the 

validation, the results are compared with the known analytical solution and are found to be in good 

agreement.          
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