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Abstract.  In this paper, free vibration and static response of magneto-electro-elastic (MEE) beams has been 

investigated. To this end, a 3D finite element formulation has been derived by minimization the total 

potential energy and linear constitutive equation. The coupling between elastic, electric and magnetic fields 

can have a significant influence on the stiffness and in turn on the static behaviour of MEE beam. Further, 

different Barium Titanate (BaTiO3) and Cobalt Ferric oxide (CoFe2O4) volume fractions results in indifferent 

coupled response. Therefore, through the numerical examples the influence of volume fractions and 

boundary conditions on the natural frequencies of MEE beam is illustrated. The study is extended to 

evaluate the static response of MEE beam under various forms of mechanical loading. It is seen from the 

numerical evaluation that the volume fractions, loading and boundary conditions have a significant effect on 

the structural behaviour of MEE structures. The observations made here may serve as benchmark solutions 

in the optimum design of MEE structures. 
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1. Introduction 
 

Smart materials are the trending materials which has grasped the attention of the entire research 

community in recent years. Due to their self-responding and self-adaptive capabilities, it has 

become a boon to the structural engineering. A special class of materials formed by combining the 

piezoelectric (BaTiO3) and magnetostrictive (CoFe2O4) materials commonly known as MEE 

materials are the prominent material which exhibits a significant interaction between magnetic, 

elastic and electric and properties. The elastic deformations are induced directly by the application 

of the mechanical load and indirectly by the electric or magnetic fields. As a result, the electric 

polarization and magnetic polarization can be controlled through magnetic and electric fields, 

respectively. Further, in these materials conversion of energy from one form into another is highly 

feasible. Hence, the potentiality of these materials is exploited in various engineering applications 

such as aerospace industry, automobiles industry, sensors and actuators, etc. 

Many pioneers have evaluated the different structural behavior such as free vibrations, static 
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analysis and buckling analysis of the MEE structures. Few prominent literatures among them have 

been highlighted here. Milazzo (2013) investigated the dynamic problem of a MEE beam by 

employing first order shear deformation theory. Annigeri et al. (2007) evaluated the influence of 

coupling effects on the natural frequency of the multiphase MEE beams. Bhangale et al. (2006) 

investigated the free vibration analysis of MEE plates using semi-analytical FE method. Milazzo et 

al. (2009) performed free and forced vibration analysis of bimorph beams and proposed an 

analytical solution for both multiphase and laminated MEE beams. Huang et al. (2007) 

analytically computed the behavior of the functionally graded (FG) MEE beams subjected to an 

arbitrary loading. Pan et al. (2005) presented the exact solutions for the multilayered MEE plates 

subjected to internal and surface loading.  Biju et al. (2011) used 3D magnetic vector potential 

approach to analyse the response of multiphase MEE sensors. They have also studied the effect of 

different volume fraction on the responses. Using meshless local integral equation Sladek et al. 

(2017) evaluated the effective material properties in MEE composite materials. Fan et al. (2016) 

analysed the laminated composites by making use of the C0 type Reddy theory considering 

transverse normal thermal strain. Lage et al. (2004) carried out the static analysis of MEE 

structures using a layerwise partial mixed FE model. Chen et al. (2007) made use of state vector 

approach to carry out the modal analysis of the MEE plates. Kattimani and Ray (2014a, b, 2015) 

proposed a FE method to reduce the large amplitude vibrations of smart MEE plates and doubly 

curved shells through the active constrained layer damping (ACLD). They further extended their 

study to analyse the FG-MEE plates. Using higher order finite element model, static and free 

vibration analysis for MEE plates are carried out by Moita et al. (2009). The non-linear large 

deflections of the MEE plates subjected to mechanical and magneto-electric loads is evaluated 

using a meshless local Petrov*Galerkin method by Sladek et al. (2013). Carrera et al. (2009) 

developed a FE model based on the Reissner’s Mixed Variational Theorem RMVT for the static 

analysis of the MEE plates subjected to different fields. Recently, Benedetti and Milazzo (2017) 

developed families of equivalent single layer and multilayered model for free and static analysis of 

MEE plates. Liu et al. (2016) obtained higher order solutions for MEE plate with non-uniform 

materials using scaled boundary FE method. Aktas (2001) derived the deformation function of the 

orthotropic beam using anisotropic elasticity. Balu et al. (2014) investigated the behavior of the 

MEE beam subjected to mechanical and thermal loadings. They also studied the effect of the layup 

sequences on the displacement and potentials. Arefi and Zenkour (2017) presented a governing 

equations for MEE curved beams based on first order shear deformation theory. Ebrahimi et al. 

(2017) studied the effect of porosity on the vibration characteristics of MEE plates. The 

geometrically nonlinear vibrations of multiferroic composite plate and shell was analysed by 

Kattimani (2017). 

Analyzing the influence of nano and micro structures are crucial in numerous intelligent 

structures. Vaezi et al. (2016) studied the free vibration analysis of the MEE micro beams under 

magneto-electric loads. Simsek and Reddy (2013) presented a new size dependant unified beam 

theory to analyse the static and free vibration behavior of the FG micro beams. Ebrahimi and 

Barati (2016a) presented an analytical solution to assess the free vibration characteristics of 

magneto-electro-viscoelastic nano beams. In addition, Ebrahimi and Barati (2016b, c) studied the 

influence of different temperature loads on the free vibration behavior of FG-MEE nanobeams. 

Jandaghian and Rahmani (2016) evaluated the effect of elastic foundation on the free vibration of 

magneto-electro-thermo-elastic beams.  

Few studies have been reported on thermal analysis of MEE structures. Kumaravel et al. (2007) 

studied the influence of both uniform and non-uniform load on the static behavior of MEE beam. 
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Kondaiah et al. (2012) studied the pyroeffects on the structural behaviour of MEE beam subjected 

to temperature loading. Further, Kondaiah et al. (2015, 2017) they extended their evaluation to 

analyze the pryroeffects on the MEE sensor patch. More recently, Vinyas and Kattimani (2017a, b 

and c) developed a FE formulation and analyzed the thermal response of MEE beam and plates. 

They extended their evaluation for multiphase MEE beams subjected to different temperature 

loading also (Vinyas and Kattimani 2017d). With the aid of 3D FE formulation, the influence of 

thermo-mechanical loads on the static response of MEE beam (Vinyas and Kattimani 2017e) and 

hygrothermal response of MEE plates has been thoroughly investigated (Vinyas and Kattimani 

2017f). 

Based on the comprehensive literature review, it is observed that the 3D finite element analysis 

of the free vibration and static behaviour of magneto-electro-elastic beams subjected to different 

forms of mechanical loads has not been reported.  In this regard, this work makes a first attempt 

using 3D FE formulation. In addition, an effort is made to understand the influence of different 

boundary conditions and volume fractions on the natural frequency and static parameters of the 

MEE beam. The results presented here will serve as a benchmark solution in the design and 

analysis of MEE smart structures. 

  

 

2. Governing equations 
 

2.1 Linear coupled constitutive relationship 
 

The linear relationship between the various fields of MEE materials can be explicitly 

represented as follows 

𝜎𝑖 = 𝐶𝑖𝑗𝜀𝑗 − 𝑒𝑖𝑘𝐸𝑘 − 𝑞𝑖𝑘𝐻𝑘 

𝐷𝑙 = 𝑒𝑙𝑗 𝜀𝑗 + 𝜂𝑙𝑘𝐸𝑘 + 𝑚𝑙𝑘𝐻𝑘𝐵𝑙 = 𝑞𝑙𝑗𝜀𝑗 + 𝑚𝑙𝑘𝐸𝑘 + 𝜇𝑙𝑘𝐻𝑘 
(1) 

The different material properties in Eq. (1) are shown in Appendix A. Meanwhile, the strain 

field related to the displacements can be written as follows 

     𝜀𝑖𝑗 =
1

2
 (𝑢𝑖,𝑗 + 𝑢𝑗.𝑖) (2) 

The relation between the electric field vector and the electric potential; magnetic field vector 

and magnetic potential can be represented as  

𝐸𝑖 =  −𝜙,𝑖 ; 𝐻𝑖 =  −𝜓,𝑖 (3) 

The total potential 𝜋𝑝 is given as follows 
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(4) 

 

2.2 Finite element model 
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The degrees of freedom corresponding to each node are: displacement components (along x, y 

and z direction), electric potential and magnetic potential. Further, a 3D brick element is used for 

modeling the MEE beam. The nodal displacement, electric potential and magnetic potential can be 

expressed by suitable shape functions as follows 

𝑢 = [𝑁𝑢]{𝑢𝑖} ;  𝜙 = [𝑁𝜙]{𝜙} ;  𝜓 =  [𝑁𝜓]{𝜓}   (5) 

where, {𝑢𝑖} = {𝑈𝑥  , 𝑈𝑣 , 𝑈𝑤}; 𝑁𝑢, 𝑁𝜙 , 𝑁𝜓 are the shape functions. The following assumptions are 

made while deriving the deriving the FE formulation for the present case. 

• There exists a complete coupling between the magnetic, electric and elastic fields. 

• The effect of electric charge density and magnetic current densities are neglected. 

Finally, the coupled finite element equations obtained after simplification are written as 

        2 e

m

e ee e
uu u

e
u

M FK u K K               
    

      0
T

e e e ee
u

K u K K        
     

    

    0{ }
T T

e e e ee
uK u K K       

        

(6) 

The different stiffness matrices in Eq. (6) and its corresponding expressions are presented in 

Appendix A and B, respectively. By eliminating the electric and magnetic potential through 

condensation technique, the equivalent stiffness matrix [𝐾𝑒𝑞]  is derived to obtain the nodal 

displacements. 

[𝐾𝑒𝑞] {𝑢} = {𝐹𝑒𝑞} 

 

 

3. Results and discussion 
 

3.1 Validation of finite element formulation 
 

The results computed using present FE formulation are validated with the results reported by 

Balu et al. (2014). It should be noted that the FE formulation derived here can also be used for the 

pure elastic, pure piezoelectric and pure piezomagnetic beams by changing the properties and 

equating the irrelevant matrices to null matrices. Hence, in this case, the MEE beam is degenerated 

to the purely piezoelectric (BaTiO3) beam. The beam geometry, material properties and loading 

conditions are considered as identical to that of Balu et al. (2014). Fig. 1 depicts the validation of 

the z-direction displacement component (Uw) of the pure piezoelectric cantilever beam subjected to 

the end load. It may be seen from this figure that the results from the present FE formulation are in 

excellent correlation with Balu et al. (2014). Further, using the uncoupled elastic formulation, the 

present code is used to validate the results of the composite beams subjected to a point load with 

different fiber orientation angles as presented by Aktas (2001). It may be noticed from Table 1 that 

the end deflections of the cantilever beam obtained from the present FE model accurately matches 

with the results reported by Aktas (2001) for different operating conditions and fiber orientation 

angles. 
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Fig. 1 Validation of the z-direction displacement component 

 

Table 1 Validation of deflection of composite beams at free end 

Fiber orientation 0 15 30 45 60 75 90 

Deflection 

(mm) 

Point 

load 

Aktas (2001) 0.40 0.92 2.19 3.53 4.42 4.79 4.86 

Present 0.41 0.93 2.36 3.61 4.57 4.92 4.97 

UDL 
Aktas (2001) 0.246 0.345 0.652 1.090 1.510 1.796 1.899 

Present 0.252 0.353 0.661 1.102 1.526 1.803 1.907 

 

 

3.2 Structural analysis of the MEE beam 
 

In this section, the free vibration and static analysis of the magneto-electro elastic (MEE) 

beams with different volume fraction (Vf) is analysed. The influence of different boundary 

conditions and various mechanical loadings on the static quantities has also been studied. A finite 

element (FE) model of the beam is developed using an eight noded 3D brick element. The material 

properties mentioned in Table 2 are used for the present analysis. The beam geometry has a length 

L=1 m, width w=0.3 m and thickness h=0.2 m. 

 

3.3 Free vibration analysis 
 

This section deals with evaluation of the influence of volume fraction on the natural 

frequencies of the MEE beam. The effect of boundary conditions on the natural frequencies has 

also been studied. Figs. 2 and 3 present the natural frequency variation for the first ten modes of 

the clamped-free and clamped-clamped MEE beam, respectively for the various volume fraction of 

the piezoelectric material. The same is also presented in Tables 3 and 4, respectively.  It may be 

observed from these Figs. 2(a) and (b) and from the Tables 3 and 4 that the natural frequencies of 

the MEE beam decrease with the increase in the volume fraction. This may be due to the fact that 

as the volume fraction increases, the volume of the magnetostrictive material (CoFe2O4) increases 

which leads to increase in the value of the material constants. Influence of these material constants 

on the natural frequency may be observed clearly for the higher modes of vibration. It may also be 

noticed that the clamped-clamped boundary condition exhibits a higher value of natural frequency 

at each mode. 
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(a) (b) 

Fig. 2 Natural frequencies (a) clamped-free (b) clamped-clamped MEE beam 

 
Table 2 Material co-efficients of BaTiO3-CoFe2O4 composite w.r.t different volume fraction Vf of BaTiO3 

(Kondaiah et al. 2012) 

Material property Material constants 0 Vf 0.2 Vf 0.4 Vf 0.5 Vf 0.6 Vf 0.8 Vf 1 Vf 

Elastic constants 

(GPa) 

C11=C22 286 250 225 220 200 175 166 

C12 173 146 125 120 110 100 77 

C13=C23 170 145 125 120 110 100 78 

C33 269.5 240 220 215 190 170 162 

C44=C55 45.3 45 45 45 45 50 43 

C66 56.5 52 50 50 45 37.5 44.5 

Piezoelectric constants 

(C/m2) 

e31 0 -2 -3 -3.5 -3.5 -4 -4.4 

e33 0 4 7 9.0 11 14 18.6 

e15 0 0 0 0 0 0 11.6 

Dielectric constant 

(10-9 C2/Nm2) 

η11=η22 0.08 0.33 0.8 0.85 0.9 1 11.2 

η33 0.093 2.5 5 6.3 7.5 10 12.6 

Magnetic permeability 

(10-4 Ns2/C2) 

μ11=μ22 -5.9 -3.9 -2.5 -2.0 -1.5 -0.8 0.05 

μ33 1.57 1.33 1 0.9 0.75 0.5 0.1 

Piezomagnetic constants 

(N/Am) 

q31 580 410 300 350 200 100 0 

q33 700 550 380 320 260 120 0 

q15 560 340 220 200 180 80 0 

Magneto-electric constant 

(10-12Ns/VC) 

m11=m22 0 2.8 4.8 5.5 6 6.8 0 

m33 0 2000 2750 2600 2500 1500 0 

Pyroelectric-constant 

(10-7 C/m2K) 
p2 0 -3.5 -6.5 -7.8 -9 -10.8 0 

Pyromagnetic constant 

(10-5 C/m2K) 
τ2 0 -36 -28 -23 -18 -8.5 0 

Thermal expansion 

coefficient 

(10-6 K-1) 

α1= α2 10 10.8 11.8 12.3 12.9 14.1 15.7 

α3 10 9.3 8.6 8.2 7.8 7.2 6.4 

Density (kg/m3) ρ 5300 5400 5500 5550 5600 5700 5800 
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Table 3 Natural frequencies for C-F MEE beam with different volume fractions 

Mode 

No. 

Natural Frequency (Hz) 

Vf = 0.0 Vf = 0.2 Vf = 0.4 Vf = 0.5 Vf = 0.6 Vf = 0.8 Vf = 1.0 

1 690 660 630 628 590 560 558 

2 700 670 650 647 610 560 558 

3 4120 3940 3810 3790 3540 3390 3370 

4 4250 4050 3910 3902 3680 3400 3470 

5 4850 4700 4620 4601 4250 4140 4320 

6 8660 8280 7990 7970 7550 6910 7270 

7 10920 10480 10170 10160 9420 9080 9340 

8 11390 10850 10480 10476 9870 9140 9350 

9 14660 14220 13960 13923 12860 12520 13060 

10 20140 19440 18940 18912 17450 16920 17540 

 

Table 4 Natural frequencies for C-C MEE beam with different volume fractions 

Mode No. Natural Frequency (Hz) 

 Vf = 0.0 Vf = 0.2 Vf = 0.4 Vf = 0.5 Vf = 0.6 Vf = 0.8 Vf = 1.0 

1 4160 3980 3850 3690 3570 3420 3419 

2 4310 4100 3950 3910 3720 3440 3445 

3 9730 94300 9260 8790 8530 8300 8660 

4 10640 10240 9950 9440 9180 8870 9160 

5 11200 10640 10260 10180 9660 8990 9200 

6 17770 16930 16310 16300 15400 14110 14740 

7 19410 18790 18350 17230 16850 16370 17050 

8 19710 19110 18750 17800 17280 16730 17200 

9 20730 19690 19010 18870 17880 16810 17540 

10 30080 29250 28670 26710 26230 25610 26850 

 
 

3.4 Static analysis 
 

The structural behavior of the MEE beam subjected to various mechanical loading has been 

investigated. The MEE beam with clamped-clamped (CC) and clamped-free (CF) boundary 

conditions are considered for the analysis. In addition, analyzing the effects of boundary 

conditions and volume fractions on the direct quantities (displacements and potentials) of the MEE 

beam is also considered as the prime importance of this study.  

 

3.4.1 Clamped-Clamped boundary condition 
The behavior of the clamped-clamped MEE beam (Ux, Uv, Uw, ϕ, ψ = 0; at x = 0 and L) is 

investigated for two load cases. In the case-1, influence of uniformly distributed load (UDL) of q0 

= 5 kN/m acting over the beam length L is considered while case-2 refers to a point load of 5 kN 

acting at the midspan of the beam. For each loading case, the effect of different volume fractions 

(Vf ) of the BaTiO3 and CoFe2O4 (Vf = 0.0, 0.5 and 1.0) on the direct quantities are evaluated. Vf  =  

471



 

 

 

 

 

 

Vinyas. M and S. C. Kattimani 

  
(a) (b) 

  
(c) (d) 

Fig. 3 Variation of (a) longitudinal x-direction (b) y-direction (c) transverse z-direction displacement 

components for CC-MEE beam subjected to UDL 

 

 

0.0, 0.5 and 1.0 corresponds to the pure piezomagnetic (CoFe2O4), 50% BaTiO3 and 50% CoFe2O4 

and pure piezoelectric (BaTiO3) phase, respectively. 

Case 1: Uniformly distributed load (UDL). The longitudinal x-direction displacement 

component (Ux), y-direction displacement component (Uv) and transverse z-direction displacement 

component (Uw) are plotted in Figs. 3(a)-(c), respectively. It may be observed from these figures 

that the maximum value of Ux and Uw is obtained for pure piezoelectric phase (Vf  = 1.0) whereas, 

Uv is maximum for Vf  = 0.5. At the mid span of the beam, it is witnessed that for all the volume 

fractions, the longitudinal x-direction displacement component Ux is zero while Uw is maximum. 

Further, the maximum value of Uv is observed at the region near the clamped end. From Fig. 4(a) it 

may be observed that the pure piezoelectric phase exhibits the maximum electric potential along 

the beam length. As it is expected that for the Vf = 1.0, the piezoelectric constants are higher in 

magnitude. Similarly, it may be seen from the Fig. 4(b) that the pure piezomagnetic phase Vf = 0.0 

has a considerable effect on the magnetic potential of the MEE beam. The stress variation of the 

CC-MEE beam subjected to a uniformly distributed load (UDL) is illustrated in Figs. 5(a)-(e). 

Although from Fig. 5(a) it appears that the normal stress σx is independent on the volume fraction.  
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(a) (b) 

Variation of (a) electric potential (b) magnetic potential for the CC- MEE beam subjected to UDL 

 

  
(a) (b) 

  
(c) (d) 

 
(e) 

Fig. 5 Variation of normal and shear stresses of the CC-MEE beam subjected to UDL (a) σx (b) σy (c) σz (d) 

τxy (e) τxz 
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(a) (b) 

 
(c) 

Fig. 6 Variation of (a) Ux (b) Uv (c) Uw displacement components of CC- MEE beam subjected to a centre 

load 

 

 

However, the careful observation reveals that the normal stress σx is maximum for Vf = 0.0. It may 

also be observed that the similar trend is followed by the stresses σy and σz. From Figs. 5(a)-(c), it 

may be noticed that the normal stresses follows a symmetrical distribution along the beam length. 

The shear stress τxy follows a zigzag pattern as shown in Fig. 5(d) whereas, τxz decreases initially 

upto a certain distance from the left clamp of the beam and then increases further as presented in 

Fig. 5(e). 

Case 2: Central load. Figs. 6(a)-(c) illustrate the variation in the longitudinal x-direction, y-

direction and transverse z-direction displacements components, respectively. It may be identified 

that all the displacement components follows a similar trend as that of the CC-MEE beam 

subjected to UDL as shown in Figs. 4(a)-(c). Figs. 7(a) and (b) illustrate the variation of 𝜙 and 𝜓 

of the C-C MEE beam subjected to central load. As seen from this figure at the midspan of the 

beam a sudden change in the electric potential is observed for Vf = 0.5. It may be attributed to the 

loading pattern considered. Fig. 7(b) illustrates that the magnetic potential follows the same trend 

as that of the CC-MEE beam with UDL as shown in Fig. 4(b). The normal stresses shown in Figs. 

(a)-(c) also follows the same trend as that of the CC-MEE beam with UDL. However, the fact that 

the graph is more confined towards the midspan of the beam. Further, the negligible influence  
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(a) (b) 

Fig. 7 Variation of the (a) electric potential (b) magnetic potential for the CC- MEE beam subjected to centre 

load 

 

  
(a) (b) 

  
(c) (d) 

 
(e) 

Fig. 8 Variation of normal and shear stresses of the CC-MEE beam subjected to centre load (a) σx (b) σy (c) 

σz (d) τxy (e) τxz 
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(a) (b) 

 
(c) 

Fig. 9 Variation of (a) longitudinal x-direction (b) y-direction (c) transverse z-direction displacement 

components for CF- MEE beam subjected to UDL 

 

 

of the volume fraction is observed for the normal stresses. Figs. 8(d) and (e) depict the shear stress 

variation of the CC-MEE beam.  

 

3.4.2 Clamped-free condition 
In this section, the cantilever MEE beam subjected to different loading cases such as uniformly 

distributed load and the end load is considered for the study. The variations of the direct quantities 

are investigated.  

Case-1: Uniformly distributed load (UDL). A uniformly distributed load of q0 = 5 kN/m is 

applied along the length of the CF- MEE beam. From Figs. 9(a)-(c), it may be observed that at the 

free end, the MEE beam experiences the maximum value of Ux and Uw. In the region near the 

clamped end, the Uv is maximum. For Vf = 1.0, maximum Ux and Uw is observed whereas, Uw is 

maximum for Vf =0.0. Fig. 10(a) depicts the variation of the electric potential along the beam 

length. The maximum electric potential is observed near the clamped end for pure piezoelectric 

beam. Further from Fig. 10(b), it may be noticed that for Vf = 0.5, the CF-MEE beam displays the 

maximum magnetic potential.  The normal stress distribution elucidated in Figs. 11 (a)-(c) suggest 

that the discrepancies with respect to the volume fractions can be clearly observed at the region 

near the clamped end where Vf = 0.0 has a predominant effect. It may be observed from Fig. 11(d)  
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(a) (b) 

Fig. 10 Variation of (a) electric potential (b) magnetic potential for the CF-MEE beam subjected to UDL 

 

  

(a) (b) 

  

(c) (d) 

 
(e) 

Fig. 11 Variation of normal and shear stresses of the CF-MEE beam subjected to UDL (a) σx (b) σy (c) σz (d) 

τxy (e) τxz 
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(a) (b) 

 
(c) 

Fig. 12 Variation of (a) longitudinal x-direction (b) y-direction (c) transverse z-direction displacement 

components for CF- MEE beam subjected to end load 

 

 

that starting at a distance from the clamped end, the shear stress τxy shows a linearly increasing 

trend along the beam length while Fig. 11(e) illustrates that the shear stress τxz
 gradually decreases 

along the beam length. 

Case-2: End Load. In this case, the cantilever MEE beam is subjected to a point load of 5 kN 

at the free end. Figs. 12(a)-(c) elucidate the variation of the displacement components Ux, Uv, Uw, 

respectively. It is seen that these parameters follows the same trend as that of the CF-MEE beam 

with uniformly distributed load. From Fig. 13(a) it may be observed that for Vf=1.0, the electric 

potential rises to a certain value from the clamped end and remains almost constant over the beam 

length, which then decreases slightly at the free end. For Vf=0.5, a significant value of the electric 

potential is observed only at the free end. The electric potential values for Vf=0.5 is negligible as 

compared to Vf =1.0. The variation of the magnetic potential along the beam length is shown in 

Fig. 13(b). The maximum magnetic potential for Vf=0.0 is witnessed at the midspan of the beam 

whereas, for Vf=0.5 it is observed at the free end. The normal stresses for the CF-MEE beam with 

the end load are plotted in Figs. 14(a)-(c). Except at the region near the clamped end, a linear 

variation of these parameters along the beam length is observed. Vf = 0.0 displays the highest value 

of stresses. Similarly, from Fig. 14(d), it may be noticed that the shear stress τxy remain constant 

throughout the beam length whereas, Fig. 14(e) illustrates that the shear stress τxz varies linearly. 
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(a) (b) 

Fig. 13 Variation of (a) electric potential (b) magnetic potential for the CF-MEE beam subjected to end load 

 

  
(a) (b) 

  
(c) (d) 

 
(e) 

Fig. 14 Variation of normal and shear stresses of the CF-MEE beam subjected to end load (a) σx (b) -σy (c) σz 

(d) τxy (e) τxz 
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4. Conclusions 
 

In this work, a 3D finite element formulation has been presented to evaluate the natural 

frequency and static characteristics of MEE beam. The governing equations are formulated by 

minimization of total potential energy.  

Adopting condensation technique, the nodal thermal displacements, electric potential and 

magnetic potential were computed. It is seen from the investigation that the volume fraction, 

boundary conditions have a significant effect on the free vibration and static characteristics of 

MEE beam. In particular, following conclusions can be made 

1. The natural frequencies tend to increase with the increase in volume fraction of BaTiO3 and 

CoFe2O4. 

2. In contrast to point load, a significant effect of uniformly distributed loads on the electric and 

magnetic potentials of the system can be observed. 

3. The maximum electric and magnetic potentials are observed at the region near the clamped 

end of the beam. 

4. For the volume fraction Vf  = 0.0, the MEE beam experiences highest normal stresses while 

the displacement components are minimum.  

It is expected that this study may help in the design of the magneto-electro-elastic sensors and 

actuators in the real application. 
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Appendix A 
 

 𝜎𝑖 Stress tensor 

 Volume 

𝜂𝑙𝑘 Dielectric constant matrix 

𝜇𝑙𝑘 Magnetic permeability constant matrix 

𝜀𝑗 Linear strain tensor 

𝜌 Density 

Bl Magnetic induction vector 

𝐶𝑖𝑗 Elastic stiffness matrix 

Dl Electric displacement vector 

𝐸𝑘 Electric field vector 

𝑒𝑙𝑗 Piezoelectric co-efficient matrix 

Hk Magnetic co-efficient vector 

mlk Electromagnetic co-efficient matrix 

𝑄𝜙 Electric charge density 

𝑄𝜓 Magnetic current density 

𝑞𝑙𝑗 Magnetostrictive co-efficient matrix 

{𝐹𝑠𝑢𝑟𝑓𝑎𝑐𝑒} Surface load vector 

{𝐹𝑏𝑜𝑑𝑦} Body force vector 

{𝐹𝑐𝑜𝑛𝑐} Concentrated load vector 

[𝐾𝑢𝑢
𝑒 ] Elemental elastic stiffness matrix 

[𝐾𝑢𝜙
𝑒 ] Elemental electro-elastic coupling stiffness matrix 

[𝐾𝑢𝜓
𝑒 ] Elemental magneto-elastic coupling stiffness matrix 
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[𝐾𝜙𝜙
𝑒 ] Elemental electric stiffness matrix 

[𝐾𝜓𝜓
𝑒 ] Elemental magnetic stiffness matrix 

[𝐾𝜙𝜓
𝑒 ] Elemental electro-magnetic stiffness matrix 

[M e] Elemental mass matrix 
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Appendix B 
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(B1) 

The different shape function derivative matrices appearing in Eq. (B1) are given by 
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 (B2) 

where, i=1, 2, 3, . . .,8 represents the node numbers 
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