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Abstract.  The hydro-elastic system consisting of a pre-stretched highly elastic plate, compressible 

Newtonian viscous fluid, and the rigid wall is considered and it is assumed that on the plate a lineal-located 

time-harmonic force acts. It is required to investigate the dynamic behavior of this system and determine 

how the problem parameters and especially the pre-straining of the plate acts on this behavior. The elasticity 

relations of the plate are described through the harmonic potential and linearized (with respect to 

perturbations caused by external time-harmonic force) form of these relations is used in the present 

investigation. The plane-strain state in the plate is considered and the motion of that is described within the 

scope of the three-dimensional linearized equations of elastic waves in elastic bodies with initial stresses. 

The motion of the fluid is described by the linearized Navier-Stokes equations and it is considered the plane-

parallel flow of this fluid. The Fourier transform with respect to the space coordinate is applied for a solution 

to the corresponding boundary-value problem. Numerical results on the frequency response of the interface 

normal stress and normal velocity and the influence of the initial stretching of the plate on this response are 

presented and discussed. In particular, it is established that the initial stretching of the plate can decrease 

significantly the absolute values of the aforementioned quantities. 
 

Keywords:  compressible viscous fluid; highly elastic plate; initial strain; frequency response; forced 

vibration; rigid wall 

 
 
1. Introduction 
 

It is known that the first attempt to investigate of the vibration of the plate + fluid hydro-elastic 

system was started by Lamb (1921) with the study of the natural vibration of a circular elastic 

“baffled” plate in contact with still water. In this work it is employed the “non-dimensional added 
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virtual mass incremental” (NAVMI) method which assumes the invariability of the modes of 

vibration of the plate as a result of the contact of that with still water. Namely this assumption 

allows to the use the Rayleigh quotient for determination of the natural frequencies of the noted 

hydro-elastic system. The NAVMI method was also used in the further in related investigations 

carried out in works by Kwak and Kim (1991), Fu and Price (1987), Zhao and Yu (2012), Askari et 

al. (2013) and in many others listed therein. At the same time, there are also sufficient number of 

related investigations, such as carried out in the papers by Tubaldi and Armabili (2013), Charman 

and Sorokin (2005), Sun et al. (2015), Liao and Ma (2016) and others listed therein which were 

carried out without employing the NAVMI method. 

Up to now without employing the NAVMI method it is also has been made several 

investigations (see, for instance, Chiba (1994), Shafiee et al. (2014), Hasheminejad and 

Mohammadi (2017),  Kutlu et al. (2012), Askari and Daneshmand (2010) and others listed therein) 

which relate to the study of the vibrations of the system consisting of cylindrical tank the lateral 

wall of which is absolute rigid one, the circular flexible plate which is in bottom of this tank, the 

incompressible inviscid fluid filled this cylindrical tank and the elastic foundation on which lies 

the plate and consequently, the tank. The response of the elastic foundation to the plate vibration is 

described through the Winkler or Pasternak models, however the vibration of the plate is described 

within the scope of the approximate plate theories such as Kirkchhoff, Mindlin theories. It is 

assumed that the upper surface of the fluid is free.   

The free vibration of two identical circular plates coupled with bounded fluid is considered in 

the paper by Jeong (2003) in which the motion of the plate is described through the Kirkchhoff 

theory and fluid is assumed to be inviscid and incompressible. 

The influence of the viscosity of the incompressible fluid on the vibration of the membrane or 

plate which covers this fluid which is in the cylindrical tank the walls of which are absolutely rigid 

is investigated by Bauer and Chiba (2007). 

The vibration of the cylindrical shells which are in contact with the incompressible inviscid 

fluids is considered in the papers by Moshkelgosha et al. (2017), Askari and Jeong (2010), Askari 

et al. (2011), Askari and Daneshmand (2010) and others listed therein.   

The other field of the investigations regarding the dynamics of the plate-fluid systems is the 

corresponding wave propagation problems investigated, for instance, in the paper by Sorokin and 

Chubinskij (2008) and others listed and reviewed therein. It should be noted that in this paper the 

role of fluid viscosity in the wave propagation in the plate-fluid system was also considered. 

However, the investigations carried out in the paper by Sorokin and Chubinskij (2008) and others 

noted above were made within the scope of the approximate plate theories and, as a result of 

which, the range of the described wave modes and their dispersion curves, decreases significantly.  

It is evident that in cases where the wavelength is significantly less than the thickness of the plate 

more accurate results in the qualitative and quantitative sense, can be obtained by employing the 

exact equations for describing the plate motion. Moreover, in the foregoing papers, except the 

paper by Zhao and Yu (2012), the initial stretching of the plates, which can be one of their 

reference characteristics, are not taken into consideration. 

The influence of the initial stress in the plate on the dispersion of the waves propagated in the 

plate-compressible fluid system is studied within the scope of the corresponding exact linearized 

equations of motion in the papers by Bagno (2015), Bagno et al. (1994) and others, a review of 

which is given in the survey paper by Bagno and Guz (1997). Note that in these investigations the 

motion of the viscous fluid is written within the scope of the linearized Navier-Stokes equations 

and detailed consideration of the results is made in the monograph by Guz (2009). Moreover, note 
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that detailed review of the investigations related to the dynamics of the plate+fluid systems was 

also made in the paper by Akbarov and Ismailov (2017).  

From the authors’ point of view, one of the significant investigation fields of the plate-fluid 

systems is also investigations related to their forced vibration and carried out within the scope of 

the corresponding exact equations of motion. The first attempt in this field is made in the paper by 

Akbarov and Ismailov (2014) in which the two-dimensional (plane-strain state) problem on the 

forced vibration of the pre-strained highly elastic plate+compressible viscous fluid system is 

studied. Note that the results obtained in the paper by Akbarov and Ismailov (2014) were also 

detailed in the monograph by Akbarov (2015). Continuation of these studies is made in other 

papers by these authors the brief review of which is given below.  

The paper by Akbarov and Ismailov (2017) deals with the study of the forced vibration of the 

system consisting of the elastic plate, compressible viscous fluid, and rigid wall. The dynamics of 

the moving load acting on the mentioned hydro-elastic system is considered in the paper by 

Akbarov and Ismailov (2015). The dynamics of the oscillating moving load acting on the hydro-

elastic system consisting of the elastic plate, compressible viscous fluid and rigid wall is 

considered in the paper by Akbarov and Ismailov (2016a) and it is established that the action of the 

oscillating moving load on the motion of the mentioned system significantly depend not only on 

the fluid viscosity but also on the vibration phase of the external load.  

The paper by Akbarov and Ismailov (2016b) studies the forced vibration of the initially 

stretched metal elastic plate loaded with the compressible viscous fluid and it is concluded that the 

initial stretching causes a decrease in the absolute values of the pressure on the interface plane 

between the plate and fluid. 

The paper by Akbarov and Panakhli (2015, 2017) develops the discrete-analytical solution 

method for the solution to problems related to the dynamics of the hydro-elastic system consisting 

of an axially-moving pre-stressed plate, compressible viscous fluid and rigid wall. Concrete 

numerical results on the influence of the plate moving velocity on the frequency response of the 

interface fluid pressure and velocity are presented and discussed. It is also studied the influence of 

the fluid viscosity on this response. 

Note that in all the foregoing investigations related to the forced vibration of the plate-fluid 

systems it is assumed that (except the paper by Akbarov and Ismailov 2014) the plate material is 

metal (in particular, is steel). Consequently, the foregoing results cannot be applied to the cases 

where the plate material is the highly elastic one which can be taken place in many modern 

engineering branches such as bioengineering, chemical engineering, mechanical engineering and 

etc. Note that one of the characteristic particularities of the mechanical behavior of the highly 

elastic plates is its very high sensitivity to the initial stretching. Therefore, the study of the forced 

vibration related to the hydro-elastic system consisting of the highly elastic plate and fluid requires 

taking into consideration the initial stretching of the plate. 

In connection with the foregoing discussions, in the present paper the forced vibration of the 

hydro-elastic system consisting of the initially strained highly elastic plate, compressible viscous 

fluid and rigid wall is considered, and the aim of the present investigation is the determination the 

character of the influence of the initial stretching of the highly elastic plate on the frequency 

response of the hydro-elastic system under consideration. We recall that, in the paper by Akbarov 

and Ismailov (2014) the forced vibration of the initially strained highly elastic plate loaded with 

the compressible viscous fluid which filled the half-plane, was considered. Consequently, the 

investigations carried out in the present paper can be also estimated as the development of the  
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(a) (b) 

Fig. 1 The sketch of the hydro-elastic system under consideration (a) and Sommerfeld contour (b) 
 

 

investigations presented in the paper by Akbarov and Ismailov (2014) for the case where the 

motion of the fluid is bounded not only by the plate but also with the rigid wall. 

 

 

2. Formulation of the problem 
 

We introduce into consideration the hydro-elastic system consisting of the initially stretched 

highly elastic plate-layer, compressible viscous fluid and rigid wall the sketch of which is shown in 

Fig. 1. Assume that the thickness of the plate and the depth of the fluid in the natural state (i.e., 

before the initial stretching of the plate) are h and hd, respectively. Assume that after initial 

stretching of the plate the time-harmonic lineal-located dynamical force acts on that and as a result 

of this action the forced vibration of the foregoing hydro-elastic system appears. It is required to 

study the frequency response of the considered hydro-elastic system and the influence of the initial 

stretching of the highly elastic plate on this response. For mathematical formulation of the 

problem, first we consider the field equations related to the motion of the initially strained highly 

elastic plate and to the flow of the fluid.   

 

2.1 Governing field equations for the plate-layer 
 

We distinguish three states of the plate and these states are: the natural state in which the plate 

has not any deformation and external loading; the initial state in which the plate is stretched along 

its length by the static forces acting at infinity and the action of these forces continues all further 

dynamic process; and the perturbed state which causes by the additional lineal-located time 

harmonic dynamic force acting on the plate. We assume that the plate is in contact with the fluid 

after initial stretching of that and before the action of the mentioned dynamic force.  

We determine positions of the points of the layer in the natural state by the Lagrangian 

coordinates in the Cartesian system of coordinates 1 2 3Ox x x  and suppose that the layer has infinite 

length in the directions of the 1Ox
 
and 3Ox  axes. As the 3Ox  axis extends along a direction which 

is perpendicular to the plane 1 2Ox x  in Fig. 1 and therefore this axis is not shown in this figure.  

At the same time, with the initial state of the layer we associate the Cartesian system of 

coordinates 1 2 3Oy y y  and suppose that the origin of this system coincides with the origin of the 

system 1 2 3Ox x x , and the coordinate axes 1Oy , 2Oy  and 3Oy coincide with the coordinate axes 1Ox

, 2Ox  and 3Ox , respectively. We suppose that the material of the layer is compressible and the 
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elastic relations of that are given through the harmonic potential.  

Denoting the values related to the initial state by upper index 0, we assume that the 

displacements in the initial state in the plate can be presented as follows.  

0
1 1 1( 1)u x   , 0

2 2 2( 1)u x  , 0
3 0u  1 1 1const    , 2 2 1const   , 3 1  , 

2 2 1const   , 1 1 1y x , 2 2 2y x , 3 3y x , 
(1) 

where 0
ku  ( 1,2,3)k   is a component of the displacement vector in the layer in the initial strain 

state and k  is an elongation factor which characterizes the change in the length of the line 

element in the kOx  axis direction. This parameter is determined by the expression 1 2k k   , 

where k  is the k th  principal value of the Green’s strain tensor. The expression of the 

components of this tensor through the components of the displacement vector will be given below. 

Thus, within this initial strains we consider a motion of the layer by the use of coordinates 

associated with the initial state, i.e. by the use of coordinates ky  ( 1,2,3)k  . We describe this 

motion in the framework of the three-dimensional linearized theory of elastic waves in initially 

stressed bodies (TLTEWISB). The started point for construction of the equations and relations of 

the TLTEWISB is the geometric nonlinear equations and relations written for the sums of the 

values related to the initial state and of the values related to the perturbed state the meaning of 

which is explained in the beginning of the present subsection. As a result of the linearization of the 

mentioned nonlinear equations and relations with respect to the perturbations it is obtained the 

equations and relations of the TLTEWISB. Note that under this linearization it is assumed that the 

nonlinear terms with respect to the perturbed state quantities are very small than the corresponding 

linear terms and these nonlinear terms can be neglected under investigation of a certain class of 

problems related to dynamics, statics and stability loss of the elements of constructions. The 

general problems of the TLTEWISB have been elaborated in many investigations such as Biot 

(1965), Guz (2004), Truestell and Noll (1965) and others. 

Thus, as a result of the aforementioned linearization the following basic relations of the 

TLTEWISB for the compressible body under the plane-strain state in the 1 2Oy y  plane are 

obtained.  

The equation of motion is  

2

2

ij j

i

Q u

y t


 


 

 , (2) 

and mechanical relations are 

ij ij
u

Q
y












, (3) 

where ; ; ; 1,2i j     and Einstein summation rule is employed with respect to the repeated indices 

in Eqs. (2) and (3). At the same time, in equation (2) and (3) the following notation is used: ijQ  are 

the components of the perturbations of the Kirchhoff non-symmetric stress tensor related to the 

areas of the initial state, ju  are the components of the perturbations of the displacement vector, 

and   is the density also related to the volume of the initial state.  
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Below we will also consider the determination of the components ij  which are found 

through the initial strain state (1) and through the corresponding elastic potential. The harmonic 

potential, as has noted above, is selected in the present investigation for the layer’s material and 

this potential is presented through the following expression 

2
1 2

1
( )

2
s s     (4) 

where   and   are the mechanical constants of the material and 

1 1 2 3( 1 2 1) ( 1 2 1) ( 1 2 1)s            , 

2 2
2 1 2( 1 2 1) ( 1 2 1)s        

2
3( 1 2 1)  . 

(5) 

In Eq. (5), i  ( 1,2,3)i   are the principal values of the Green’s strain tensor. 

For clearer describing the explanation of the linearized equations and relations let us consider 

briefly the definition of the stress and strain tensors in the large elastic deformation theory through 

the linearization from which the used equations in the present investigation are obtained. Under 

this consideration we use the Lagrange coordinates ix ( 1,2,3)i   in the Cartesian system of 

coordinates 1 2 3Ox x x  and the position of the points after and before deformations we determine by 

the vectors *r  and r  respectively, where * r r u . Here i iuu g  is a displacement vector 

expressed by the unit basic vectors ig . Taking the relations d * d * d d 2d d     r r r r r u d du u  

(here the symbol “  ” means the scalar product of the vectors), d d u u

j( )( )d dk i k i ju x u x x x      and 2d d r u 2( )d dk i k ju x x x  into account, it is obtained that 

d * d * d d 2 d dij i jx x   r r r r , where 

1

2

ji n n
ij

j i i j

uu u u
+ +

x x x x


   
  

     

 (6) 

Here, ij  is a component of the symmetric Green’s strain tensor ε  and Einstein summation rule 

takes place in the equation (6) with respect to the repetitive index n .  

Let us also consider the definition of the Kirchhoff stress tensor. The use of various types of 

stress tensors in the large (finite) elastic deformation theory is connected with the reference of the 

components of these tensors to the unit area of the relevant surface elements in the deformed or 

un-deformed state, because, in contrast to the linear theory of elasticity, in the finite elastic 

deformation theory the difference between the areas of the surface elements taken before and after 

deformation must be accounted for in the derivation of the equation of motion and under 

satisfaction of the boundary conditions with respect to the forces.  

For convenience of the investigation carried out in the present paper, we here consider two 

types of stress tensors denoted by q  and S  the components of which refer to the unit area of the 

relevant surface elements in the un-deformed state, but act on the surface elements in the deformed 

state. The components ijS  of the stress tensor S are determined through the strain energy potential 

11 22 33( ), ,...,     , where ij  is a component of the Green’s strain tensor (6), by the use of 
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the following expression 

11 22 33
1

( )
2

ij
ij ji

S , ,...,   
 

  
  
   

 (7) 

The components ijq  of the stress tensor q  are determined by the expression 

jj
ij ikk

k

u
q S

x


 
  

 
 (8) 

Here, j
k

  is the Kronecker symbol and Einstein summation rule takes place with respect to the 

index k . The stress tensor q  with components determined by expressions (7) and (8) is called the 

Kirchhoff stress tensor. According to expressions (6)-(8), the stress tensor S is symmetric, but the 

Kirchhoff stress tensor q  
is non-symmetric. Thus, with this we restrict ourselves to the 

consideration of the definition of the stress and strain tensors in the finite elastic deformation 

theory. These definitions are given without any restriction related to the association of the selected 

coordinate systems to the natural or initial state. However, in using the coordinate system 

associated with the initial deformed state, the initial strain state can be taken as an “un-deformed” 

state in the foregoing definitions.  

Thus, using the foregoing preparation we consider the obtaining the Eq. (3) and the expressions 

for the components ij  by employing the linearization procedure. First, we found from the Eqs. 

(1), (4)-(8) that 

 0
11 1 2 1 1( 2) 2 ( 1) ( )S           ,  0

22 1 2 2 2( 2) 2 ( 1) ( ) 0S            , 0
12 0S  . (9) 

from which follows that  

  1
2 12 ( 2) / ( 2 )          . (10) 

According to expressions in (1), (9) and (10), we can conclude that for a selected material the 

magnitude of the initial strains and the initial stresses in the layer can be determined through 1

only.   

By linearization the expression (8) we obtain the relation 

0
0j jj

ij ik ikk
k k

u u
q' S' S

x x

  
   
  
 

, (11) 

where 'ijq  is the perturbation of the components of the non-symmetric Kirchhoff stress tensor qij 

and 

0

0 0

1
'

4
in k

k k k

u
S

x



 


 

          
       

0

0 0
in ni

u

x






 

    
        

, (12) 
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which is the perturbation of the components of the stress tensor S  and the expression in Eq. (12) 

is obtained from the Eq. (7) by usual linearization procedure and here Einstein summation rule 

takes place with respect to the indices k and  . 

Thus, finally using the relations  

11 2 3 11 2 3'Q dy dy q dx dx ,  22 1 3 22 1 3'Q dy dy q dx dx , 12 2 3 12 2 3'Q dy dy q dx dx , 

21 1 3 21 1 3'Q dy dy q dx dx , 1 1 1dy dx , 2 2 2dy dx   11 11 2' /Q q   , 22 22 1' /Q q  , 

12 11 2' /Q q  , 21 21 1' /Q q   

(13) 

and changing j ku x   and u x   in Eqs. (11) and (12) with k j ku y    and u y     , 

respectively, Eq. (3) and expressions for components ij  are obtained from Eqs. (11) and (12) 

after some mathematical calculations.  

As an example, we consider the obtaining of the expressions for 11Q , 1111  and 1122 given 

in Eq. (3) and for this purpose we write the following relations obtained from Eqs. (1), (11) and 

(12).  

0 1
11 1 11 11

1

' '
u

q S S
x




 


, 
0 01 2

11 1 11 2 110 0
1 211 22

'
u u

S S S
x x

 
 

  
 

  
 (14) 

Taking the relations 

0
0 01 11

1 11 110 2
1 1 111 1

1 1
( 2 )

( )

S
S S


  

   


   


, 

0
0 2 11

2 110
2 2 222

S
S

 


  


 


, (15) 

which are obtained from the definition of the parameter i  and the expression for 0
11S in Eq. (9), 

and the relations (14) into account, the following mathematical transformations can be made 

1 2
11

1 2

' ( 2 )
u u

q
x x

  
 

   
 

 

1 2
1 2

1 2

( 2 )
u u

y y
   

 
 

 
,  1 1 2

11 11 2
2 1 2

' / ( 2 )
u u

Q q
y y


   



 
    

 
 

1 2
1111 1122

1 2

u u

y y
 

 


 
.  1

1111
2

( 2 )


  


  , 1122  . 

(16) 

Thus, we obtain the foregoing expressions for components 1111  and 1122 . In this way we 

obtain the expressions for remain components ij  in Eq. (3) which are differ from zero. These 

expressions are 

2211  , 2
1212 2121

1 2

2 
 

 
 


, 

 

 

2
2

1221 2112
2 1 2

2  
 

  
 


. (17) 

This completes the consideration of the basic equations and relations of the TLTEWISB within 

the scope of which the motion of the pre-strained plate-layer is described. In this case the boundary 

conditions on the upper face plane of the layer can be written as follows. 
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2 0
21 0

y
Q


 , 

2 0
22 0 1( )i t

y
Q P e y 


  . (18) 

In Eq. (18),   is a frequency of the lineal-located external load with amplitude 0P , 1( )y  is a 

delta Dirac function.   

 

2.2 Governing field equations for the compressible Newtonian viscous fluid 
 

Consider the field equations of motion of the Newtonian compressible viscous fluid and under 

this consideration the density, viscosity constants and pressure related to that will be denoted by 

upper index (1). We use the Euler coordinates in the coordinate system 1 2 3Oy y y which is 

associated with the initial state of the plate to write these equations. Taking the smallness of the 

perturbations in the perturbed state in the system under consideration the Euler and Lagrange 

coordinates in the coordinate system 1 2 3Oy y y  will be identified. Thus, within these assumptions, 

according to Guz (2009), we write field equations for the fluid flow. 

The linearized Navier-Stokes equations 

(1)
(1) (1)
0

i i

j j i

v v p

t y y y
 

  
  

   

2
(1) (1)( ) 0

j

j i

v

y y
 


 

 
. (19) 

The equation of continuity 

(1)
(1)
0 0

j

j

v

t y





 

 
 (20) 

Rheological relations 

(1) (1) (1)2k
ij ij ij

k

v
T p e

y
  

 
    
  

 (21) 

where 

1

2

ji
ij

j i

vv
e

y y

 
  
  
 

 (22) 

The equation of state 

(1)
2
0 (1)

p
a







 (23) 

In Eqs. (19)-(23) ; ; 1,2,3i j k   and the following notation is used: iv  is a component of a 

perturbation of the velocity vector, (1)p  is a perturbation of the pressure, (1)  is a coefficient of 

viscosity, (1)  is the second coefficient of the viscosity, 0a  is a sound speed in the fluid, ije is a 
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component of a perturbation of the strain rate tensor, ijT is a component of a perturbation of the 

stress tensor in the fluid,  (1) is a perturbation of the density of the fluid, (1)
0 is a density of the 

fluid in the initial state, i.e.,before the perturbation of the fluid and ij is a Kronecker symbol.  

Note that in Eqs. (19)-(21) Einstein summation rule is employed with respect to the repeated 

indices.    

In the present paper we consider the case where 

1 1 1 2( , , )v v y y t  , 2 2 1 2( , , )v v y y t , 3 0v  . (24) 

According to Guz (2009), the solution of the system Eqs. (19)-(23) in the case given in (24) is 

reduced to the finding of two potentials   and   which are determined from the following 

equations. 

(1) (1) 2

(1) 22
00 0

2 1
1 0

t taa

 




    
     
   
  

, 
(1) 0

t
 

 
   

 
,  

2 2

2 2
1 2y y

 
  

 
, (25) 

where (1) is a kinematic viscosity, i.e. (1)(1) (1)
0   . 

The velocities 1v , 2v  and the pressure (1)p  are expressed via the potentials   and   by the 

following expressions 

1
1 2

v
y y

  
 
 

, 2
2 1

v
y y

  
 
 

, 
(1) (1)

(1)(1)
0 (1)

0

2
p

t

 
 



  
   
 
 

. (26) 

Assuming that (1)
11 22 33( ) 3p T T T    , we obtain from the relation (21) that  

(1) (1)2

3
   . (27) 

This completes the field equation of the fluid flow which is considered in the present paper.  

 

2.3 The compatibility conditions on the interface planes 
 

We assume that the velocities and forces acting on the interface between the fluid and layer are 

continuous, i.e., we assume that 

2 2
2 2

1
1

y hy h

u
v

t  





 ,

2 2
2 2

2
2

y hy h

u
v

t  





, 

2 2
2 2

21 21y h y h
Q T

  
 ,   

2 2
2 2

22 22y h y h
Q T

  
 . 

(28) 

Moreover, we assume that on the rigid wall the following impermeability conditions satisfy. 
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2 2
1 0

dy h h
v

 
 , 

2 2
2 0

dy h h
v

 
 . (29) 

This completes the formulation of the problem. It should be noted that, with corresponding 

obvious changes, the foregoing problem formulation can be remake for the case where the fluid is 

inviscid. Moreover, in the case where 1 2 1.0  
 
the foregoing formulation relates to the 

corresponding classical problem of hydro-elastodynamics which was considered in the paper by 

Akbarov and Ismailov (2017). 

 

 

3. Method of solution 
 

Below, we use the dimensionless coordinates /k ky y h  and omit the over bar on the 

coordinates. For solution to the problem formulated above, according to the well-known 

procedure, we represent the sought values as 1 2 1 2( , , ) ( , ) i tg y y t g y y e   and substituting these 

expressions into the foregoing equations and relations, and replacing the derivatives ( ) t •   and 

2 2( ) t •   with ( )i •  and 2 ( ) • respectively, we obtain corresponding equations, boundary 

and compatibility conditions for the amplitudes of the sought values. For solution to these 

equations we use the exponential Fourier transformation with respect to the 1y  coordinate and 

taking the problem symmetry with respect to 1 0y   into account, we can represent the originals of 

the sought values as follows. 

1 1 2 1

0

1
( , )sin(s )Fu u s y y ds





  , 2 2 2 1

0

1
( , )cos(s )Fu u s y y ds





  , 

11 11 2 1

0

1
( , )cos(s )FQ Q s y y ds





  , 22 22 2 1

0

1
( , )cos(s )FQ Q s y y ds





  , 

12 12 2 1

0

1
( , )sin(s )FQ Q s y y ds





  , 21 21 2 1

0

1
( , )sin(s )FQ Q s y y ds





  , 

2 1

0

1
( , )cos(s )F s y y ds 





  , 2 1

0

1
( , )sin(s )F s y y ds 





  , 

1 1 2 1

0

1
( , )sin(s )Fv v s y y ds





  , 2 2 2 1

0

1
( , )cos(s )Fv v s y y ds





  , 

11 11 2 1

0

1
( , )cos(s )FT T s y y ds





  , 22 22 2 1

0

1
( , )cos(s )FT T s y y ds





  , 

12 12 2 1

0

1
( , )sin(s )FT T s y y ds





  , 21 21 2 1

0

1
( , )sin(s )FT T s y y ds





  . 

(30) 
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In Eq. (30), the lower index F indicates the exponential Fourier transformation of the 

corresponding quantity.  

At first, we consider the solution to the following equations obtained from the Eqs. (2), (3), 

(16) and (17) by substituting the corresponding expressions in Eq. (30) into these equations. 

2
2 1

1 2
2 2

0F F
F

du d u
Au B C

dy dy
    ,  

2
1 2

2 2
2 2

0F F
F

du d u
Du B G

dy dy
   , (31) 

where  
2 2

1111A X s   , 1122 2121( )B s    , 2112C  , 2 2
1221D X s   , 

2222G   , 2 2 2 2
2X h c  , 2c    . 

(32) 

Using the notation  

2

0
AG B CD

A
CG

 
 , 0

BD
B

CG
 ,  

2
0 0

1 0
2 4

A A
k B     , 

2
0 0

2 0
2 4

A A
k B    , (33) 

we can write the solution to the Eq. (31) as follows. 

1 2 1 2 2 2 2 2
2 1 2 3 4

k y k y k y k y
Fu Z e Z e Z e Z e

 
     , 

1 2 1 2
1 1 1 2 2

k y k y
Fu Z a e Z a e


   2 2 2 2

3 3 4 4
k y k y

Z a e Z a e


 , 
(34) 

where 

2
1

1 2
1

D Gk
a

Bk

 
  , 2 1a a  , 

2
2

3 2
2

D Gk
a

Bk

 
 ,  4 3a a  . (35) 

Substituting the solutions in Eq. (34) into the expression in Eq. (3) we also obtain expressions 

for the Fourier transformations 21FQ  and 22FQ  of the corresponding stresses which enter into the 

boundary condition (18) and compatibility condition (28).  

  1 2
21 1 2112 1 1 2121

k y
FQ Z k a s e      1 2

2 2112 1 2 2121
k y

Z k a s e  
  

  2 2
3 2112 2 3 2121

k y
Z k a s e     2 2

4 2112 2 3 2121
k y

Z k a s e  
  ,

  1 2
22 1 2211 1 1 2222

k y
FQ Z s a k e      1 2

2 2211 2 1 2222
k y

Z s a k e  
 

  2 2
3 2211 3 2 2222

k y
Z s a k e     2 2

2 2211 4 2 2222
k y

Z s a k e  
 . 

(36) 

In this way, we determine completely the Fourier transform of the values related to the plate-

layer.  

Now we consider the determination of the Fourier transformations of the quantities related to 

the fluid flow for which we begin with the determination of the F  and F  from the Fourier 

transform of the equations in Eq. (25), which taking the relations (27) and 

2
F Fh    , 2

F Fh    (37) 

into account can be written as follows 
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2 2
21

2 2 2
2 1

0
1 4 (3 )

F
F

w

d
s

dy i N

 




 
   
  

,  
2

2 2

2
2

0F
w F

d
s iN

dy


   , (38) 

where 

1
0

h

a


   ,  

2
2

(1)w
h

N



 . (39) 

The dimensionless number wN  in Eq. (39) can be taken as Womersley number and 

characterizes the influence of the fluid viscosity on the mechanical behavior of the system under 

consideration. When the Womersley number is large (around 10 or greater), it shows that the flow 

is dominated by oscillatory inertial forces. When the Womersley number is low, viscous forces 

tend to dominate the flow. However, for hydro-elastodynamic problems the mentioned “large” and 

“low” limits for the Womersley number can change significantly. 

The dimensionless frequency 1  in Eq. (39) can be taken as the parameter which characterizes 

the compressibility of the fluid on the mechanical behavior of the system under consideration. 

Thus, the solutions to the equations in Eq. (38) are found as follows  

1 2 1 2
5 7

y y
F Z e Z e

  
  , 1 2 1 2

6 8
y y

F Z e Z e
  

  , (40) 

where 

2
2 1

1 2 2
1

1 4 (3 )w

s
i N





 


 , 2 2

1 ws iN   . (41) 

Using Eqs. (40) and (37) we obtain from the Fourier transformations of the Eqs. (21), (22) and 

(26) the following expressions for the velocities, pressure and stresses of the fluid. 

1 2 1 2
1 5 7

y y
Fv h Z se Z se

     


1 2 1 2
6 8

y y
Z e Z e

  


, 

1 2 1 2
2 5 1 7 1

y y
Fv h Z e Z e

      


1 2 1 2
6 8

y y
Z se Z se

  


, 

1 2(1) 2 2
22 5 01

4 2

3 3

y
FT Z s R e

  
  

    
 

1 22 2
7 01

4 2

3 3

y
Z s R e

  
   

 
 

1 2
6 1 1

2

3

y
Z s s e

 
 
   
 

1 2
8 1 1

2

3

y
Z s s e

    
  

  
, 

1 2 1 2(1)
21 1 5 1 72 2

y y
FT s Z e s Z e

        


1 2 1 22 2 2 2
6 81 1

( ) ( )
y y

s Z e s Z e
      


, 

 1 2 1 2(1) (1)
0 5 7

y y
Fp R Z e Z e

   
  , 

(42) 

where 
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2
21

0 2 2
1

4

3 1 4 (3 )
w

w

R N
i N




  



. (43) 

Substituting expressions (34), (36) and (42) into the boundary condition (18), compatibility 

condition (28) and impermeability condition (29) we obtain the following system of equations 

with respect to the unknowns 1Z , 2Z ,…, 6Z  through which the sought values are determined. 

 
2

21 1 11 2 120y
Q Z Z  


   3 13 4 14 0Z Z   ,  

2
22 1 21 2 220y

Q Z Z  


  

3 23 4 24 0Z Z P     ,
2 2

2 2

1
1 1 31(F
F y h

y h

u
v i Z

t 


 





  


 

2 32 3 33 4 34 )Z Z Z     5 35 7 37 6 36 8 38( ) 0h Z Z Z Z        ,

2 2
2 2

2
2 1 41(F

F y h
y h

u
v i Z

t 


 





  


2 42 3 43 4 44 )Z Z Z      

5 45 7 47 6 46 8 48( ) 0h Z Z Z Z        , 

   
2 2 2 2

21 21 1 51y h y h
Q T Z

 
  

 
   2 52 3 53 4 54Z Z Z      

5 55 7 57 6 56 8 58( ) 0M Z Z Z Z       , 

   
2 2 2 2

22 22 1 61y h y h
Q T Z

 
  

 
   2 62 3 63 4 64Z Z Z      

5 65 7 67 6 66 8 68( ) 0M Z Z Z Z       , 

2 2
1 5 75 6 76(

d
F y h h

v h Z Z


  
 

   7 77 8 78) 0Z Z   ,

2 2
2 5 85 6 86(

d
F y h h

v h Z Z


  
 

   7 87 8 88) 0Z Z   , 

(44) 

where 

(1)

M
 


 . (45) 

It can be easily determined the expressions of the coefficients ( ; 1,2,...,8)nm n m  in (44) from 

the expressions (34), (36) and (42), and therefore these expressions are not given here. Thus, 

unknowns 1 2 8, ,...,Z Z Z  in the Eq. (44) can be determined via the formulae.  

det

det

k
nm

k
nm

Z



  , (46) 

where the matrix  k
nm  is obtained from the matrix  nm  by the replacing of the k th  column 

of the  nm by the column 0(0, / ,0,0,0,0,0,0)TP  . 

Thus, after determination the unknowns 1 2 8, ,...,Z Z Z  we can consider the calculation of the 

integrals in Eq. (30) for which it is necessary to take into consideration the following reasoning. If 
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we take the Fourier transformation parameter s  as the wavenumber, then the equation  

det 0nm  , ; 1,2,...,8n m ,  (47) 

coincides with the dispersion equation of the waves propagated in the direction of the 1Oy  axis in 

the system under consideration. According to the well-known physical-mechanical considerations, 

the Eq. (47) must have complex roots only because the system under consideration contains the 

compressible viscous fluid. However, as usual, the viscosity of the Newtonian fluids is 

insignificant in the qualitative sense and therefore in many cases within the scope of the PC 

calculation accuracy of the Eq. (47) has real roots. Consequently, these roots become singular 

points of the integrated expressions in the integrals (30). Therefore, according to works by Tsang 

(1978), Jensen et al. (2011) and many others listed in these references, we will evaluate the 

wavenumber integrals (30) along the Sommerfeld contour (Fig. 1(b)) in the complex plane 

1 2s s is   and in this way the real roots of Eq. (47) are avoided. 

Thus, using the presentation 1 2( , , )g y y t  1 2( , ) i tg y y e   the sought values can be determined 

through the following two type relations. 

 22 11 2 22 11 2, , , , ,vQ Q u T T    22 11 2 22 11 2
1

Re , , , , , vi t
F F F F F F

C
e Q Q u T T

  1cos( )sy ds , 

 21 12 1 21 1, , , ,vQ Q u T    21 12 1 21 1
1

Re Q , , , , vi t
F F F F

C
e Q u T

  1sin( )sy ds . 

(48) 

According to Fig. 1(b), we can write the following relation. 

*
2

1 2 2 1 2

0

( )cos( ) ( )cos( y )

s

C

f s sy ds i f is is ds  * *
1 2 1 2 1 1

0

( )cos(( ) y )f s is s is ds



  
, 

*
2

1 2 2 1 2

0

( )sin( ) ( )sin( y )

s

C

f s sy ds i f is is ds 
* *

1 2 1 2 1 1

0

( )sin(( ) y )f s is s is ds



    

(49) 

Taking the fact that the values of the integrals 1( )cos( )
C

f s sy ds  and 1( )sin( )
C

f s sy ds  are 

independent on the values of the parameter *
2s  into account, as usual (see, for example Jensen et 

al. (2011) and Tsang (1978), to simplify the calculation of these integrals, the parameter *
2s  is 

assumed as a small parameter. 

According to this assumption and to the relation 

*
2 *

2 2 1 2 2
0

( )cos( y ) ( )
s

f is is ds O s
, *

2 *
2 2 1 2 2

0
( )sin( y ) ( )

s
f is is ds O s

 

we use the following approximate expressions for calculating of the foregoing integrals 

1( )cos( )

C

f s sy ds 
* *

1 2 1 2 1 1

0

( is )cos(( is ) )dsf s s y



 
, 

1( )sin( )

C

f s sy ds 
* *

1 2 1 2 1 1

0

( is )sin(( is ) )dsf s s y



 
 

(50) 
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The accuracy of the expressions in (50) with respect to values of the parameter 
*
2s  was 

discussed in the monograph by Akbarov (2015) and in the other references listed therein.  

At the same time, under calculation procedure, the improper integrals 1 1 1 10
( )cos( )f s s y ds


  

and  1 1 1 10
( )sin( )f s s y ds


  in (50) are replaced by the corresponding definite integrals 

*
1

1 1 1 10
( )cos( )

S
f s s y ds




 

and 
*
1

1 1 1 10
( )sin( )

S
f s s y ds




 

respectively. The values of *
1S  are 

determined from the convergence requirement of the numerical results. Note that under calculation 

of the latter integrals, the integration intervals are further divided into a certain number of shorter 

intervals, which are used in the Gauss integration algorithm. In this integration procedure it is 

assumed that in each of the shorter intervals the sampling intervals of the numerical integration 

1s   must satisfy the relation |Δs1|<<min{s2
*,1/y1}. All these procedures are performed 

automatically with the PC by use of the corresponding programs constructed by the authors in 

MATLAB.  

With this we restrict ourselves to consideration of the solution method for the investigation of 

the problem under consideration. Note that after some obvious changing the foregoing solution 

method can be applied also for the case where the fluid is inviscid. 
 

 

4. Numerical results and discussions 
 

4.1 The selection of the problem parameters and on the calculation algorithm 
 

According to the foregoing discussions, it can be concluded that the problem under 

consideration is characterized with the following parameters: the dimensionless parameters 1  

and wN which are determined by the expressions in (39), M which is determined with the 

expression (45),   where  and   are the mechanical constants which enter into the expression 

of the elastic potential (7), and  λ1
 
through which the initial strains in the layer are characterized. 

Under numerical investigation we assume that the values of the mechanical constants and the 

density of the plate material are 91.86 10 Pa   , 93.96 10 Pa    and 31160kg m  , but the 

material of the fluid is Glycerin  with viscosity coefficient (1) 1,393 ( )kg m s   , density  

31260kg m  and sound speed 0 1459.5a m s  (Guz 2009). We introduce also the notation 

2c    which is the shear wave propagation velocity in the layer material in the case where 

the initial strains are absent in that. Note that the values selected above for the constants  ,   and 

 , and related to the plate material under absent of the initial strains corresponds to the Plexiglass 

(or Lucite) (see Guz 2004, Lai-Yu et al. 2006). 

So that, after selection of the noted above materials, the foregoing dimensionless parameters 

can be determined through the following four quantities: h  (the thickness of the plate-layer in the 

natural state), dh  (the thickness of the fluid strip),   (the frequency of the time-harmonic external 

forces) and λ1 (the elongation factor which characterizes the change in the length of the line 

element in the 1Ox  axis direction). Note that one of the main parameters for the problem under  
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(a) (b) 

Fig. 2 Frequency response of the stress (a) and velocity (b) in the case where / 2t  under various 

values of ratio hd/h 
 

 

consideration is 1 . Namely, through this parameter the influence of the initial stretching of the 

plate-layer on the dynamic behavior of the hydro-elastic system will be estimated.  

Numerical results, which will be discussed below, relate to the normal stress acting on the 

interface plane between the fluid and plate-layer and to the velocity of the fluid on the interface 

plane in the direction of the 2Oy  axis. Note that under obtaining the numerical results the 

integration interval 
*
10,S 

 
 is divided into a certain N  number of shorter intervals. In each of 

these shorter intervals with length *
1S N  the integration is made by the use of the Gauss 

integration algorithm with ten sample points. The convergence of the mentioned integration 

algorithm with respect to the *
1S  and N  was examined in the papers by Akbarov and Ismailov 

(2017, 2016a) and therefore here we do not consider again this question.  However, according to 

the convergence requirement of the numerical results discussed in these papers, the all numerical 

results presented in the present paper are obtained in the case where *
1 5S   and 2000N   for the 

case where 0.001h m  and 4 400hz hz  . 

 

4.2 The case where initial strains in the plate-layer are absent 
 

For estimation the influence of the initial stretching of the plate-layer on the frequency response 

of the hydro-elastic system under consideration, first we consider some basic particularities of the 

mentioned response which takes place in the case where the initial stretching in the plate-layer is 

absent, i.e. in the case where 1 1.0  . As an examples for these responses numerical results 

illustrated the change character of the dimensionless interface normal stress 22 0/T h P  and velocity 

2 2 0/ ( )v h c P  with respect to the problem parameters, such as the vibration frequency  , the 

vibration phase t  and the dimensionless distance 1 /x h  1( / )y h   from the point at which the  
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(a) (b) 

Fig. 3 Frequency response of the stress (a) and velocity (b) in the case where 0t  under various values of 

ratio hd/h 
 

  
(a) (b) 

Fig. 4 Distribution of the stress (a) and velocity in the case where / 2t   under various values of ratio 

hd/h 
 

 

external force acts, are given in Figs. 2-6. In these figures the graphs grouped by letter a (b) relate 

to the dimensionless stress 22 0/T h P   (velocity 2 2 0/ ( )v h c P ) and the results shown in Figs. 2 and 

4 (in Figs. 3 and 5) are obtained in the case where / 2t   (in the case where 0t  ). The 

graphs given in Figs. 2 and 3 illustrate the frequency response of the studied quantities, the graphs 

given in Figs. 4 and 5 illustrate the distribution of these quantities with respect to the 

dimensionless coordinate 1 /x h  . However, the change of the quantities under consideration with 

respect to the vibration phase t is illustrated with the graphs given in Fig. 6.  
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(a) (b) 

Fig. 5 Distribution of the stress (a) and velocity in the case where 0t   under various values of ratio hd/h 

 

  
(a) (b) 

Fig. 6 The influence of the vibration phase t on the values of stress (a) and velocity (b)  under various 

values of ratio hd/h 
 

 

Note that the results given in Figs. 2-6 are obtained for various values of the ratio dh h  (=2, 3, 

6 and 10) which shows the fluid depth. Moreover, note that in Figs. 2-6 the results related to the 

corresponding inviscid flued case are also given in order to estimate the influence of the fluid 

viscosity on the frequency response of the considered system. Under inviscid fluid case it is 

understood that the Glycerin is modeled as inviscid fluid, i.e., it is assumed that (1) 0  . 

The foregoing results are similar in the qualitative sense with corresponding ones obtained and 

analyzed in the paper by Akbarov and Ismailov (2017). However, in the paper by Akbarov and 

Ismailov (2017) it is assumed that the material of the plate is steel with the mechanical constants

457



 

 

 

 

 

 

Surkay D. Akbarov, Meftun I. Ismailov and Soltan A. Aliyev 

979 10 Pa   , 994.4 10 Pa    and density 37790 /kg m   (see, Guz 2004, Guz and Makhort 

2000), and the material of the fluid is also Glycerin as here.   

Thus, according to the results analyzed in the paper by Akbarov and Ismailov (2017) and to the 

results obtained in the present investigation, it can be made the following conclusions with respect 

to the influence of the vibration phase and fluid viscosity on the values of stress T22h/P0 and 

velocity 2 2 0/ ( )v h c P : 

a) in the inviscid fluid case the absolute maximum value of the stress arises under 

0t n    but under / 2t n     the stress is equal to zero. However, the absolute 

maximum values of the fluid velocities arise under / 2t n     and these velocities are equal 

to zero under 0t n   ; 

b) in the viscous fluid case the absolute maximum value of the stress appears under 

( ) 't t n     and the stress is equal to zero under ( ) ''t t n    , where 0 ( )' / 2t    and 

/ 2 ( ) ''t    , however, absolute maximum values of the velocity appear under 

( )*t t n    and the velocity becomes zero under ( )**t t n    , where 0 ( )*t  / 2  

and / 2 ( )**t    ; 

c) the values of ( )'t and ( ) ''t increase, however the values of ( )*t and ( )**t  decrease 

with a decrease in the ratio /dh h , i.e., with a decrease of the fluid depth;  

d) as usual, the values of the ( )'t   and ( )**t are near to zero, however the values of the 

( ) ''t and ( )*t are near to / 2 , therefore the frequency response graphs constructed in the case 

where 0t   (in the case where / 2t  ) can be related with a certain accuracy as those 

obtained in the cases where  ( )'t t  or ( )**t t  (in the case where  ( ) ''t t  or ( )*t t 

); 

e) in the case where 0t  (in the case where / 2t  ) for the considered range change of 

the vibration frequency   the absolute values of the stress (velocity) increase monotonically with 

this frequency; 

f) however, in the case where  / 2t   (in the case where 0t  ) the character of the 

frequency response of the stress (of the velocity) depends on the fluid depth, i.e., on the ratio hd/h; 

g) the absolute values of the stress increase, but the absolute values of the velocity decrease 

with decreasing in the ratio hd/h; 

h) the fluid viscosity causes an increase under 0t   (decrease under / 2t  ) in the 

absolute values of the stress (of the velocity); 

i) absolute maximum value of the stress and velocity appear at the point 1 / 0x h  ; 

j) the comparison the results obtained in the present paper with the corresponding ones 

obtained in the paper by Akbarov and Ismailov (2017) shows that the absolute values of the stress 

obtained in the present investigation are greater than corresponding ones obtained in the paper by 

Akbarov and Ismailov (2017), however the absolute values of the velocity obtained under 

/ 2t   in the paper by Akbarov and Ismailov (2017) are greater than the corresponding ones 

obtained in the present paper. This means that the change of the plate material can influence 

significantly in the quantitative sense on the frequency response of the studied quantities.  

This completes the consideration of the results related to the case where the initial stretching of 

the plate layer is absent and basing on these results we consider the results illustrated the influence 

of the initial stretching of the plate-layer on the frequency response of the stress and velocity. 
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(a) (b) 

  
(c) (d) 

Fig. 7 The influence of the initial strains of the plate-layer on the frequency response of the stress in the case 

where / 2t   under /dh h =2 (a), 3 (b), 6 (c) and 10 (d) 

 

  
(a) (b) 

  
(c) (d) 

Fig. 8 The influence of the initial strains of the plate-layer on the frequency response of the velocity in the 

case where / 2t   under /dh h =2 (a), 3 (b), 6 (c) and 10 (d) 
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(a) (b) 

  
(c) (d) 

Fig. 9 The influence of the initial strains of the plate-layer on the frequency response of the stress in the case 

where 0t   under /dh h =2 (a), 3 (b), 6 (c) and 10 (d) 

 

  
(a) (b) 

  
(c) (d) 

Fig. 10 The influence of the initial strains of the plate-layer on the frequency response of the velocity in the 

case where 0t   under /dh h =2 (a), 3 (b), 6 (c) and 10 (d) 
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4.3 The influence of the initial strains in the plate-layer on the frequency response 
 

Thus, taking the foregoing results and conclusions into consideration we consider the influence 

of the initial stretching of the plate-layer on the frequency response of the studied quantities 

calculated at x1/h=0 in the cases where ωt=0 and ωt= π/2 for various values of the ratio hd/h(=2, 3, 

6 and 10). We analyze only the results related to the viscous fluid case.  

Consider the graphs shown in Figs. 7-10 illustrated the influence of the initial stretching of the 

layer, i.e., the influence of the parameter λ1 on the frequency response of the stress T22h/P0 (Figs. 7 

and 9) and velocity v2μh/(c2P0) (Figs. 8 and 10) in various values of the ratio hd/h. Note that in 

these figures the graphs grouped by letters a, b, c and d relate to the cases where hd/h=2, 3, 6 and 

10, respectively. Moreover, note the graphs given in Figs. 7 and 8 are constructed in the case 

where ωt= π/2, however the graphs given in Figs. 9 and 10 are constructed in the case where 

0t  . 

The analysis of the graphs given in Fig. 7 shows that in the cases where λ1≥1.002 the absolute 

values of the stress T22h/P0 calculated under ωt= π/2 decrease monotonically with the parameter λ1. 

However, in the case where λ1=1.001 under hd/h=2 and 3 the character of the influence of the 

initial stretching on the values of the stress depends on the vibration frequency, i.e., before (after) a 

certain value of the vibration frequency the initial stretching of the plate-layer causes a decrease 

(an increase) in the absolute values of the T22h/P0. Note that this complicated character of the 

mentioned influence disappears in the cases where /dh h  6 and 10. We recall that the values of 

the stress illustrated in Fig. 7 appear as a result of the fluid viscosity. Consequently, in the inviscid 

fluid case the stress T22h/P0 becomes zero under ωt= π/2 and all the foregoing discussions losses 

its meaning. Apart from all this the graphs given in Fig. 7 show that in the cases hd/h=2 and 5 

under λ1≥1.002 the magnitude of the influence of the initial stretching on the values of the stress 

under ωt=0 increase monotonically with the vibration frequency, however in the cases where 

hd/h=6 and 10 the dependence between the mentioned magnitude and vibration frequency has non-

monotonic character.  

The graphs given in Fig. 8 show that in all the considered cases under ωt= π/2 the absolute 

values of the velocity v2μh/(c2P0) decrease monotonically with the parameter λ1. The influence of 

the parameter λ1 on the absolute values of the v2μh/(c2P0) increase monotonically with the 

vibration frequency ω. Moreover, the magnitude of the influence of the initial stretching of the 

plate layer on the velocity v2μh/(c2P0) becomes more significantly with increasing of the fluid 

depth, i.e., with the ratio hd/h. Especially, the difference between the velocities obtained in the 

cases λ1=1.0 and λ1=1.001 increases sharply under hd/h=6 and 10. However the further decreasing 

of the velocity with increasing λ1 becomes smoother.  

Now we consider the graphs given in Fig. 9 which, as noted above, illustrate the frequency 

response of the stress T22h/P0 in the case where ωt=0. It follows from these graphs that the initial 

stretching of the plate causes a decrease of the absolute values of this stress. These graphs also 

show that the magnitude of the influence of the parameter λ1 on the values of the stress becomes 

more considerable with increasing of the fluid depth, i.e., with the ratio hd/h.  Moreover, according 

to these graphs it can be concluded that the magnitude of the influence of the initial stretching of 

the plate on the values of the stress increase monotonically with the vibration frequency ω.        

Finally, we consider the graphs given in Fig. 10 which, as noted above, show the influence of 

the parameter λ1 on the frequency response of the velocity v2μh/(c2P0) in the case where ωt=0. We 

recall that the values of the velocity shown in Fig. 10 appear namely as a result of the fluid 

461



 

 

 

 

 

 

Surkay D. Akbarov, Meftun I. Ismailov and Soltan A. Aliyev 

viscosity, i.e., in the inviscid fluid case the values of the velocity becomes zero in the case where 

ωt=0. Thus, it follows from these graphs that, as in the previous cases, the initial stretching of the 

plate causes to decrease the absolute values of the velocity and this influence becomes more 

considerable with the fluid depth. Moreover, these graphs show that in the cases where hd/h=2 and 

3 the magnitude of the mentioned influence increase monotonically with the vibration frequency 

ω, however in the cases where hd/h=6 and 10 the dependence between the magnitude of this 

influence and vibration frequency has non-monotonic character.   

This completes the consideration of the numerical results illustrated the influence of the initial 

stretching of the plate-layer on the frequency response of the hydro-elastic system consisting of 

this plate, compressible viscous fluid and rigid wall.   

 

 

5. Conclusions 
 

Thus, in the present paper the influence of the initial stretching of the highly elastic plate on the 

frequency response of the hydro-elastic system consisting of this plate, compressible viscous fluid 

and rigid wall is investigated. Under this investigation the forced vibration of this system is 

considered and it is assumed that on the plate the lineal-located time-harmonic forces act. The 

motion of the plate is described within the scope of the three-dimensional linearized theory of 

elastic waves in initially stressed bodies and the motion of the fluid is described by employing the 

linearized Navier-Stokes equations. The elasticity relations of the plate material are determined by 

the use of the harmonic potential. Under concrete numerical investigations the values of the elastic 

constant entering into the expression of this potential are taken as the values of the Lame constants 

of the Plexiglas and Glycerin is taken as a fluid. Numerical results on the aforementioned 

influence are presented and discussed.  According to these numerical results the following concrete 

conclusions related to the influence of the initial stretching, i.e. of the parameter 1 , on the values 

of the dimensionless normal stress T22h/P0 and dimensionless normal velocity 2 2 0/ ( )v h c P  can 

be made: 

-in all the cases (except the case where / 2t  and 1 1.001  under consideration the stress ) 

considered in the present investigation an increase of the initial stretching of the plate, i.e. an 

increase in the values of the parameter 1  causes a decrease in the absolute values of the stress and 

velocity; 

- the magnitude of the influence of the initial stretching of the plate on the values of the stress 

in the case where 0t  and on the values of the velocity in the case where / 2t   increase 

monotonically with vibration frequency   and with the fluid depth, i.e. with the ratio /dh h  ; 

- the character of the influence of the initial stretching on the frequency response of the stress in 

the case where / 2t  and on the values of the velocity in the case where 0t   depends on 

the ratio /dh h  , i.e., in the cases where /dh h =2 and 3 the magnitude of the mentioned influence 

increase monotonically with vibration frequency, however in the case where /dh h = 6 and 10 the 

dependence between the mentioned magnitude and vibration frequency has non-monotonic 

character; 

- the obtained numerical results agree with the well-known mechanical consideration and 

allows to develop the approach for controlling of the frequency response of the similar type hydro-

elastic system with initial stretching of the highly elastic plate; 
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- in the present paper the corresponding results related to the case where the initial stretching in 

the plate is absent, are also given and it is shown that these results agree in the qualitative sense 

with corresponding ones obtained in the paper by Akbarov and Ismailov (2017); 

- the foregoing last two conclusions can also be taken as the validation of the PC programs and 

calculation algorithm used in the present investigation.      
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