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Abstract.  The present paper deals with the influence of the inclination of cables’ system on the decrease of 

the lateral-torsional motion because of dynamic loadings. For this goal, a mathematical model is proposed. A 

3-D analysis is performed for the solution of the bridge model. The theoretical formulation is based on a 

continuum approach, which has been widely used in the literature to analyze such bridges. The resulting 

uncoupled equations of motion are solved using the Laplace Transformation, while the case of the coupled 

motion is solved through the use of the potential energy.  Finally, characteristic examples are presented and 

useful results are obtained. 
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1. Introduction 
 

A lot of work has been reported during the last 100 years, dealing with the dynamic response of 

railway bridges and later of highway bridges, under the influence of moving loads. Extensive 

references to the literature on this subject can be found in the excellent Frýba’s book (1972). 

Two early interesting contributions, in this area, exist thanks to Stokes (1849) and Zimmerman 

(1896). In 1905, Krýlov gave a complete solution to the problem of the dynamic behavior of a 

prismatic bar acted upon by a load of constant magnitude, moving with a constant velocity. In 

1922, Timoshenko solved the same problem, but for a harmonic pulsating moving force. Another 

pioneer work on this subject was presented in 1934, by Inglis, in which numerous parameters were 

taken into account. In 1951, Hillerborg gave an analytical solution to the previous problem, by 

means of Fourier’s method. 

Despite the availability of high speed computers, most of the methods used today for analyzing 

bridge vibration problems are essentially based on the Inglis’s or Hillerborg’s early techniques. 

Relevant publications are the ones of Saller (1921), Jeffcot (1929), Steuding (1934), Honda et al. 

(1982), Gillespi (1993), Green and Cebon (1994), Green et al. (1995), Zibdeh and Reckwitz  
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Fig. 1 Nervi’s solution with inclined cables 

 

 

(1996), Lee (1996), Michaltsos et al. (1996), Xu and Genin (1997), Foda and Abduljabbar (1998), 

Michaltsos (2001, 2002), Li et al. (2013), Greco et al. (2013), Lonetti and Pascuzzo (2014a,b), 

Raftoyiannis et al. (2014), Baloervic et al. (2016) and Sun et al. (2016). 

On the other hand, in practice, in spite of the great number of works, for over 50 years, bridges 

(as also other constructions which are acted upon by dynamic loads) have been designed to 

account for dynamic loads, by increasing the design live loads by a semi-empirical “impact factor” 

or “dynamic load allowance”. 

Recently, there have been many programs of research, in different countries, on the effect of 

the characteristics of a bridge, or a vehicle, on the dynamic response of a bridge. We can mention 

the programs in U.S.A. (1977), in U.K. and Canada (1983), in the Organization for Economic 

Cooperation and Development (O.E.C.D.) (1992), in Switzerland (1972) etc.   

Although there are also important publications in this field, we must especially refer to the 

important experimental research by Cantieri (1991), on different models of moving loads.  

During the last decades, cable bridges (Stay-cable or Suspended bridges) have received great 

attention and ware used to cover long spans because of their reduced erection cost. 

Both types are characterized by their special shape and aesthetic. Long span bridges, based on 

cable stayed or suspension bridge system, have been used in different frameworks. The use of the 

cable system types is strictly connected to structural, economic and practical reasons. The 

combination of the two systems (of suspended and cable-stayed ones) appears able to provide 

notable advantages in the long span bridges, and to guarantee stable and safe erection processes 

due to the suspension cable system, while, simultaneously, a reduced deformability of the girder is 

expected due to the reinforcement effect of the additional stay cables.  

A serious problem of the long-span cable bridges is the lateral instability caused by dynamic 

loadings, as for example earthquake or wind pressure or buffeting forces, Zhang and Yu (2015) 

and Zhang and Zhang (2016). The usual classical confrontation of the problem is the deck’s 

strengthening, but it is proved as a non-economic one. In some cases, mainly in foot-bridges, there 

was applied a system of cables that had an inclination to the horizontal, in order to minimize the 

lateral motion produced by crowd loading.  

The Millennium footbridge in London (2000-2002), the Peace footbridge in London Derry 

(2011), the River Dee footbridge in Breamer (at design stage), the Happy Pontist Scottish Bridge 

(2009) are some of bridges with inclined systems of cables. 

In long span cable stayed bridges we have very often inclined pylons, mainly for aesthetic  
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Fig. 2 The bridge’s pylons and cross-section 

 

 

reasons. 

Until today there are not erected long-span suspension bridges with inclined cable systems. 

At the end of the 1960’s, Nervi was amongst engineers asked to propose a design for a bridge 

across the Messina Straits, between Italy and Sicily. The depth of water in the Straits meant that 

the bridge had to cross about 3km in a single span (although other designers, such as Leonhardt, 

were still proposing designs with deep-water piers at the same time-see the book by Richard 

Scott). 

Nervi’s contemporary and compatriot Sergio Musmeci proposed a peculiar suspension bridge 

where the suspension cables are hung not directly from towers, but from cable stays which are in 

turn suspended from super-towers beyond the ends of the main bridge. Musmeci’s idea included 

lateral cables either side of the deck to provide it with transverse stability. 

Although this was an odd design, the proposal by Nervi was even stranger. 

Nervi sought to achieve lateral stability by inclining the main suspension cables away from the 

deck (see Fig. 1), so that the deck hangers are no longer vertical, and the towers supporting the 

main cables are separated by a considerable distance. 

The towers are hyper-paraboloid (see Fig. 2) concrete shells capped with enormous steel 

assemblies. They're restrained by stays to resist the incredible horizontal forces they would have to 

carry. 

The deck itself appears to be a trapezoidal concrete box (see Fig. 2) which would be incredibly 

heavy and attract enormous wind loading. 

Authors do not find either notable research studies on this field or other communications 

related to constructional or other objects that set on thinking designers or constructors, except 

papers dealing with footbridges and using cables in order to minimize its oscillations caused by 

human crowd like Nakamura and Kawasaki (2006), Eckhard and Ott (2006), Roberts et al. (2008), 

Ingolfsson and Georgakis (2011, 2012) and moving loads like Greco et al. (2013) and Lonetti and 

Pascuzzo (2014b). 

The present paper deals with the influence of the inclination of cables’ system on the decrease 

of the lateral-torsional motion because of dynamic loadings. For this goal a mathematical model is 

proposed for inwards or outwards inclination of the cable system, where the height and inclination 

of the pylons are thoroughly investigated. 

A 3-D analysis is performed for the solution of the bridge model. The theoretical formulation is 

based on a continuum approach, which has been widely used in the literature to analyze bridges.  
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Fig. 3 Schematic of the studied bridge and cable-systems 

 

 

The resulting uncoupled equations of the motion are solved using the Laplace Transformation, 

while the case of the coupled motion is solved through the use of the potential energy. Finally, 

characteristic examples are presented and useful results are obtained.     

 

 

2. Introductory concepts 
 

a. The bridge and the cable-systems studied are shown in Fig. 3(a). Above the deck level, the 

pylons are inclined by angle θ which may be clockwise or counterclockwise. 

b. Under the action of dead loads it is υ=w=φ=0, while the initial stress of cables is No with 

components Ho and Vo (Fig. 3(b)).  

c. They are valid the following relations from the theory of suspension bridges 
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where with index “o” are symbolized the tensions and forces caused by dead loads while with 

index “e” the ones caused by live and dynamic loadings. 

d. The above system is analyzed into the systems of Fig. 4, consisting of one vertical with sag 

fV, fVo and stress of the hangers SV and one horizontal with fH, fHo and SH. 

The following relations are valid 
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Fig. 4 Analysis of the cable system in two equivalent systems 

 

 
Fig. 5 The displacements of the deck 

 

 









sinffsinSS

cosffcosSS

oHoH

oVoV  (1b) 
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e. Separating the deck and showing its motion because of the action of a horizontal load, we get 

Fig. 5, showing the displacement of a cross-section of the deck, where o  is the ground motion 

and  and,w,  are the displacements and the angle of rotation of the cross-section’s gravity 

center. 

Assuming that the cables are anchored at points A1 and A2, the following additional 

displacements dυ and dw because of φ are valid:  d and  bdw , and therefore the entire 

displacements of points A1 and A2 will be 
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(a) (b) 

Fig. 6 The displacements of the hangers 

 

 

3.  Analysis  
 

3.1 The acting forces 
 

In Figs. 6(a) and 6(b), one can see the displacements of points A1 and A2 (where they are joined 

the hangers). One can observe that applying the positive signs for υ, w, and φ, some displacements 

cause additional strain of hangers while others cause looseness of hangers (see Figs. 6(a) and 6(b)).  

This remark is taken into account in the following analysis. In addition, we remember that: 

ff  . 

For easier understanding the following procedure, we analyze the cable-system in two others 

(Fig. 4), consisting of one vertical with sag  cosff V  and hangers’ tensions  cosSSV , and 

another horizontal with sag   sinffH  and hangers’ tensions  sinSSH . 

 

3.1.1 The vertical forces 
Marking by the index “o” the forces without dynamic loadings and by “e” the additional forces 

because of dynamic loads we have 
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where Eqs. (1) are taken into account and also that ff  . 

 

3.1.2 The horizontal forces   
Following a similar procedure with §3.1.1 we have 
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Because of Eqs. (1) we finally obtain 





































 





 

sinhh:and

L

)hL(

L

)hL(

L

sinf8
1LLand,sin

L

f8
f

:with

dx
FE/L

f2
)(m)(c)t,x(pP

H

2

3

2/32

H

2

3

2

1

2/32

H

2

1

2

2

22

o

2cH2

o

H

L

0cccH

2

H

ooyyy


 
(3) 

where )t(o  is the soil motion, while it is taken into account that a positive υΑ1 brings about 

looseness of the cable 1 (Fig. 6(a)), while a positive υΑ2 brings about looseness of the cable 2 (Fig. 

6(b)).  

 

3.1.3 The torsional moments  
Taking into account §3.1.1 and 3.1.2 we obtain 
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3.2 The equations of motion 
 

Taking into account Eqs. (2), (3), (4) and that the external loadings can be expressed as 

relations of t, the complete equations of motion are given by the following expressions 
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4.  Doubly symmetric cross-section 
 

For a bridge which the deck has a cross-section of double symmetry, will be 0zM  , α=0, and 

therefore Eqs. (5) become 
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In this case we observe that all equations are independent each other and therefore they can be 

solved separately. 

 

4.1 The vertical motion 
    

In order to solve Eq. (6a), we are searching for a solution of the form 
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












  .......,3,2,1
Lm

H2

Lm

IE

2

o
22

4

y
44

y
 (7c) 

Introducing (7a) into (6a) we obtain 
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Remembering that )x(W  satisfies the equation of free motion 
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Eq. (8a) becomes 
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Multiplying the above by )x(W  and integrating from 0 to L we get 
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with α from Fig. 5. 

In order to solve the above system of Eqs. (8d), we employ the Laplace Transformation with 

initial conditions .0)0(T)0(T  
  Therefore, we set 
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(8f) 

and finally 

)s(GL)t(T 1



   (8g) 

 
4.2 The lateral motion 

 

In order to solve Eq. (6b), we are searching for a solution of the form 


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where  )t(R  are the time functions under determination and )x(V  are functions arbitrarily chosen 

that satisfy the boundary conditions. As such functions we choose the shape functions of an one 

span beam, given by the following expressions (12) 
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Introducing (9a) into (6b) and following the procedure of §4.1, we conclude to the system 
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In order to solve the above system (12d) we use the Laplace Transformation with initial 

conditions: 0)0(R)0(R   .  We put 
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Therefore, the system (12d) becomes 
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and finally 

)s(KL)t(R 1



   (9g) 
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4.3 The torsional motion 
 

In order to solve Eq. (6c), we are searching for a solution of the form 


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n

1

)t(Z)x()t,x(  (10a) 

where, )t(Z  are the time functions under determination and )x(  are functions arbitrarily chosen 

that satisfy the boundary conditions. As such functions we choose the shape functions in torsion of 

a single span beam, given by the following equations 
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while   are given by following the relation 
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Introducing (13a) into (9c) and following the procedure of §4.1 we conclude to the system 
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In order to solve the above system (14a) we use the Laplace Transformation with initial 

conditions 0)0(Z)0(Z  
 .  We put 
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Therefore, the system (14a) becomes 
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and finally 

)s(NL)t(Z 1



   (12b) 

 

 

5.  The general case (coupled motion)  
 

In this case it is 0zM  and therefore Eq. (5) are valid. From Eq. (5a), we observe that the 

vertical motion is independent and therefore the equations of §4.1 are valid. In order for the 

solution of the problem of coupled lateral-torsional motion to apply the Lagrange’s equations, we 

consider the potential energy of the system. 

We call K the kinetic energy, D the dynamic one, F the dissipation energy and Ω the work of 

the external forces. 

 

5.1 The potential energy of the system 
 

5.1.1 The kinetic energy 
The kinetic energy is produced by the lateral-torsional motion of the deck and it is given by the 

following expression 
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5.1.2 The dynamic energy 
The dynamic energy is caused by the stresses of the deck and the moments produced by the 

hangers. Thus, from the deck we have 
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while from the moments of the hangers we get:   
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Therefore, the total dynamic energy will be 

21 DDD   (13d) 

 

5.1.3 The dissipation energy 
The dissipation energy of the system will be 
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5.1.4 The work of the external forces 
Finally, the work produced by the external forces is 

 
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5.2 The solution of the equations of the problem 
 

We are searching for a solution of the form 
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where Rn(t) are the time functions under determination and Vn(x), Φn(x) are functions arbitrarily 

chosen that satisfy the boundary conditions. As such functions we choose the shape functions 

given by Eqs. (9b) and (10b), respectively. 

 

5.2.1 The kinetic energy 
 Introducing Eq. (14) into Eq. (13a), we have 
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From the above equation successively we obtain 
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After differentiation and taking into account the orthogonality conditions of V and  we 

obtain 
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In addition 

0
R

K








 (15b) 

 

5.2.2 The dynamic energy 
Introducing (14) into (13d) and taking into account the orthogonality conditions we get 
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From the above equation we get 
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5.2.3 The dissipation energy 
Introducing (14a) into (13e) we obtain 
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which concludes to the following relation 
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5.2.4 The work of the external forces 
Introducing (14a) into (13f) we obtain 
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5.2.5 The Lagrange’s equations 
Applying the Lagrange’s equations 
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and taking into account Eqs. (15a) to (15e) we obtain 
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In order to solve the above differential system (16b) we use the Laplace Transformation putting 
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From the above and with initial conditions 0)0(R)0(R  
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Therefore, the system (16b) becomes 
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Solving the above system we get the functions )s(G and therefore 

)s(GL)t(R 1



   (17d) 
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6.  Numerical results and discussion 

 

In this section, a numerical investigation based on the equations obtained in the previous 

paragraphs has been developed. The main goal of the presented examples is to search the influence 

of an inclined cables system mainly on the lateral motion of the bridge and also the effect of this 

inclination on the bridge’s capacity to suffer vertical and torsional motion.

 
Lets us consider therefore a suspension bridge like the one of Fig. 3, with the following 

characteristics:   m200LL
31
 , m1000L

2
 , m80and,100,120fh

o
 , m50.12b  . 

The cross-section’s data is: Cross-sectional area: 2m700.0F  , and resistance moments: 
4

y
m125.0I  , 4

z
m600.10I  , 45

d m1015.1I  , 6m301.4I  , 2

px
sectn580.8I  .  

Without restriction of the generality we consider that the cross-section is an of double 

symmetry one i.e., 0z
M
 . 

The bridge is made from isotropic and homogeneous material with modulus of elasticity 
26

b
cm/dN1010.2E   and shear modulus 26 cm/dN1080.0G  . 

Each of the two suspended cables has area of cross-section 2

c m125.0F  and modulus of 

elasticity 26

c cm/dN1000.2E  , while their limit strength is 2cm/dN0008 . 

The dead load is m/dN55007850700.0g  . 

Applying the Eqs. (1a) for each cable we can determine: 

for m120h   we get 00096.0f  and cable force cable/dN0008502H
o
  

for m100h   we get 00081.0f  and cable force cable/dN0004373H
o
  

for  m80h   we get 00064.0f  and cable force cable/dN0002974H
o
  

The cable-system, may be inclined to the outward or to the inward of the bridge (see Fig.3c). 

For the first case there is not a geometrical restriction, but for the second one the angle of 

inclination must satisfy the inequality:  h/bsin  . 

For a constant width of the deck m25b2  , we have 















o

o

o

9:m80hFor

10.7:m100hFor

6:m120hFor

 

6.1 The lateral motion 

 

In order to study the lateral motion and the influence of the inclined cable-system, we consider 

a distant source earthquake given by the equation tsinet)t( tk

o
  , (with 05.0 , 

5.0k  , and 12 ). Therefore, we get the following diagrams of Fig. 7, showing the soil motion 

and its acceleration.

 6.1.1  The influence  of  angle  θ 

Applying the equations of §4.2 for m120f
o
  and oooo 6and,4,2,0 , we obtain the plots  
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Fig. 7 Soil motion (m) and acceleration (m/s2) with respect to time t (s) caused by a distant earthquake 

 

 
Fig. 8 The influence of angle θ on the lateral deflections (m) of the middle of the bridge for θ=0ο(black), 

θ=2o(red), θ=4o (blue) and θ=6o (green)

 
 

 
Fig.  9   The influence of sag fo on the lateral deflections (m) of the middle of the bridge for fo=120 m and 

θ=0ο(black), fo=120 m and θ=6o (red), fo=100 m and θ=6o (blue) and, fo=80 m and θ=6o θ=6o (green)

 
 

 

of Fig. 8 giving the motion of the middle of the bridge. 

We ascertain that even for small values of angle θ its influence on the lateral motion is notable.  
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(a) (b) 

Fig.  10 The vertical motion (m) of the middle of the bridge (black) bridge with θ=0O and (red) bridge with 

θ=6O

  

 

Particularly for o2  the decrease of the deformation amounts to 10.7%, for o4 , to 25% 

while for o6  to 39.2%. 

 

6.1.2 The influence of sag fo 
The size of the sag fo affects the influence of the angle of inclination θ. In the following plots of 

Fig. 9 we see the influence of a constant angle o6  on the lateral motion in relation with the size 

of sag fo. 

 Particularly, for a constant angle o6 the decrease of the deformation amounts to 38.90% for 

m120f
o
 , to 32.00% for m100f

o
 , and to 25.10% for m80f

o
 . 

 

6.2 The vertical motion 

It is obvious that the ability of the bridge  to undertake vertical loads is affected by the 

inclination of the cable-system.   

In order to estimate this change of ability we consider a cable system inclined by θ=6º  

 

and sag fo=120m.  In addition, we apply the dynamic load m/dNt3sin500)t(p  , extended from  

4/L3xto4/Lx
22

 .

 Applying the equations of §4.1 we obtain the plots of Fig. 10(a), where is shown the vertical 

motion of the middle of the bridge for o0  and sag m120f
o
 (black) and  o6  and sag 

m120f
o
 (red). Fig. 10(b) is a blow-up of the plot 10a for sec4to5.3t  . 

From this last plot we ascertain that there is a slight change (increase) in the bridge ability, 

which is about 0.71%. 

   

6.3 The torsional motion  
 

In order to study the bridge’s behavior in torsional motion, we consider that the above in §6.2  
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(a) (b) 

Fig. 11 The torsional motion (rad) of the middle of the bridge (black) bridge with θ=0O and (red) 

bridge with θ=6O

  

 

dynamic loading acts eccentric in a distance m0.5e
k
  from the axis of the cross-section. 

Applying the equations of §4.3 we obtain the plots of Fig. 11(a), where is shown the torsional 

motion of the middle of the bridge for o0  and sag m120f
o
 (black) and  o6  and sag 

m120f
o
 (red). Fig. 11(b) is a blow-up of the plot 11a for sec8.3to4.3t  . 

From this last plot we ascertain that there is a slight change (decrease) in the bridge ability, 

which is about 0.52%. 

   

7.  Conclusions 
 

From the above bridge model and the results presented herein, one can draw the following 

conclusions: 

• A mathematical model for the study of suspension bridges with inclined cable-system and 

their dynamic behavior is proposed.  

• Even for small values of angle θ of the inclined cable-system one can see a significant 

influence on the lateral motion which ranges from 10.7% ( o2 ) to 39.2% ( o6 ). If the system 

is inclined inwards the bridge, the value of the angle θ has a limit value depending on the ratio b/h 

of the half cross-section width to the height of the pylon. Contrarily, for an outward inclination of 

the cable-system, there is no such a limit (except the one which depends on the pylon’s strength) 

and therefore, the influence of the inclined system on the lateral deformation increases.   

• The height h of the pylon (for the same angle θ), strongly affects the influence of the inclined 

cable-system on the lateral motion. This effect ranges from 25% to 40%.    

• The inclination of the cable-system does not affect significantly the bridge regarding its 

ability to undertake vertical or torsional loadings. This influence is very weak and ranges in rates 

less than 0.8%.  

• Finally, one can ascertain that a detailed design should take into account all combinations of 

the above factors involved in the preceding analysis.   
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Nomenclature 
 

υ horizontal displacement 

w vertical displacement 

φ rotation 

h, ho pylon heights 

fo cable sag 

N tension force 

H,V force components (horizontal and vertical) 

S hanger forces 
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( )o components due to dead loads 

( )e components due to live or dynamic loads 

( )H horizontal components 

( )V vertical components 

EI bending stiffness 

c damping 

m mass per unit length 

K kinetic energy 

D dynamic energy 

F dissipation energy 

ω frequency 

Τ,R,Z time functions 

W,V,Φ shape functions 
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