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Abstract.  In this article, the multiphysics response of magneto-electro-elastic (MEE) cantilever beam 

subjected to thermo-mechanical loading is analysed. The equilibrium equations of the system are obtained 

with the aid of the principle of total potential energy. The constitutive equations of a MEE material 

accounting the thermal fields are used for analysis. The corresponding finite element (FE) formulation is 

derived and model of the beam is generated using an eight noded 3D brick element. The 3D FE formulation 

developed enables the representation of governing equations in all three axes, achieving accurate results. 

Also, geometric, constitutive and loading assumptions required to dimensionality reduction can be avoided. 

Numerical evaluation is performed on the basis of the derived formulation and the influence of various 

mechanical loading profiles and volume fractions on the direct quantities and stresses is evaluated. In 

addition, an attempt has been made to compare the individual effect of thermal and mechanical loading with 

the combined effect. It is believed that the numerical results obtained helps in accurate design and 

development of sensors and actuators. 
 

Keywords:  finite element; magneto-electro-elastic beam; thermo-mechanical load; direct quantities; 

volume fraction 

 
 
1. Introduction 
 

The looming technologies along with the advancement in the production and application of the 

composite materials have paved way for the new class of materials know as smart materials, 

among which the particular interest is vested on the magneto-electro-elastic (MEE) materials 

which are made of both piezoelectric and piezomagnetic phases. In the last decade, ample amount 

of research has been carried out on analysing the structural behavior of MEE structures like plates, 

beams and shells.  Pan and Han (2005) presented an exact solution for the layered functionally 

graded (FG) MEE rectangular plate. Kattimani and Ray (2014a, b) explored the active control of 

geometrically nonlinear vibrations of MEE plates and doubly curved shells. They also examined 

the same for the functionally graded MEE plates (2015). Bhangale and Ganeshan (2006) evaluated 

the free vibration analysis of functionally graded MEE plates using a semi analytical finite element 
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(FE) model. A FE model developed by Annigeri et al. (2007) assists to investigate the free 

vibrations of multiphase and layer-wise MEE beam. Milazzo et al. (2013) derived an analytical 

solution to compute the free and forced vibration behavior of MEE bi-morph beam. This method 

proved its effectiveness for both multiphase and laminated beam structures. Biju et al. (2012a, b) 

discussed the behavior of a MEE sensor patch mounted on the steel beam under harmonic loading. 

They figured out the effect of patch location and different boundary conditions on the transient 

dynamic response of the beam. In addition, the response of MEE beam when applied with time 

harmonic electric potential has been studied. Vaezi et al. (2016) demonstrated the effect of the 

electric and magnetic potentials on the stiffness and stability of the MEE microbeams. The FE 

model of the fully coupled thermopiezomagnetic continuum derived by Sunar et al. (2002) gave 

rise to a plentiful research work on the thermal analysis of the MEE structures. Ebrahimi and 

Barati (2016) investigated the thermal vibrations of the magneto-thermo-electro-elastic (MTEE) 

nano beams. Using the Eringen’s nonlocal elasticity theory and Hamilton’s principle, the nonlocal 

nonlinear governing equations of a nano beams subjected to thermo-electro- magneto loads were 

presented by Ansari et al. (2015). Jandaghian and Rahmani (2016) studied the free vibration 

analysis of MTEE beams resting on Pasternak foundation by using nonlocal and Timoshenko 

beam theory. They found that natural frequency is insensitive to temperature changes. Kumaravel 

et al. (2007) investigated the static behavior of the MEE strip in thermal environment. Kondaiah et 

al. (2012 a, b) considered the pyroeffects and evaluated the behavior of the MEE beams and plates 

subjected to uniform temperature using the FE formulation. Ootao and Tanigawa (2005) developed 

an exact solution for the transient behavior of multilayered MTEE strip subjected to non-uniform 

and unsteady heating. Kim et al. (2012) derived an analytical expression to analyze the product 

properties of FG transversely isotropic MTEE multilayer composite with an arbitrary number of 

layers. Badri and Kayiem (2013) used the first order shear deformation theory (FSDT) to study the 

static and dynamic analysis of MTEE plates. More recently, Vinyas and Kattimani (2017a, b) 

developed a FE formulation and analyzed the thermal response of MEE beam and plates. They 

extended their evaluation for multiphase MEE beams subjected to different temperature loading 

also (Vinyas and Kattimani 2017c).  

In this article, the 3D equilibrium equation for the static analysis of MEE structure subjected to 

various loads (thermal, mechanical, electric and magnetic loads) is derived considering the simple 

total potential energy and constitutive equations. Also, from the literature survey it is observed that 

the work carried out on the analysis of the MEE structure subjected to the thermo-mechanical 

loading is available in scarce. In particular, no literature has been reported on finite element 

formulation of MEE structures subjected to thermal and mechanical load together. Hence, in this 

article an attempt has been made to investigate the static response of the MEE beam subjected to 

combination of thermal and mechanical loads. It is believed that the present study helps in the 

design, analysis and development of the sensors and actuators. 
 

 

2. Problem description 
 

2.1 Beam geometry 
 

The schematic representation of the cantilever MEE beam is depicted in Fig. 1. The beam 

length L is taken along the x-axis of the Cartesian co-ordinate. The thickness h and width b of the 

beam are measured along z and y directions, respectively. The boundary conditions incorporated at 

the clamped end are            . 
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Fig. 1 Beam geometry 

 
Table 1 Material properties of BaTiO3-CoFe2O4 composite w.r.t different volume fraction Vf of BaTiO3 

(Kondaiah et al. 2012) 

Material property Material constants 0.0 Vf 0.2 Vf 0.4 Vf 0.5 Vf 0.6 Vf 0.8 Vf 1 Vf 

Elastic constants 

(GPa) 

C11=C22 286 250 225 220 200 175 166 

C12 173 146 125 120 110 100 77 

C13=C23 170 145 125 120 110 100 78 

C33 269.5 240 220 215 190 170 162 

C44=C55 45.3 45 45 45 45 50 43 

C66 56.5 52 50 50 45 37.5 44.5 

Piezoelectric constants 

(C/m
2
) 

e31 0 -2 -3 -3.5 -3.5 -4 -4.4 

e33 0 4 7 9.0 11 14 18.6 

e15 0 0 0 0 0 0 11.6 

Dielectric constant 

(10
-9 

C
2
/Nm

2
) 

ε11=ε22 0.08 0.33 0.8 0.85 0.9 1 11.2 

ε33 0.093 2.5 5 6.3 7.5 10 12.6 

Magnetic permeability 

(10
-4 

Ns
2
/C

2
) 

μ11=μ22 -5.9 -3.9 -2.5 -2.0 -1.5 -0.8 0.05 

μ33 1.57 1.33 1 0.9 0.75 0.5 0.1 

Piezomagnetic constants 

(N/Am) 

q31 580 410 300 350 200 100 0 

q33 700 550 380 320 260 120 0 

q15 560 340 220 200 180 80 0 

Magneto-electric constant 

(10
-12

Ns/VC) 

m11=m22 0 2.8 4.8 5.5 6 6.8 0 

m33 0 2000 2750 2600 2500 1500 0 

Pyroelectric constant 

(10
-7 

C/m
2
K) 

p2 0 -3.5 -6.5 -7.8 -9 -10.8 0 

Pyromagnetic constant 

(10
-5 

C/m
2
K) 

τ2 0 -36 -28 -23 -18 -8.5 0 

Thermal expansion 

coefficient 

(10
-6

 K
-1

) 

α1= α2 10 10.8 11.8 12.3 12.9 14.1 15.7 

α3 10 9.3 8.6 8.2 7.8 7.2 6.4 

Density (kg/m
3
) ρ 5400 5500 5550 5600 5700 5800 7750 
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2.2  Constitutive equations 
 

The constitutive equations for the magneto-electro-elastic (MEE) materials by assuming a 

linear coupling between elastic, magnetic and electric properties are written as follows 

        (       )              

                           

                          

(1) 

where i, j =1,2…6 and l, k =1,2,3. In Eq. (1)   , Dl and Bl represents the components of stress, 

electric displacement and magnetic induction, respectively.    ,      and    are the elastic, 

dielectric and magnetic permeability constant, respectively.          and ΔT are the linear strain 

tensor, electric field, magnetic field and temperature rise, respectively. Further 

                   and τk are the piezoelectric, magnetostrictive, electromagnetic, thermal 

expansion co-efficient, pyroelectric constant and pyromagnetic constant, respectively. For a 

transversely isotropic MEE solid, the various material constants appearing in the constitutive Eq. 

(1) can be represented in the matrix form as follows, 
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(2) 

The strain field related to the displacements can be written as follows 

 , .

1

2
ij i j j iu u    (3) 

The relation between the electric field vector (E) and the electric potential (ϕ) can be 

represented as  

1 2 3; ;E E E
x y z

    
     

  
 

(4) 
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Similarly, the relation between magnetic field vector (H) and magnetic potential (ψ) is 

expressed as 

1 2 3; ;H H H
x y z

    
     

  
 (5) 

The total potential Tp is given as follows 

               
1 1 1

  
2 2 2

T T T T

p t

A A A

T d E D d H B d d f dA Q dA Q dA    
  

          
 

(6) 

 

2.3 Finite element formulation 
  

 The discretized FE model of MEE cantilever beam is developed using eight noded 3D brick 

element. Each node of the element has three degrees of freedom with respect to displacements in x, 

y and z direction and one degree of freedom corresponding to electric and magnetic potential, 

respectively. The nodal displacement, electric potential and magnetic potential can be expressed 

by suitable shape functions as follows 

      ;  = ;  =u i i iu N u N N             (7) 

where, {  }  {          }  are the displacements in x, y and z directions, respectively. 

         are the shape functions. Further, the strain vector { } , magnetic field vector { } , 

electric field vector { } are expressed in terms of derivative of shape function matrices as follows 

    etuB d  ,    eH B    
,    eE B      (8) 

By substituting Eqs. (1), (7) and (8) in Eq. (6) and assembling the elemental matrices, the 

coupled finite element equilibrium equations can be written as 

         

       

     { }
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pe

pm

T

T T

uu u

u

u

u

F F

F

F

K u K K

K u K K

K u K K







  

 

 

 

         

     
     

     
   

  

  

  

 (9) 

The various elemental stiffness matrices appearing in Eq. (9) are defined by 

          

     

,  ,  ,  

,  ,  

T

u u

V V V

T

V V V

T T

T T
e

u u

e

e e e
uu uu

e

B C B dV e B dV q B dV

B B dV B m B dV B B dV

K K B K B

K K K



     



  

                    

                                

  

  
 (10) 

where, V is the volume of the element. The different shape function derivative matrices appearing 

in Eq. (10) are given by 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

Fig. 2 Validation of (a) longitudinal x-direction displacement component (Ux ) (b) y-direction displacement 

component (Uv ) (c) electric potential (ϕ) (d) magnetic potential (ψ)  (f)  normal stress - σx (f) shear stress - τxy 
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(a) (b) 

Fig. 3 Convergence of (a) longitudinal x-direction (Ux ) (b) y-direction displacement component 

 

 

Further, the different load vectors {  }, {   }, {   } and {   } are the mechanical, thermal, 

pyroelectric and pyromagnetic load vectos, respectively. They are represented as follows 

                   ,  ,  ,  
T T T T

e e e e
pe pmm t th

A V V V

tF N f dA F B C TdV F B p TdV F B TdV                 
(12) 

where, f is the traction force acting on the plate surface A. By eliminating the electric and magnetic 

potential terms in Eq. (8), the equivalent stiffness matrix [   ] is derived to obtain the nodal 

displacements. 

     [   ] { }  {   } (13) 

 

 

3. Results and discussion 
 

The finite element formulation derived in the preceding section is initially solved for validation 

and comparison with the existing results. The numerical illustrations are presented to analyse the 

behavior of MEE cantilever beam subjected to thermo-mechanical load. The dimensions of the 

beam geometry considered for analysis can be described as follows: the length of the beam L is 1 

m, width w=0.1 m and the thickness h=0.1 m. In this case, the loading condition refers to the 

combined effect of the uniform temperature rise of 10 K and sinusoidaly varying mechanical load 

              with the amplitude            . The material properties corresponding to 

volume fraction (Vf ) 50% BaTiO3, given in Table 1 is used, unless and otherwise stated. Also, a 

comparative study of the individual effect of the thermal and mechanical load with the combined 

thermo-mechanical load is discussed. The influence of the pyroelectric and pyromagnetic effects is 

considered. The study also attempts to evaluate the effect of the volume fraction and various types 

of mechanical loads on the static parameters of MEE cantilever beam. 

 

3.1 Validation of the finite element formulation 
 
For the purpose of validation, the results presented by Kondaiah et al. (2012) for purely thermal  
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(a) (b) 

 
(c) 

Fig. 4 Effect of loading forms on the (a) longitudinal x-direction (Ux ) (b) y-direction (Uv ) (c) transverse z-

direction (Uw) displacement components 

 

 

MEE beam is reproduced using the present finite element formulation. In this regard the effect of 

mechanical load is nullified in the formulation. Further, the loading form, boundary conditions and 

beam geometry are adopted similar to Kondaiah et al. (2012). The material properties 

corresponding to the various volume fractions of BaTiO3 and CoFe2O4 are tabulated in Table 1. 

The validation plots for longitudinal x-direction (Ux), y-direction (Uv), electric potential (ϕ), 

magnetic potential (ψ), normal stress (σx) and shear stress (τxy) are illustrated in Figs. 2(a)-(f), 

respectively. From these figures it is witnessed that the results from the present FE formulation are 

in good agreement with each other. Hence, it can be justified that the finite element formulation 

and MATLAB code generated can faithfully produce the results. In addition, the convergence rate 

of the solution obtained from the present FE formulation with respect to various mesh densities are 

illustrated in Figs. 3(a) and (b), considering the displacement components Ux and Uv. 

 
3.2 Comparative study of the thermal, mechanical and thermo-mechanical loadings 
 

In this section, the influence of combined effect of thermal and mechanical loads on the static 

behaviour of MEE beam is analysed. The numerical analysis reveals that the longitudinal x- 
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(a) (b) 

Fig. 5 Effect of loading forms on the (a) electric potential (ϕ) (b) magnetic potential (ψ) 

 

  
(a) (b) 

 
(c) 

Fig. 6 Effect of loading forms on the (a)  normal stress-σx (b) normal stress-σy (c) normal stress-σz 

 

 

direction displacement component Ux is more when MEE beam is subjected to thermal loading 

alone, as shown in Fig. 4(a). Considering Fig. 4(b), it may be noticed that the combination of  
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(a) (b) 

 
(c) 

Fig. 7 Effect of loading forms on the (a) shear stress-τxz  (b) shear stress-τyz  (c) shear stress-τxy 

 

  
(a) (b) 

Fig. 8 Effect of loading forms on the (a) magnetic flux density- By (b) electric displacement-Dy 

 

 

thermal and mechanical loads have a predominant effect on Uv while, the mechanical load alone 

has comparatively lesser effect. Fig. 4(c) elucidates the distribution of transverse z-direction  
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(a) (b) 

  
(c) (d) 

 
(e) 

Fig. 9 Effect of volume fraction on the (a) longitudinal x-direction (Ux ) (b) y-direction (Uv ) (c) transverse z-

direction (Uw) displacement components (d) electric potential (ϕ) (e) magnetic potential (ψ) 

 

 

displacement component Uw along the beam length. It can be noticed that in contrast with the 

thermo-mechanical and mechanical loading, individual effect of thermal load is least significant. 
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(a) (b) 

Fig. 10 Effect of volume fraction on the (a) normal stress (σx ) (b) shear stress-τxz 

     

 

Fig. 5(a) illustrates the variation of the electric potential (ϕ) under different loading conditions. 

The substantial effect of the thermal load can be noticed whereas, the influence of the mechanical 

load is found to be insignificant. The similar characteristic behaviour is observed for the magnetic 

potential also as elucidated in Fig. 5(b).  

The variations of normal stresses       and    are depicted in Figs. 6(a)-(c), respectively. It 

can be observed that MEE beam experiences the maximum normal stresses when the combined 

effect of the thermal and mechanical load is considered. Also it can be witnessed that the 

mechanical load has a least influence on the normal stresses.  

Further, the thermal loading produces insignificant amount of shear stress    , as plotted in Fig. 

7(a). The numerical evaluation also suggests that the maximum stress is observed near the clamped 

end. The thermo-mechanical and individual mechanical load results in an almost similar variation 

of      as shown in Fig. 7(b). Furthermore, along the beam length a negligible discrepancy is 

noticed for     among the three loading forms as displayed in Fig. 7(c). 

The effect of thermo-mechanical loads and individual thermal and mechanical loads on y-

direction magnetic flux density component (By) and electric displacement component (Dy) is 

shown in Figs. 8(a) and (b) respectively. It can be observed that for both the components, 

mechanical loading has a negligible effect. 

             

3.3 Effect of volume fraction 
 

The numerical evaluation is extended to compute the influence of volume fraction (Vf) on the 

direct and derived quantities of MEE cantilever beam under thermo-mechanical loading. From the 

results plotted in Figs. 9(a)-(e), it may be observed that the maximum value of displacement 

components Ux and Uw are witnessed for Vf =1.0. This may be due to lesser stiffness of MEE beam 

corresponding to pure piezoelectric phase (Vf=1.0), which allows greater deformation of MEE 

beam. Meanwhile, Uv is found to be maximum for the volume fraction corresponding to 0.8. 

Further, the maximum electric potential (ϕ) is observed for pure piezoelectric phase (Vf=1.0) 

whereas, the maximum magnetic potential (ψ) is observed for Vf =0.5. 

The variations of normal stress σx and shear stress τxz is illustrated in Figs. 10(a) and (b),  
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(a) (b) 

Fig. 11 Effect of volume fraction on the (a) magnetic flux density-By (b) electric displacement-Dy 

 

 

respectively. It suggests that Vf =0.0 results in a higher normal stress σx while, Vf =0.8 influences 

the shear stress τxz to a greater extent. 

The Vf =1.0 has a significant effect on the electric displacement component (Dy) as shown in 

Fig. 11(a). This may be due to higher piezoelectric coefficients which directly affects the electric 

displacement. Also, from Fig. 11(b), the maximum magnetic flux density (By) is observed for 

Vf=0.0.  

 

3.4 Effect of different types of mechanical loading 
 

The numerical evaluation is extended to analyse the effect of different mechanical loading 

profiles acting on MEE cantilever beam along with the uniform temperature rise of 10 K. The 

material properties of Vf=0.5 BaTiO3 is used. The different forms of mechanical loading 

considered for the present analysis are as follows: 

 

3.4.1 Sinusoidal loading 
The mechanical load is assumed to vary sinusoidally along the beam length with the general 

equation              with the amplitude             , l is the beam length and x is the 

distance of the point of interest from the clamped end. 

 

3.4.2 Uniformly distributed load (UDL) 
In this case, the mechanical load is uniformly distributed throughout the beam length l. It can 

be represented by the general equation q=qo. 

 

3.4.3 Point load 
The point load of 1.5 kN is acted on the free end of the cantilever MEE beam along the negative z-

direction. 

The numerical evaluation suggests that for a MEE beam, along with temperature rise of 10 K, 

the UDL mechanical load produces maximum displacement components Ux, Uv and Uw as plotted 

in Figs. 12(a)-(c). Also, it is witnessed from Figs. 12(d)-(e) that the various mechanical load forms 

considered displays an insignificant effect on the variation of electric and magnetic potentials of 

the beam.  
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(a) (b) 

  
(c) (d) 

 
(e) 

Fig. 12 Effect of types of mechanical loads on (a) longitudinal x-direction (Ux ) (b) y-direction (Uv ) (c) 

transverse z-direction (Uw) displacement components (d) electric potential (ϕ) (e) magnetic potential (ψ) 

 

The variations of the stresses are shown in Figs. 13(a)-(f). The significant effect of the UDL on 

the stresses may be observed. It may be attributed to the constant load distribution through the 

beam length. Further, in contrast with the sinusoidal and UDL loads, the point load has the least 

effect on the stresses. 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

Fig. 13 Effect of types of mechanical loads on (a)  normal stress-σx (b) normal stress-σy (c) normal stress-σz 

(d) shear stress-τxz  (e) shear stress-τxy (f) shear stress-τyz 

 

 

Figs. 14(a) and (b) display the variation of electric displacement and magnetic flux density, 

respectively. It is worth mentioning that no discrepancies can be noticed among all the three forms  
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(a) (b) 

Fig. 14 Effect of types of mechanical loads on (a)  electric displacement component-Dy (b) magnetic flux 

density component-By 

 

 

of mechanical loads with respect to electric displacement Dy while, the UDL has a predominant 

effect on By. In addition, maximum By is experienced at the clamped end which reaches to zero at 

the free end whereas, Dy varies constantly along the beam length. 
 

 

4. Conclusions 
 

In the present work, the static behaviour of a multiphase magneto-electro-elastic (MEE) 

cantilever beam subjected to thermo-mechanical loading is analysed using finite element (FE) 

methods. The 3D formulation developed can represent more realistic geometric refinements and 

thus they are highly reliable. Incorporating the 3D solid elements in the FE model assures the 

representation of the physical system accurately. Further, the convergence study carried out 

suggests that an optimum mesh density has been selected for the FE analysis. The evaluation of the 

MEE beam is made in terms of the displacement components, potentials and stresses, varying 

along the beam length. Also, a comparative study of the influence of thermo-mechanical loads is 

made with the individual effects of thermal and mechanical loads. The numerical evaluation 

suggests that the electric and magnetic potential of the system is predominantly influenced by the 

thermal loads, whereas mechanical loads have a minimal contribution. The reason may be perhaps 

because of the additional thermo-electric and thermo-magnetic coupling developed due to thermal 

loads. Further, the combined effect of thermal and mechanical load result in the increased stresses 

of MEE beam. The pure piezoelectric phase results in higher displacement components which are 

attributed to the lower values of elastic stiffness coefficients. Also, maximum electric 

displacement and magnetic flux density is witnessed for pure piezoelectric and pure piezomagnetic 

phases, respectively. Among the various mechanical load forms considered, uniformly distributed 

mechanical load along with the uniform temperature rise is observed to have a dominant effect on 

the static behaviour of the MEE cantilever beam. Further, an insignificant effect of the load 

profiles on the potentials and electric displacement of MEE beam is noticed. It is believed that the 

results from the present analysis assist in precise designing of sensors in thermo-mechanical 

environment. 
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