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Abstract.  The present paper is concerned with the investigation of Rayleigh waves in a homogeneous 

transversely isotropic magnetothermoelastic medium with two temperature, in the presence  of   Hall current 

and rotation. The formulation is applied to the thermoelasticity theories developed by Green-Naghdi theories 

of Type-II and Type-III. Secular equations are derived mathematically at the stress free and thermally 

insulated boundaries. The values of Determinant of secular equations, phase velocity and Attenuation 

coefficient with respect to wave number are computed numerically. Cobalt material has been chosen for 

transversely isotropic medium and magnesium material is chosen for isotropic solid. The effects of rotation, 

magnetic field and phase velocity on the resulting quantities and on particular case of isotropic solid are 

depicted graphically. Some special cases are also deduced from the present investigation.   
 

Keywords:  transversely isotropic thermoelastic; phase velocity; attenuation coefficient; rotation; hall 

current; secular equations 

 
 
1. Introduction 
 

Rayleigh waves are always generated when a free surface exists in a continuous body. Rayleigh 

(1885) firstly introduced them as solution of the free vibration problem for an elastic half space 

(On waves propagated on the plane surface of an elastic solid). Rayleigh waves play an important 

role in the study of earthquakes, seismology, geo-physics and geodynamics. During earthquake, 

Rayleigh waves play more drastic role than other seismic waves because these waves are 

responsible for destruction of buildings, plants and loss of human lives etc. Lockett (1958) studied 

the problem of Rayleigh waves in thermoelastic medium. Propagation of Rayleigh waves 

alongwith isothermal and insulated boundaries was discussed by Chadwick and Windle (1964). 

Kumar and Kansal (2010) presented the problem of Rayleigh waves in an isotropic generalized 

thermoelastic diffusive half space medium. Kumar and Gupta (2015) investigated Rayleigh waves  

in generalized  thermoelastic  medium with mass diffusion. Recently influence of new parameters 

on surface waves has been investigated by many researchers (Ahmed and Abo-Dahab 2012, Abo-

Dahab 2015, Abd-Alla et al. 2015, Kakkar and Kakkar 2016, Abo-Dahab et al. 2016).  
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Chen and Gurtin (1968), Chen et al. (1968) and Chen et al. (1969) have formulated a theory of 

heat conduction in deformable bodies which depends upon two distinct temperatures, the 

conductive temperature   and the thermo dynamical temperature T. For time independent 

situations, the difference between these two temperatures is proportional to the heat supply, and in 

absence of heat supply, the two temperatures are identical. For time dependent problems, the two 

temperatures are different, regardless of the presence of heat supply. The two temperatures T,   

and the strain are found to have representations in the form of a travelling wave plus a response, 

which occurs instantaneously throughout the body (Boley and Tolins 1962).                              

Green and Naghdi (1993) postulated a new concept in thermoelasticity theories and proposed 

three models which are subsequently referred to as GN-I, II, and III models. The linearised version 

of model-I corresponds to classical thermoelastic model (based on Fourier’s law). The linearised 

version of model-II and III permit propagation of thermal waves at finite speed. Green-Naghdi’s 

second model (GN-II), in particular exhibits a feature that is not present in other established 

thermoelastic models as it does not sustain dissipation of thermal energy (1993). In this model the 

constitutive equations are derived by starting with the reduced energy equation and by including 

the thermal displacement gradient among other constitutive variables. Green-Naghdi’s third model 

(GN-III) admits dissipation of energy. In this model the constitutive equations are 
i
derived by 

starting with the reduced energy equation, where the thermal displacement gradient in addition to 

the temperature gradient, are among the constitutive variables. Green and Naghdi (1992)  included 

the derivation of a complete set of governing equations of a linearised version of the theory for 

homogeneous and isotropic materials in terms of the displacement and temperature fields and a 

proof of the uniqueness of the solution for the corresponding initial boundary value problem. 

A comprehensive work has been done in thermoelasticity theory with and without energy 

dissipation and thermoelasticity with two temperature. Youssef (2013), constructed a new theory 

of generalized thermoelasticity by taking into account two-temperature generalized 

thermoelasticity theory for a homogeneous and isotropic body without energy dissipation. 

Quintanilla (2002) investigated thermoelasticity without energy dissipation of materials with 

microstructure. Several researchers studied various problems involving two temperature e.g., 

(Youssef and AI-Lehaibi 2007, Youssef 2011, Youssef 2006, Kaushal et al. 2011, Ezzat and Awad 

2010, Sharma and Marin 2013, Sharma and Bhargav 2014, Sharma et al. 2013, Sharma and Kumar 

2013). 

When the magnetic field is very strong, the conductivity will be a tensor and the effect of Hall 

current and rotation cannot be neglected.  (Zakaria 2014, Ezzat and Bary 2016, Hosseini and Dini 

2016, Marin 2010, 1996, Karamany and Ezzat 2014, 2015, 2016) considered various problems due 

to Hall current, magnetic field and rotation. 

In this paper, propagation of Rayleigh waves in a transversely isotropic thermoelastic solid with 

the combined effects of Hall current, rotation and two temperature has been investigated.  Secular 

equations are derived mathematically at the stress free and thermally insulated boundaries. The 

values of determinant of secular equations, phase velocity and Attenuation coefficient with respect 

to wave number are computed numerically and effect of various quantities on the resulting 

quantities are shown graphically.            

 

                         

2. Basic equations 
 

Following Kumar et al. (2016), the constitutive relations for a transversely isotropic 
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thermoelastic medium are given by 

                  (1) 

Equation of motion for a transversely isotropic thermoelastic medium rotating uniformly with 

an angular velocity     , where n is a unit vector representing the direction of axis of rotation 

and taking into account Lorentz force 

             * ̈  (  (   ))
 
 (    ̇)  (2) 

Following Chandrasekharaiah (1998) and Youssef (2006), the heat conduction equation with 

two temperature and with and without energy dissipation is given by  

           
  ̇           ̈      ̈ (3) 

The above equations are supplemented by generalized Ohm’s law for media with finite 

conductivity and including the Hall current effect 

  
  

    
(    ( ̇    

 

   
    )) (4) 

and the strain displacement relations are 

    
 

 
(         )          (5) 

     (    ) ,               and              

         ,            ,     
    

     ,    is not summed 

where,   are the components of Lorentz force,      (                       )  are elastic 

parameters,     is the thermal tensor,   is the temperature,    is the reference temperature,     are 

the components of stress tensor,     are the components of strain tensor,    are the displacement 

components,   is the density,    is the specific heat,     is the thermal conductivity,   
  is the 

materialistic constant,     are the two temperature parameters,      is the coefficient of linear 

thermal expansion,   is the angular velocity of the solid, H is the magnetic strength,   ̇ is the 

velocity vector, E is the intensity vector of the electric field,     is the current density vector, 

 (      
      

   
) is the Hall parameter,    is the electron collision time,    

     

  
 is the 

electronic frequency, e is the charge of an electron,    is the mass  of the electron,    
      

  
 , is 

the electrical conductivity and    is the number of density of electrons.           
 

                                                                                                                                    

3. Formulation and solution of the problem 
 

We consider a homogeneous perfectly conducting transversely isotropic thermoelastic medium 

which is rotating uniformly with an angular velocity   initially at uniform temperature    . The 

rectangular Cartesian co-ordinate system (        ) having origin on the surface (  =0) with   -

axis pointing vertically downwards into the medium is introduced. The surface of the half-space is 

subjected to thermomechanical sources. For two dimensional problem in xz-plane, we take  

  (       ). (6) 
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We also assume that  

E=0,    (     ). (7) 

The generalized Ohm’s law  

     (8) 

the current density components    and    using Eq. (4)  are  given as 
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) (9) 
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) (10) 

Following Slaughter (2002), using appropriate transformations 

  
                  ,     

                   ,   
    , on the set of Eqs. (2) 

and (3) and with the aid of Eqs. (6)-(10), we obtain the equations for transversely isotropic 

thermoelastic solid as 
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and 
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            . (16) 

where 

    (  

   

   
    

   

   
 ) 

   (       )         ,                       

In the above equations we use the contracting subscript notations (                 
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            ) to relate            . 

We assume that medium is initially at rest. The undisturbed state is maintained at reference 

temperature. Then we have the initial and regularity conditions are given by 

  (       )       ̇(       ) 

  (       )       ̇(       ) 

 (       )      ̇(       ) For                  

  (       )    (       )   (       )                           

(17) 

To facilitate the solution, following dimensionless quantities are introduced 
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Making use of Eq. (18) in Eqs. (11)-(13), after suppressing the primes, yield   
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We assume the solution of the form 

(         )  (  
     

     )   (     ) (22) 

where   is the wave number,      is the angular frequency and c is the phase velocity of the 

wave. 

Making use of Eq. (22) on Eqs. (19)-(21), we obtain a system of homogeneous equations in 

terms of    
     

  and   , which yield a non-trivial solution if determinant of coefficient 

*   
     

    +  vanishes and we obtain the following characteristic equation 
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                (23) 

where   

P, Q, R and S are given as 
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(23) 

The characteristic equation in Eq. (23) is cubic in   
  (       ). Therefore the former solution 

which satisfy the radiation conditions that    ,   ,     as      is given by  

   (   
         

         
     )   (     ) (24) 

   (     
           

           
     )   (     ) (25) 

   (     
           

           
     )   (     ) (26) 

where     (  1,2,3), are the roots of Eq. (23) and    and    are given as 
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 (           
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4. Boundary conditions 
 

The appropriate boundary conditions at the interface      are 

i)       (27) 

ii)       (28) 

iii) 
  

   
       or            at   =0  
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Fig. 1 Determinant of Rayleigh waves secular equation with varies values of rotation with respect to

 
ξ 

 
 
5. Derivation of secular equations 
 

Making se of Eqs. (14)-(16), (18), (24)-(26) in Eqs. (27)-(29), we obtain a system of 

simultaneous homogeneous equations 

∑      

 

   
        (       ) (30) 

    
   

   
    

   

   
      

  

  
   

  

    
      

  
  

  
      

               (31) 

     
   

   
     

   

   
               (32) 

                        or                  (33) 

The system of Eq. (30) has a non-trivial solution if the determinant of unknowns (  ,j=123) 

vanishes i.e., 

|   |   
   

 

 

6. Particular cases 
 

(i) If   
    

   , then from Eq. (23) and Eqs. (30)-(33), we obtain the corresponding 

expressions for  transversely isotropic magneto-thermoelastic solid without energy dissipation and 

with two temperature with Hall current effect and rotation. 

(ii) If        , then from Eq. (23) and Eqs. (30)-(33), we obtain the corresponding 

expressions for transversely isotropic magneto-thermoelastic solid with and without energy 

dissipation along with with Hall current effect and rotation. 

(iii) If we take             ,           ,       ,      = ,        , 

       ,       a in Eqs. (23) and Eqs. (30)-(33), we obtain the corresponding  
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Fig. 2 Rayleigh waves velocity with varies values of rotation with respect to

 
ξ 

 

 
Fig. 3 Attenuation coefficient with varies values of rotation with respect to

 
ξ 

 

 

expressions isotropic magneto-thermoelastic solid with two temperature and with and without 

energy dissipation along with combined effects of Hall current and rotation. 

(iv) If m=0, in Eq. (23), we obtain the values for transversely isotropic magneto-thermoelastic 

solid and with and without energy dissipation and with two temperature along with rotation. 

 

 

7. Numerical results and discussion 
 

Fig. 1 shows  variations of Determinant of Rayleigh waves secular equation with varies values 

of rotation with respect to  .Here, we notice that for  =0.1,0.2 and 0.3, initially  the values lie at 

boundary surface but as   approaches 0.4, the variations  increase  monotonically till end whereas 

for  =0.4 as  goes beyond  0.4 , a slow increase is followed by sharp increase  attaining  

maximum value at    =0.7 ,from where the values decrease  very fast upto the range   =0.8 and 

then increase smoothly till   =1. 

Fig. 2 depicts Rayleigh waves velocity with varies values of rotation with respect to .
Here, we 

notice that initially there are no variations but as   approaches 0.4,the variations decrease slowly 

and smoothly corresponding to  =0.2 and 0.3 whereas  corresponding to   0.4, for    , the 

variations are increasing  and as   approaches 0.6, a  jump in the values of Rayleigh wave velocity 

is noticed which is  followed by a sudden fall  and  then rising up to small amount, the values start 

decreasing. 
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Fig. 4 Determinant of Rayleigh waves secular equation with aries values of magnetic field with respect to

 
ξ 

 

 
Fig. 5 Rayleigh waves velocity with varies values of magnetic field with respect to

 
ξ 

 

 
Fig. 6 Attenuation coefficient with varies values of magnetic field with respect to

 
ξ 

 

 

Fig. 3 shows variations of Attenuation coefficient with varies values of rotation with respect to 

 . Here also variations are noticed only  in the range        , which are decreasing slowly 

and smoothly  corresponding to  =0.1,0.2 and 0.3 whereas for       , an instant  fall of  the 

variations is noticed  in the range          , which is followed by smooth decrease in the rest.  

Fig. 4 depicts the variations of Determinant of Rayleigh waves secular equation with varies values  
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Fig. 7 Determinant of Rayleigh waves secular equation with varies values of phase velocity with respect to

 
ξ 

 

 
Fig. 8 Rayleigh waves velocity with varies values of phase velocity with respect to ξ 

 

 
Fig. 9 Attenuation coefficient with varies values of phase velocity with respect to

 
ξ 

 

 

of magnetic field with respect to  . Here it is noticed that, the values of the Determinant are 

increasing for the range         and there are no variations in the rest. The trends are similar 

corresponding to all values of Magnetic field. 
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Fig. 10 Determinant of Rayleigh waves secular equation with varies values of rotation with respect to

 
ξ 

 

 
Fig. 11 Rayleigh waves velocity with varies values of rotation with respect to

 
ξ 

 

 

Fig. 5, shows the variations of Rayleigh waves velocity with varies values of magnetic field 

with respect to  . Here the trend of variations is decreasing in the range         

corresponding to all the cases and no variations are noticed in the rest.  

Figs. 6-7 show the variations of Attenuation coefficient withvaries values of magnetic field 

with respect to  and Determinant of Rayleigh waves secular equation withvaries values of phase 

velocity with respect to   respectively. Here, in both the figures, we notice similar trends of 

variations with change in magnitudes corresponding to all the values of magnetic field. Also the 

trends are noticed to be monotonically increasing for the range         whereas no variations 

are noticed for the initial range.  

Figs. 8-9 exhibit the variations of Rayleigh waves velocity withvaries values of phase velocity 

with respect to   and Attenuation coefficient withvaries values of phase velocity. Here in both the 

figures opposite trends are noticed as discussed in  Figs. 6-7. 

 

For isotropic case 
 

Fig. 10 exhibits the variations of Determinant of Rayleigh waves secular equation with varies 

values of  . Here, we notice that the values of the Determinant increase very slowly for the range 

        corresponding to  =0.1 and 0.2 and a high increase is assumed for       whereas 

corresponding to      , an increase is found in the range           which is followed by 

the decreasing trend. 
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Fig. 12 Attenuation coefficient with varies values of rotation with respect to

 
ξ 

 

 
Fig. 13 Determinant of Rayleigh waves secular equation with varies values of magnetic field with respect to

 
ξ 

 

 
Fig. 14 Rayleigh waves velocity with varies values of magnetic field with respect to

 
ξ 

 

 

Fig. 11 exhibits the values of Rayleigh waves velocity with varies values of rotation with 

respect to  . Here the trends are similar with lessvariations as discussed in Fig. 10.  

Fig. 12 shows the variations of Attenuation coefficient with varies values of rotation with  
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Fig. 15 Attenuation coefficient with varies values of magnetic field with respect to

 
ξ 

 

 
Fig. 16 Determinant of Rayleigh waves secular equation with varies values of phase velocity with respect to

 
ξ 

 

 
Fig. 17 Rayleigh waves velocity with varies values of phase velocity with respect to

 
ξ 

 

 

respect to  . Here the trends of variations are opposite to the trends discussed in Fig. 10.  

Figs. 13-14. explain the trends of variations of Determinant of Rayleigh waves secular equation 

with varies values of magnetic field with respect to   and Rayleigh waves velocity with varies 

values of magnetic field with respect to  . Here in both the figures, we find that the trends are  
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Fig. 18 Attenuation coefficient with varies values of phase velocity with respect to

 
ξ 

 

 

decreasing corresponding to all the cases for the range         and no variations are found for 

the initial range.  

Figs. 15-16 show the variations of Attenuation coefficient with varies values of magnetic field 

with respect to  and Determinant of Rayleigh waves secular equation with varies values of phase 

velocity with respect to  . Here in both the figures opposite trends are noticed as discussed in the 

Figs. 13-14. 

Fig. 17 shows Rayleigh waves velocity with varies values of phase velocity with respect to  . 

Here, for the initial range, there are no variations but as  approaches 0.4, a jump in the variations 

is noticed followed by a smooth decrease in the rest.  

Fig. 18 shows the variations of Attenuation coefficient with varies values of phase velocity 

with respect to  . Here the trends are similar as discussed in the Figs. 13-14. 

 

 

8. Conclusions 
 

The graphs permit us some concluding remarks 

(i) Rotation has significant impact on the variations of various quantities. By assigning small 

values to rotation i.e., for Ω=0.1,0.2 and 0.3, the variations are similar with change in magnitude 

whereas for Ω=0.4, either sudden jumps or sudden falls in the variations appear. 

(ii) Change in magnetic effect on the various quantities varies the magnitudes of values in the 

resulting quantities showing its own impact. 

(iii) Change in the wave velocity effects the trends of variations by keeping them same in the 

beginning but creating a lot of change with increase in the wave number. 

(iv) While comparing the effects of rotation in transversely isotropic and isotropic medium, 

more variations in various quantities in transversely isotropic medium are found. 

(IV) The results presented in this paper are very useful in the study of earthquakes, seismology 

and geo-physics because during earthquakes Rayleigh waves are responsible for destruction of 

buildings, plants etc. 
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Appendix 
 

For the purpose of numerical evaluation, cobalt material has been chosen following Dhaliwal 

and Singh (1980), as 

                  ,                    ,                   ,     
                               ,         ,                      , 

                    ,                     ,                       ,  

                    ,   
                      ,   

                     , 

                  ,                   , p3= 0.98, with non-dimensional 

parameter L=1 and                         sec,        , M=3 and two temperature 

parameters is taken as   =0.03 and   =0.06.  

Following Dhaliwal and Singh (1980), magnesium crystal is chosen for the purpose of 

numerical calculation (isotropic solid). The physical constants used are 

              ,                 ,                         ,       
            , s=0.1,                ,                        ,        
             298K,                                              sec,  =3, 

       , M=3 and two temperature parameters is taken as   =0.03 =  , L=1.  
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