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Abstract.  This paper studies the particularities of the forced vibration of the hydro-elastic system consisting 

of a moving elastic plate, compressible viscous fluid and rigid wall. This study is made by employing the 

discrete-analytical solution method proposed in the paper by the authors (Akbarov and Panakhli (2015)). It 

is assumed that in the initial state the fluid flow is caused by the axial movement of the plate and the 

additional lineally-located time-harmonic forces act on the plate and these forces cause additional flow field 

in the fluid and a stress-strain state in the plate. The stress-strain state in the plate is described by utilizing the 

exact equations and relations of the linear elastodynamics. However, the additional fluid flow field is 

described with linearized Navier-Stokes equations for a compressible viscous fluid. Numerical results 

related to the influence of the problem parameters on the frequency response of the normal stress acting on 

the plate fluid interface plane and fluid flow velocity on this plane are presented and discussed. In this 

discussion, attention is focused on the influence of the initial plate axial moving velocity on these responses. 

At the same, it is established that as a result of the plate moving a resonance type of phenomenon can take 

place under forced vibration of the system. Moreover, numerical results regarding the influence of the fluid 

compressibility on these responses are also presented and discussed.   
 

Keywords:  compressible viscous fluid; elastic plate; frequency response; critical frequency; moving 

plate; forced vibration 

 
 
1. Introduction 
 

The investigations on the fluid-plate interaction are required by the modern levels of 

development of the aeronautical, astronautical, nuclear, chemical, biological, mechanical and civil 

engineering. The first attempt in this field was made approximately hundred years ago by Lamb 
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(1921) in which vibrations of a circular elastic “baffled” plate in contact with still water, which 

was modeled as inviscid fluid, were studied. It used the so-called “non-dimensional added virtual 

mass incremental” (NAVMI) method which has also been employed for the solution to plate-fluid 

interaction problems.  This method supposed that the modes of vibration of the plate in contact 

with still water are the same as those in a vacuum, and the natural frequency is determined by the 

use of the Rayleigh quotient. According to this quotient, natural frequencies of the plate are 

equated to the ratio between the maximum potential energy of the plate and the sum of the kinetic 

energies of both the plate and the fluid. In future the NAVMI method has also been employed in 

many related investigations such as in papers by Kwak and Kim (1991), Fu and Price (1987), Zhao 

and Yu (2012) and in many others listed therein. It should also be noted that there have also been 

investigations (see, for instance, papers by Tubaldi and Armabili (2013), Charman and Sorokin 

(2005) and others listed therein) which have been carried out without employing the NAVMI 

method.  

Another type plate-fluid interaction problems relate to the study of a wave propagation in 

corresponding hydro-elastic systems. These studies are made in a paper by Sorokin and Chubinskij 

(2008) and others listed therein. Note that before this paper the problems of time harmonic linear 

wave propagation in plate-fluid system were investigated within the framework of the theory of 

compressible inviscid fluid. Sorokin and Chubinskij (2008) also first investigated the role of fluid 

viscosity in wave propagation in the mentioned system. However, in this paper and all the papers 

indicated above, the equations of motion of the plate were written within the scope of approximate 

plate theories using various types of hypotheses, such as the Kirchhoff hypothesis for plates. At the 

same time, in the foregoing investigations (except the paper by Zhao and Yu (2012)) the initial 

strains (or stresses) in plates, which can be one of their reference characteristics, were not taken 

into account. These two characteristics, namely the use of the exact equations of plate motion and 

the existence of initial stresses in the plate were taken into consideration in a paper by Bagno 

(2015), Bagno et al. (1994) and others, a review of which is given in a survey paper by Bagno and 

Guz (1997). Note that in these papers, in studying wave propagation in pre-stressed 

plate+compressible viscous fluid systems, the motion of the plate was written within the scope of 

the so-called three-dimensional linearized theory of elastic waves in initially-stressed bodies. 

However, the motion of the viscous fluid was written within the scope of the linearized Navier-

Stokes equations. Detailed consideration of related results was made in the monograph by Guz 

(2009).   

Until recently, within this framework, there has been no investigation related to the forced 

vibration of the pre-strained plate+compressible viscous fluid system. The first attempts in these 

fields were made in the papers by Akbarov and Ismailov (2014, 2017). Note that the paper by 

Akbarov and Ismailov (2014) deals with the study of the forced vibration of the hydro-elastic 

system consisting of the pre-strained highly elastic plate and compressible viscous fluid filling a 

half-plane. However, the paper by Akbarov and Ismailov (2017) studies the forced vibration of the 

system consisting of the elastic plate, compressible viscous fluid with finite depth and rigid wall. 

Note that corresponding investigations regarding the elastic, viscoelastic and piezoelectric 

layered systems were made in the papers by Ilhan and Koc (2015), Gao et al. (2016) and in many 

others listed and detailed in the monograph by Akbarov (2015). 

There are also investigations carried out in the papers by Wu and Shih (1998), Fu et al. (2005), 

Wang et al. (2009) and others which relate to the dynamical response analysis of plate-fluid 

systems induced by a moving load. However, in these papers the fluid reaction to the plate (i.e., to 

the floating bridge) is taken into consideration without solution of the equations of the fluid 
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motion and the so-called hydrostatic force (denoted by R). This force is caused by the plate-fluid 

interaction is determined through the linear spring model, i.e., through the reaction R=−kw, where 

w is the vertical displacement of the plate and k is the spring constant. Consequently, in the 

foregoing investigations, the existence of the fluid is taken into consideration only through this 

spring constant and through the added mass coefficient and the approach developed therein is a 

very approximate one. These investigations cannot answer questions about how the fluid viscosity, 

fluid depth, fluid compressibility, plate thickness and moving velocity of the external force act on 

the “hydrostatic force” and fluid flow velocities. To find the answers to these questions it is 

necessary to solve the corresponding coupled fluid-plate interaction problems within the scope of 

the exact linearized equations described for the plate and fluid motions. Some attempts in this 

fields was made in the paper by Akbarov and Ismailov (2015) in which the motion of the plate is 

described by the exact equations of linear elastodynamics. However, the flow of the fluid is 

described by the linearized Navier-Stokes equations, and the dynamics of the moving load acting 

on the system consisting of the metal elastic plate, compressible viscous fluid and rigid wall were 

studied.  

It should be noted that in all the foregoing papers related to the interaction of the plate and 

compressible viscous fluid it was assumed that the fluid is at rest. At the same time, many cases 

can exist in which the plate is in contact with a flowing fluid, which, as usual, is non-

homogeneous, before the action of external forces, i.e., the velocities of the fluid flow depend on 

the space coordinates. According to this statement, the linearized Navier-Stokes equations 

describing the perturbation field in the fluid become equations with variable coefficients. The 

variability of the coefficients causes serious difficulties in obtaining an analytical solution to these 

equations. To prevent this difficulty, in the paper by Akbarov and Panachli (2015) a discrete-

analytical solution method to these equations was developed. This method is used an analytical 

solution method to investigate a class of problems related to the dynamic interaction of the plate 

with a flowing compressible viscous fluid. Moreover, in the paper by Akbarov and Panachli 

(2015), convergence of the proposed method was examined and some results on the frequency 

response of the system under consideration are given. In the present paper, the numerical 

investigations which were begun in the paper by Akbarov and Panachli (2015) are continued and a 

lot of numerical results on the frequency response of the considered system are presented, and 

sufficiently-detailed analyses are made.  

Note that the aforementioned discrete-analytical method was also employed in the paper by 

Akbarov et al. (2016) for investigation of the natural vibration of the three-layered solid sphere 

made of FGM. Moreover, we note that the study of the dynamics of the axially moving and 

vibrating plates are made in many investigations such as carried out in the papers by Banichuk et 

al. (2010), Yang et al. (2010), Yao et al. (2016) and other listed therein. However, in these 

investigations the motion of the plates are described within the scope of various approximate plate 

theories and rectangular plates with various edge conditions are examined.  
   
 

2. Formulation of the problem and on the solution method 
 

Consider a hydro-elastic system consisting of axially-moving elastic plate, compressible 

barotropic viscous fluid and rigid wall. We introduce the Cartesian coordinate system Ox1x2x3 

which is fixed on, and moves with, the plate. We also introduce the Cartesian coordinate system 

O0x10x20x30 which is associated with the rigid wall (Fig. 1). Considered below is the two- 
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Fig. 1 Sketch of the hydro-elastic system under consideration 

 

 

dimensional problem in the plane Ox1x2 (or in the plane O0x10x20). Therefore, in Fig.1 the 

coordinate axes Ox3 and O0x30 are not shown and according to Fig. 1, the plate occupies the region 

 1 ,x  2 0h < x   and the fluid occupies the region  1 ,x  2dh h < x h    . 

Thus we assume that the plate moves in the direction of the Ox1 (or O0x10) axis with constant 

velocity V and this movement causes a corresponding flow of the fluid. According to the foregoing 

assumptions, there exists the following relation between the coordinates xi and xi0 

1 10x x Vt  , 2 20x x  (1) 

where t is the time. 

According to Fig. 1 and the notation shown therein, we can write the following well-known 

expression for the fluid-flow velocity caused by the plate’s axial movement. 

0 20
1 ( 1)

d d

x h
v V V

h h
    , 0

2 0v  . (2) 

Now we attempt to investigate the forced vibration of this system caused by the additional 

lineally-located time-harmonic forces acting on the moving plate, as shown in Fig. 1. We will 

assume that the amplitudes of the fluid flow velocities caused by the additional time-harmonic 

force are significantly less than the plate moving velocity V. Consequently, perturbation of the 

motion of the fluid under consideration can be described within the scope of the linearized 

equations. Therefore to describe this perturbation we use the linearized Navier-Stokes equations 

for compressible viscous fluid. However for describing the plate motion we can employ the 

corresponding exact equations and relations of the linear elastodynamics.   

Thus, we write the complete system field equations of the linear elastodynamics in the moving 

system of coordinates Ox1x2. These equations are 

2
11 12 1

2
1 2

,
u

x x t

 


  
 

  
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  
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  
,  11 11 22( 2 ) ,     12 122  , 

22 11 22( 2 ) ,       1
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1

u

x






, 2
22

2

u

x






,  1
12

2

2 1

1

2

u u

x x


  
  

  
. 

(3) 

In Eq. (3) conventional notation is used.  

Now, according to Guz (2009), we write the linearized Navier-Stokes equations for the 

compressible viscous fluid in the fixed coordinate system O0x10x20 (Fig. 1) 
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(4) 

where 
(1)
0 is the fluid density before perturbation. The other notation used in Eq. (4) is also 

conventional.  

Moreover, it is assumed that the following boundary, contact and impermeability conditions are 

satisfied 

2
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  

2 20
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dx x h h
v t x x
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 . 

(6) 

Note that in the case where V=0 the foregoing formulation coincides with the corresponding 

one considered in the paper by Akbarov and Ismailov (2017). 

This completes formulation of the problem for which the discrete-analytical method of solution 

was proposed in the paper by Akbarov and Panakhli (2015). Now we recall some basic steps of 

this method. 

First, using the relations Eq. (1) and 10 20( , )g x x  1 2( , )g x Vt x  1 2( , )g x x  (the over symbol 

“~” will be omitted hereafter), the field equations in Eq. (4) and the contact and impermeability 

291



 

 

 

 

 

 

Surkay D. Akbarov and Panakh G. Panakhli 

conditions in Eq. (6) are rewritten in the moving coordinate system Ox1x2. For this purpose the 

derivatives ∂/∂t, ∂/∂x10 and ∂/∂x20 in Eq. (4) must be replaced with ∂/∂t−V∂/∂x1, ∂/∂x1 and ∂/∂x2, 

respectively. As a result of these replacements, we obtain the following equations instead of the 

equations given in Eq. (4) 
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(7) 

and the following contact and impermeability conditions instead of Eq. (6). 
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(8) 

In this way, we have all the field equations and relations in the moving system of coordinates 

Ox1x2 and, according to the boundary condition Eq. (5), we can represent all sought quantities as 

1 2 1 2( , , ) ( , ) i td t x x d x x e   (the over-bar will be omitted below) in this coordinate system. Substituting 

this into the foregoing equations and conditions, we obtain the corresponding equations and 

relations for the amplitudes of the sought values. Moreover, after this procedure we apply the 
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exponential Fourier transformation  

1
2 1 2 1( , ) ( , )

isx
Ff s x f x x e dx






   (9) 

to the foregoing equations and relations. As a result, we obtain the field equations and relations for 

the Fourier transformations of the sought values. It should be noted that finding the analytical 

expression for the values related to the plate does not have any serious difficulties. However, to 

find the analytical solution to the system of equations obtained from the Eq. (7) after the Fourier 

transformation is not so simple because this system contains the variable coefficient V1
0
(x2)

0
1 2( ( ) )v x V  . Therefore, in the paper by Akbarov and Panachli (2015) the discrete-analytical 

solution method was proposed to solve this system of equations, the essence of which is as 

follows: 
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and it is assumed that in each of these strips, the function V1
0
(x2) is constant and equal to  
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Taking the relations (10) and (11) into consideration, it is supposed that the system of equations in 

Eq. (7) is satisfied separately within each strip
 

Sk. So that within each strip we obtain the 

corresponding field equations with their corresponding constant coefficients. Moreover, contact 

conditions on the interface between the strip S1 and plate, on the interfaces between the strips 

S1,…, SM Eq. (10) and on the interface between the strip SM and the rigid wall are derived from the 

continuity assumption. To find the solution of the field equations in each strip, the general solution 

presentation proposed by Guz (2009) is used. In this way the analytical expression for the Fourier 

transformation of the sought values related to the fluid flow is determined. Under this 

determination procedure 
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(12) 

The dimensionless parameters Nw0 
and Nw1 

in Eq. (12) can be taken as the parameters which 

characterizes the influence of the fluid viscosity on the mechanical behavior of the system. At the 

same time, the dimensionless parameters Ω10 and Ω11 in Eq. (12) can be taken as the parameter 
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which characterizes the influence of the compressibility of the fluid on the mechanical behavior of 

the system.  

In this way the Fourier transformation of the sought quantities is determined completely, after 

which these quantities are found from the inverse transformation. 

 ( ) ( ) ( ) ( ) ( )
22 11 1 2 22 11 12 1 2, , , , , , , ,

k k k k k
u u T T T v v    

 22 11 1 2
1

Re , , , ,
2

i t
F F F Fe u u  











  

1( ) ( ) ( ) ( ) ( )
22 11 12 1 2, , , ,

k k k k k isx
F F F F FT T T v v e ds

  

(13) 

It should be noted that under the foregoing solution procedure the number M is determined 

from the convergence requirement of the numerical results obtained from the calculation of the 

integrals in Eq. (13). Note that examples to verify the method discussed briefly above are given in 

a detail in the paper by Akbarov and Panakhli (2015). In this paper it is also shown that for the 

cases which will be considered below in order to obtain the numerical results with high accurate 

and convergence it is enough to assume that M=15 in Eq. (10). Therefore, we do not consider here 

these examples again because this would be a repetition of those which were given already in the 

previous paper by authors.  

Consequently, the paper Akbarov and Panakhli (2015) relates namely to the development of the 

aforementioned solution method and to test this method on some regarding examples. However, 

the present paper relates to the detail consideration and analyses of the numerical results obtained 

with use the method developed in the previous paper by authors. Namely this is the difference 

between the present and previous papers by authors.    
 

 

3. Numerical results and discussions 
 

We assume that the material of the plate-layer is Steel with mechanical constants: μ=79×10
9
 

Pa, λ=94.4×10
9
 Pa and density ρ=7790 kg/m

3
 (Guz and Makhort 2000, Guz 2004), but the 

material of the fluid is Glycerin with viscosity coefficient μ
(1)

=1.393 kg/(m∙s), density ρ0=1260 

kg/m
3
 and sound speed a0=1927 m/s (Guz 2009). We also introduce the notation 2c    which 

is the shear wave propagation velocity in the plate material. After selection of these materials, the 

dimensionless parameters such as
 
Ω10, Ω11, Nw0 and Nw1 in Eq. (12) and dimensionless parameter 

Mω(=μ
(1)

ω/μ) which arises in contact conditions between the S1 fluid sub-strip and the plate, can be 

determined through the four quantities: h (the thickness of the plate-layer), hd (the thickness of the 

fluid strip), V (the plate’s axial moving velocity) and ω (the frequency of the time-harmonic 

external forces). At the same time, it should be noted that it can be elected directly the values for 

the foregoing dimensionless problem parameters without selecting the values for the parameters h, 

hd, V and ω, and investigate frequency responses of the related quantities. However, under 

investigations with the use of the aforementioned dimensionless parameters many difficulties 

related to the reality of the selected values appear and this statement confuse the analyses, 

explanation and understanding of the obtained numerical results. However, determination of the 

values of the dimensionless parameters through the selected values of the h, hd, V and ω, and  
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(a) (b) 

Fig. 2 The influence of the plate moving velocity on the frequency response of the dimensionless stress 

22 0/T h P  in the cases where 4 100hz hz   (a) and ' 500cr hz      (b) 

 

a   

(a) (b) 

Fig. 3 The influence of the plate moving velocity on the frequency response of the dimensionless velocity 

2 0 2/ ( )v h P c  in the cases where 4 100hz hz   (a) and ' 500cr hz      (b) 

 

 

analyses of the numerical results with respect to values of these dimensional parameters gives 

clear presentation on the obtained numerical results. Therefore, in the present investigation we 

select the latter form analyses, i.e., analyses through the values of the parameters h, hd, V and ω, 

among which the main parameter for the present investigation is the plate moving velocity V in 

the initial state. As a result of this moving velocity, all solution difficulties and new mechanical 

effects appear, as will be discussed below. Therefore, in all the numerical investigations the focus 

is on the influence of the moving velocity V on the frequency response of the hydro-elastic system 

under consideration.  

Before discussion of the numerical results, we note that under calculation procedures, the 

improper integral 1( )
isx

f s e ds


  in Eq. (13) is replaced by the corresponding definite integrals  
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a  

(a) (b) 

Fig. 4 The influence of the plate moving velocity on the frequency response of the dimensionless velocity 

1 0 2/ ( )v h P c  in the cases where 4 100hz hz   (a) and ' 500cr hz      (b) 

 

 
*
1 1
*
1

( )
S isx

S
f s e ds



 . The values of *
1S  are determined from the convergence requirement of the 

numerical results. Note that under calculation of the integral 
*
1 1
*
1

( )
S isx

S
f s e ds



 , the integration 

interval * *
1 1;S S  

 
 is further divided into a certain number (denote it by N) of shorter intervals, 

which are used in the Gauss integration algorithm. The values of the integrated expressions at the 

sample points are calculated through the solution procedures of the corresponding boundary-

contact value problems. All procedures were performed automatically with the PC programs 

constructed by the authors in MATLAB. 

Convergence of the numerical results with respect to the parameters M, N and *
1S  was 

discussed in the paper by Akbarov and Panachli (2015) and therefore here we do not consider it 

again. Nevertheless, we note that all numerical results, which will be discussed below, are 

obtained in the case where M=15, N=2000 and *
1 5S  .  

 

3.1 The influence of the plate moving velocity, plate thickness and fluid depth on the 
frequency response of the stress and velocities and on the critical frequencies 
 

According to the paper by Akbarov and Panakhli (2015), we recall that under the critical 

frequency we will understand the frequency under which the amplitude of the studied quantities 

has a jump. Thus, after this recalling, first, we consider the influence of the plate moving velocity 

V  on the frequency response of the normal stress and velocities arising on the interface plane 

between the plate and fluid. The graphs given in Figs. 2, 3 and 4 show the dependence among the 

dimensionless stress T22h/P0 (Fig. 2 under ωt=0), the dimensionless velocity v2μh/(P0c2) (Fig. 3 

under (ωt=π/2), the dimensionless velocity v1μh/(P0c2) (Fig. 4 under ωt=π/2) and the frequency ω 

which are constructed for various values of V/h in the case where  hd/h=2, and x1/h=0. Note that for  
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On the particularities of the forced vibration of the hydro-elastic system… 

 
Fig. 5 The influence of the plate moving velocity on the frequency response of the dimensionless stress 

22 0T h P  in the case where the fluid is modeled as inviscid 

 

 

a clear illustration of the influence of the moving plate velocity on the values of the critical 

frequency as well as on the values of the studied quantities the graphs related to the cases where 

4 100hz    and ωcr<ω’≤ω≤500 hz are presented separately by letters a and b, respectively. 

Here the values of ω’ vary according to V/h and these values can be easily determined from the 

foregoing figures. Moreover, note that in these figures the dashed lines show the frequency 

response of the corresponding quantity in the case where the plate in the initial state is at rest, i.e., 

the case where V/h=0 and here and below the results illustrated with these dashed lines coincide 

with corresponding ones obtained in the paper by Akbarov and Ismailov (2017). 

Thus, it follows from the results given in Figs. 2-4 that the values of ωcr decrease with 

decreasing plate axial-moving velocity V/h. Moreover the graphs show that there exists a certain 

value of the frequency (denoted by ω*) before which (i.e., for ω’<ω<ω*) the plate moving 

velocity in the initial state causes a decrease (an increase) in the absolute values of the 

dimensionless stress T22h/P0 (of the dimensionless velocities v2μh/(P0c2) and v1μh/(P0c2)) with 

respect to the corresponding ones obtained in the case where V/h=0. However, after this frequency 

(i.e., in the cases where ω>ω*) the plate moving velocity causes the absolute values of T22h/P0 

with respect to those obtained in the case where V/h=0 to increase slightly. 

To demonstrate the influence of the fluid viscosity on the values of the studied quantities, 

graphs of the frequency response of the dimensionless stress T22h/P0 in the case where the fluid is 

modelled as inviscid are given in Fig. 5. Comparison of these graphs with the corresponding ones 

given in Fig. 2 shows that the influence of the fluid viscosity on the studied frequency response 

has important significance, not only qualitatively but also quantitatively. We recall that in the case 

where the plate is in contact with the inviscid fluid, the plate moving in the initial state does not 

cause the fluid flow. Consequently, the inviscid fluid model is not adequate for mathematical  
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(a) (b) 

c 

(c) 

Fig. 6 The influence of the plate moving velocity on the distribution of 22 0T h P  (a), 2 0 2( )v h P c  (b) and 

1 0 2( )v h P c ) (c) with respect to 1 /x h  

 

 

modelling of the type of problems studied. This result shows again the significance of the 

proposed approach for solution to the dynamic problems related to hydro-elastic systems 

containing a viscous fluid.  

Note that the results illustrated in Figs. 3-5 were also given in the paper by Akbarov and 

Panachli (2015). Nevertheless, for readability and for compact illustration of the related results and 

for their comparison with each other we give again these results here. 

Another characteristic of the influence of the plate’s axially-moving velocity on the plate-fluid 

interaction under consideration is illustrated in the case where V/h=0 and detailed in the paper by 

Akbarov and Ismailov (2017), i.e., in the case where the plate is at rest in the initial state and the 

distribution of the stresses and velocities caused by the additional time harmonic forces with 

respect to the moving coordinate x1/h is symmetric or asymmetric with respect to the point x1/h=0. 

However, as can be predicted according to expressions and Eqs. (21)-(25), in the case where V/h>0 

this distribution becomes non-symmetric or non-asymmetric with respect to x1/h=0, i.e., with 

respect to the point at which the external additional time-harmonic force acts. The results that  
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a  

(a) (b) 

Fig. 7 Frequency response of 22 0T h P  under 0.01h m , 2dh h  , / 2t   and 1 0x h   for various 

values of the plate moving velocity /V h   in the cases where 4 100hz hz   (a) and 

' 500cr hz      (b) 

 

a  
(a) (b) 

Fig. 8 Frequency response of 2 0 2( )v h P c  under 0.01h m , 2dh h  , 0t   and 1 0x h   for various 

values of the plate moving velocity /V h   in the cases where 4 100hz hz   (a) and 

' 500cr hz      (b) 

 

 

prove this conclusion are illustrated in the graphs in Fig. 6 which show the distribution for the 

dimensionless stress T22h/P0 (Fig. 6(a)) and velocities v2μh/(P0c2) (Fig. 6(b)) and v1μh/(P0c2) (Fig. 

6(c)) in the case where ω=100 hz and ωt=0. 

We continue the aforementioned investigations and consider the graphs given in Figs. 7, 8 and 

9 which show the frequency response of T22h/P0 (Fig. 7) under ωt=π/2 and velocities v2μh/(P0c2) 

(Fig. 8) and v1μh/(P0c2) (Fig. 9) under ωt=0, calculated at point x1/h=0 in the case where hd/h=2  
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a  

(a) (b) 

Fig. 9 Frequency response of 1 0 2( )v h P c  under 0.01h m , 2dh h  , 0t   and 1 0x h   for various 

values of the plate moving velocity /V h   in the cases where 4 100hz hz   (a) and 

' 500cr hz      (b) 

 

a  

(a) (b) 

c 

(c) 

Fig. 10 Dependence of 22 0T h P  (a), 2 0 2( )v h P c  (b) and 1 0 2( )v h P c  (c) on the frequency phase t  for 

various values of the plate moving velocity V h  under 100hz  , 0.01h m , 2dh h   and 1 0x h   
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(a) (b) 

 
(c) 

Fig. 11 The influence of the plate thickness h  on the frequency response of 22 0T h P  (a), 2 0 2( )v h P c  (b) 

and 1 0 2( )v h P c  (c), and on the critical frequency cr  in the case where 2500V h hz , 0t  , 

2dh h   and 1 0x h   

 

 

and h=0.01 m under 4 hz≤ω≤500 hz. In order to clearly  demonstrate the existence of the critical 

frequencies and the values of these frequencies, i.e., the values of ωcr, in these figures the graphs 

grouped by the letter a are constructed in the case where 4 hz≤ω≤500 hz and the graphs grouped by 

the letter b are constructed in the case where ωcr<ω’≤ω≤500 hz. Comparison of the graphs given 

in Figs. 7, 8 and 9 with the corresponding ones given in Figs. 2, 3 and 4 shows that the values of 

the stress and velocities depend significantly on the vibration phase
 
ωt.  It should be noted that the 

plate moving velocity can act significantly on the influence of the vibration phase ωt on the values 

of the stress and velocities. The graphs given in Fig. 10 which illustrate dependencies among 

T22h/P0 (Fig. 10(a)), v2μh/(P0c2) (Fig. 10(b)), v1μh/(P0c2) (Fig. 10(c)) and ωt for various values of 

the plate moving velocity V/h in the case where ω=100 hz, x1/h=0, h=0.01 m and hd/h=2, are 

evidence of the foregoing conclusion.  
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(a) (b) 

 
(c) 

Fig. 12 The influence of the fluid depth /dh h  on the frequency response of 22 0T h P  (a), 2 0 2( )v h P c  (b) 

and 1 0 2( )v h P c  (c), and on the critical frequency cr  in the case where 2500V h hz , 0t  , 

0.01h m  and 1 0x h   

 

 

Consider the graphs given in Fig. 11 which show the frequency response of T22h/P0 (Fig. 

11(a)), v2μh/(P0c2) (Fig. 11(b)) and v1μh/(P0c2) (Fig. 11(c)) for various plate thickness h  in the 

case where x1/h=0, ωt=0, hd/h=2 and V/h=2500 hz. It follows from these graphs that the values of 

the critical frequency ωcr increase with the plate thickness.  

It should be noted that under construction of these and other graphs considered in the present 

paper, for clarity of the illustrations, the part of the graphs corresponding to the vicinity of the 

critical frequency, i.e., the part which corresponds to the interval [ωcr−δ, ωcr+δ] is omitted and the 

values of the studied quantities obtained at ωcr−δ and at ωcr+δ are connected with each other by a 

straight line.  

The graphs given in Fig. 12 show the influence of the fluid depth on the values of the critical 

frequency ωcr and on the frequency response of T22h/P0 (Fig. 12(a), under ωt=0), v2μh/(P0c2) (Fig. 

12(b), under ωt=π/2) and v1μh/(P0c2) (Fig. 12(c), under ωt=π/2) in the case where h=0.01 m, 

x1/h=0 and V/h=2500 hz. According to these graphs, it can be concluded that an increase in the 

values of hd/h causes an insignificant decrease in the values of
 
ωcr. 

Consider also the frequency response of the studied quantities for the relatively thick plate and 

analyze the influence of the plate moving velocity on the critical velocity. Graphs of these  
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(a) (b) 

 
(c) 

Fig. 13 Frequency response of 22 0T h P  (a), 2 0 2( )v h P c  (b) and 1 0 2( )v h P c  (c) and critical frequencies 

cr  for various values of V h  in the case where  0.05h m , 0t  , 2dh h    and 1 0x h   

 

 

responses are given in Fig. 13 which correspond to the dependencies among T22h/P0 (Fig. 13(a)), 

v2μh/(P0c2) (Fig. 13(b)), v1μh/(P0c2) (Fig. 13(c)) and ω for various values of V/h in the case where 

ωt=0, x1/h=0, hd/h=2 and h=0.05 m. It follows from the graphs, that in the relatively thick plate 

case, the influence of the plate moving velocity on the critical velocity is more considerable and, 

as in the case where h=0.01 m, an increase in the values of V/h causes an increase in the values of 

the critical velocity.
 

Numerical investigations show that in the large change range of the frequency ω within the 

scope of certain conditions, after the first critical frequency which has been discussed above, the 

second critical frequency also appears. For illustration of these results we continue consideration 

of the frequency response of the studied quantities for the relatively thick plate, i.e., for h=0.05,  
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a  
(a) (b) 

c 

(c) 

Fig. 14 Frequency response of 22 0T h P  (a), 2 0 2( )v h P c  (b) and 1 0 2( )v h P c  (c) and critical frequencies 

'cr  and ''cr   for various values of V h in the case where  0.05h m , 0t  , 2dh h    and 1 0x h 

under 4 2000hz hz   

 

 

0.06  and 0.07  in the case where 4 hz≤ω≤2000 hz (for h=0.05) and 4 hz≤ω≤1500 hz (for h=0.06 

and
 
0.07 m).  Graphs of these responses, constructed for 1000 hz≤V/h≤2500 hz under ωt=0, x1/h=0 

and hd/h=3 are given in Figs. 14 (for h=0.05), 15 (for h=0.06) and 16 (for h=0.07). In these figures 

the graphs grouped by the letters a, b and c correspond to the dimensionless stress T22h/P0 and 

dimensionless velocities v2μh/(P0c2)  and v1μh/(P0c2), respectively. According to Figs. 14, 15 and 

16, we introduce the notation ω’cr and ω”cr to indicate the first and second critical frequencies. 

Thus, it follows from these figures that the values of ω’cr increase, but the values of the ω”cr 

decrease with the plate moving velocity V/h and there exists such a limit value of V/h (denote it by 

V*/h) after which, i.e., in the cases where V/h>V*h, the critical frequencies disappear. Note that in  
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(a) (b) 

 
(c) 

Fig. 15 Frequency response of 22 0T h P  (a), 2 0 2( )v h P c  (b) and 1 0 2( )v h P c (c) and critical 

frequencies 'cr  and ''cr   for various values of V h  in the case where  0.06h m , 0t  , 2dh h    

and 1 0x h   under 4 1500hz hz   

 

 

Fig. 14, i.e., in the case where h=0.05 within the scope of the considered change range of V/h, the 

limit velocity V*/h does not exist. However, it follows from Figs. 15 and 16 that in the cases where 

h=0.06 and h=0.07, the limit values of the plate moving velocity V*/h are determined as 2300 hz 

and 1950 hz, respectively. Consequently, the values of V*/h decrease with the plate thickness h.   

We recall that, as above, under construction of the graphs given in Figs. 14, 15 and 16, for 

clarity of the illustrations, the parts of the graphs corresponding to the vicinity of the critical 

frequencies, i.e., the parts which corresponds to the interval [ω’cr−δ, ω’cr+δ] and [ω”cr−δ, ω”cr+δ] 

are omitted and the values of the studied quantities obtained at ω’cr−δ and at ω’cr+δ, as well as at 

ω”cr−δ and at ω”cr+δ are connected with each other by the corresponding straight lines. 

All the numerical results discussed above are calculated at the point x1/h=0. Examples of the 

numerical results related to the distribution of the studied quantities with respect to the coordinate  
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(a) (b) 

 
(c) 

Fig. 16 Frequency response of 22 0T h P  (a), 2 0 2( )v h P c  (b) and 1 0 2( )v h P c  (c) and critical 

frequencies 'cr  and ''cr   for various values of V h  in the case where  0.07h m , 0t  , 2dh h    

and 1 0x h   under 4 1500hz hz   

 

 

x1/h are given in Fig. 6.  However, in Fig. 6 the distribution is illustrated for the case where ωt=0.  

For completeness of the consideration, here we also consider the distribution for the case where 

ωt=π/2, the epures of which are given in Fig. 17 for T22h/P0 (Fig. 17(a)), v2μh/(P0c2) (Fig. 17(b)) 

and v1μh/(P0c2) (Fig. 17(c)) in the case where ω=100 hz, hd/h=2 and h=0.01 m for various values of 

V/h. It follows from these epures that as a result of the plate moving, the symmetry of the values of 

T22h/P0 and v2μh/(P0c2), and the asymmetry of the values of v1μh/(P0c2) with respect to the point 

x1/h=0, are significantly violated.  

This completes the analysis of the numerical results related to the influence of the problem 

parameters, such as plate thickness, fluid depth, vibration phase and plate moving velocity on the 

frequency response of the stress and velocities. 

The explanation of the numerical results or the describing of the real physical mechanism of the 

obtained numerical results can be based on the nature of the mechanical behavior of the  
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(a) (b) 

c 

(c) 

Fig. 17 Distribution of 22 0T h P  (a), 2 0 2( )v h P c  (b) and 1 0 2( )v h P c  (c) with respect to 1x h  for 

various values of the plate moving velocity V h  in the case where 2t  , 100hz  , 0.01h m  and 

2dh h   

 

 

simultaneously moving and vibrating deformable objects such as beams and plates (see, for 

instance, the papers by Lin and Qiao (2008), by Yang et al. (2010), Yao et al. (2016), Banichuk et 

al. (2010) and others listed therein). Note that the non-ordinary particularities, such as the 

appearing the critical frequencies (because such frequencies do not appear in the cases where axial 

moving velocity the plate is equal to zero), can be explained namely with the interaction between 

the axial moving velocity and the vibration. All the numerical results which are considered in the 

present paper are focused on the influence of the problem parameters on these particularities.     

 

3.2 The influence of the fluid compressibility on the frequency response of the stress and 

velocities and on the values of the critical frequencies 
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(a) (b) 

 
(c) 

Fig. 18 The influence of the fluid compressibility on the frequency response of 22 0T h P  (a), 2 0 2( )v h P c  

(b) and 1 0 2( )v h P c  (c) for various values of the plate moving velocity V h  in the case where 0.05h m , 

2dh h  , 0t   and 1 0x h   

 

 

As has been noted above, the degree of fluid compressibility can be estimated through the 

parameter Ω1 in Eq. (25). Consequently, the Ω1=0 case (i.e., the a0=∞ case) corresponds to the 

incompressible fluid model. Numerical results show that for the selected fluid, in the cases where 

h≤0.03, 4 hz≤ω≤1000 hz
 
and 0≤V/h≤1000 hz, the influence of the fluid compressibility on the 

frequency response of the hydro-elastic system under consideration is insignificant and can be 

neglected with accuracy to the order (≤10
−6

). Therefore, we carry out the investigation on the 

influence of the fluid compressibility on the studied frequency responses for the cases where 

0.05≤h≤0.1, 300 hz≤ω≤2000 hz  and 750 hz≤V/h≤2500 hz.  
Thus, consider the graphs in Figs. 18 and 19 which are constructed for ωt=0 and ωt=π/2, 

respectively. Note that in these figures the graphs grouped by the letters a, b and c correspond to  
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a 
 

(a) (b) 

 
(c) 

Fig. 19 The influence of the fluid compressibility on the frequency response of 22 0T h P  (a), 2 0 2( )v h P c  

(b) and 1 0 2( )v h P c  (c) for various values of the plate moving velocity V h  in the case where 0.05h m , 

2dh h  , / 2t   and 1 0x h   

 

 

the quantities T22h/P0, v2μh/(P0c2) and v1μh/(P0c2), respectively. Moreover, note that in these 

figures the graphs related to the compressible and incompressible fluid models are given 

simultaneously and these graphs are constructed in the case where h=0.05 m, hd/h=2 and  x1/h=0
 

for various values of the plate moving velocity V/h. It follows from the results that, as predicted 

above, the influence of the fluid compressibility on the studied frequency responses increases with 

the vibration frequency ω and with the plate moving velocity V/h. Moreover, the results show that 

the magnitude of the aforementioned influence increases with plate thickness h and becomes more 

considerable in the near vicinity of ω”cr. These conclusions are also confirmed with the graphs 

given in Fig. 20 which are constructed within the scope of the assumptions and notation accepted  
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a  

(a) (b) 

 
(c) 

Fig. 20 The influence of the fluid compressibility on the frequency response of 22 0T h P  (a), 2 0 2( )v h P c  

(b) and 1 0 2( )v h P c  (c) for various values of the plate moving velocity V h  in the case where 0.1h m , 

2dh h  , 0t   and 1 0x h   

 

 

in Fig. 18 for the case where h=0.1 m. For clarity of the illustration in Fig. 20, the part of the 

graphs regarding the interval (ω”cr−δ, ω”cr+δ) and constructed for the case where V/h=1500 hz is 

removed. 

According to the foregoing results, it can be concluded that in the cases where 400 hz<ω<ω”cr, 

in general, the fluid incompressibility causes an increase (a decrease) in the absolute values of 

T22h/P0 and v1μh/(P0c2) (of v2μh/(P0c2)). Moreover, according to these results, it can be concluded 

that the fluid incompressibility causes a decrease in the values of ω”cr. These conclusions are more 

clearly observed from the results given in Fig. 20. 

Note that the results discussed in the present subsection are obtained in the case where hd/h=2. 

Now we consider the numerical results which illustrate how an increase in the values of hd/h 

affects the values of ω’cr and ω”cr within the scope of the compressible and incompressible fluid  
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(a) (b) 

 
(c) 

Fig. 21 The influence of the fluid depth parameter dh h  under 2 3.5dh h   on the frequency response of 

22 0T h P  (a), 2 0 2( )v h P c  (b) and 1 0 2( )v h P c  (c), on 'cr  and ''cr , and on the effect of the fluid 

compressibility on this influence in the case where 0.05h m , 2500V h hz , 2t   and 1 0x h   

 

 

models. These results are given in Figs. 21 and 22 which are obtained for various values of hd/h in 

the case where ωt=π/2, h=0.05 m, V/h=2500 hz and x1/h=0. Note that for clarity of the illustration, 

the results obtained in the cases where 2≤hd/h≤3.5 and where 3.5≤hd/h≤5 are given separately in 

Figs. 21 and 22, respectively. Moreover, note that in these figures, as in the foregoing ones, the 

graphs grouped by the letters a, b and c relate to T22h/P0, v1μh/(P0c2) and v2μh/(P0c2), respectively. 

In Fig. 21 in the cases where hd/h>2 the results are presented for the case where ω’cr<ω<ω”cr, 

however, in Fig. 22 the results obtained for the cases where hd/h=3.5 and 3.7  are presented for 

ω>>ω”cr. At the same time, in Fig. 22 the results obtained for the cases hd/h=4 and 5  are presented 

for 80 hz<ω<1500 hz. 

Thus, it follows from the results given in Figs. 21 and 22 that an increase in the values of hd/d 

causes a decrease in the values of ω”cr and that with an increase in ω’cr (although this increase is  
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(a) (b) 

 
(c) 

Fig. 22 The influence of the fluid depth parameter dh h  under 3.5 5dh h   on the frequency response of 

22 0T h P  (a), 2 0 2( )v h P c  (b) and 1 0 2( )v h P c  (c), on 'cr  and ''cr , and on the effect of the fluid 

compressibility on this influence in the case where 0.05h m , 2500V h hz , 2t   and 1 0x h   

 

 

insignificant), and after a certain hd/d (denote it by (hd/d)*), i.e., under hd/h≥(hd/h)*, the critical 

frequencies disappear. For instance, in the case under consideration for hd/h≥4 there is no critical 

frequency. Moreover, it follows from these results that the fluid incompressibility causes a 

decrease in the values of the second critical frequency ω”cr.  

We recall that in the case where h=0.01 we ascertained that the influence in the values of hd/h 

on the values of the first critical frequency ω’cr is insignificant and causes these values to decrease 

(see Fig. 12). However, the results given in Fig. 21 show that in the relatively thick plates, for 

instance, in the case where h=0.05 the influence of hd/h on the values of the first critical frequency 

ω’cr becomes more considerable and causes these values to increase. Nevertheless, the results 

show that the influence of hd/h on the values of the second critical frequency ω”cr is more 

considerable than on the first critical frequency ω’cr.  

This completes consideration of the numerical results and their analyses.  
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4. Conclusions 
 

Thus, in the present paper some particularities of the forced vibration of the hydro-elastic 

system consisting of the axially moving elastic plate, compressible viscous fluid and rigid wall are 

studied by employing the discrete-analytical approach proposed in the previous work by the 

authors, Akbarov and Panakhli (2015). Numerical results on the frequency response of the stress 

and velocities on the interface plane between the fluid and plate are presented and discussed. 

These results illustrate the influence of the problem parameters such as the plate moving velocity, 

fluid depth, plate thickness, vibration frequency and the fluid compressibility on these responses. 

Concrete numerical results are obtained for the case where the plate material is steel and the fluid 

is glycerin. According to these results and their discussion, we can draw the following main 

conclusions. 

• As a result of the fluid flow caused by the plate which is axially moving with constant 

velocity in the initial state within the scope of certain conditions, the first and second critical 

frequencies denoted by ω’cr and ω”cr, respectively, arise and under these critical frequencies a 

resonance-type phenomenon occurs; 

• Under a fixed value of the fluid depth parameter hd/h (see Fig. 1), the values of ω’cr increase, 

but the values of ω”cr decrease with the plate thickness h  and after a certain value of this 

thickness, the critical frequencies disappear; 

• For relatively thick plates, for instance, for the cases where h≥0.05 m, under a fixed value of 

the plate thickness h , the values of ω’cr increase, but the values of ω”cr decrease with the fluid 

depth parameter hd/h and after a certain value of this parameter, the critical frequencies disappear; 

• For each of the values of the plate thickness, the values of ω’cr increase, but the values of ω”cr 

decrease with the plate moving velocity and after a certain value of this velocity, the critical 

frequencies disappear; 

• The influence of the fluid compressibility on the values of the first critical frequency is ω’cr 

insignificant, but this influence is considerable for the second critical frequency ω”cr and causes its 

values to increase;  

Besides the foregoing general conclusions, according to the presented graphs, more concrete 

conclusions can be made related to the influence of the problem parameters on the values of the 

studied stress and velocities. For instance, it can be concluded that an increase in the values of the 

plate moving velocity causes the absolute values of the studied stress and velocities to increase; as 

a result of the fluid depth parameter hd/h increasing the absolute values of the stress decrease, but 

absolute values of the velocities increase; the fluid compressibility causes the absolute maximum 

values of the studied stress to decrease.  

It should be noted that the foregoing results on the critical frequencies arise as a result of the 

fluid moving in the initial (i.e., in the unperturbed) case and in the present paper the very simple 

flow case is considered. Consequently, investigations of related hydro-elastic problems with more 

complicated initial flowing cases also have a great impact in the theoretical and application senses. 

Therefore, the authors aim to continue related studies, namely for these complicated initial-flow 

cases. 
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Appendix 
 

In this appendix we give Table which contains the notation for parameters used in the paper 

and their physico-mechanical meaning. 

 

Table of the used notation and their meaning 

Notation Meaning 

1x  and 2x  Coordinates of the points in the moving coordinate system 1 2Ox x  

10x  and 20x  Coordinates of the points in the fixed coordinate system 0 10 20O x x  

1v  and 2v  
Components of the fluid flow velocity vector in the moving coordinate system 

1 2Ox x  

t  The time 

10v  and 20v  Components of the fluid flow velocity vector in the fixed coordinate system 1 2Ox x  

11 , 12  and 22  
Components of the stress tensor in the plate in the moving coordinate system 

1 2Ox x  

11 , 12  and 22  
Components of the strain tensor in the plate in the moving coordinate system 

1 2Ox x  

1u  and 2u  
Components of the displacement vector in the plate in the moving coordinate 

system 1 2Ox x  

  Mass density of the plate material 

h  The plate thickness 

dh  The fluid depth 

  and   Lame constants of the plate material 

(1)
0  Mass density of the fluid in the case where this fluid is rest 

(1)  The coefficient of the fluid viscosity 

(1)  The second coefficient of the fluid viscosity 

(1)p  Perturbation of the pressure in the fluid 

(1)  Perturbation of the mass density of the fluid 

11T , 12T  and 22T  Components of the stress tensor in the fluid 

11e , 12e and 22e  Components of the strain velocity tensor 

V  Axial moving velocity of the plate 

  Angular frequency of the external time-harmonic force 

s  Fourier transformation parameter 

0P  The amplitude the external time harmonic force 

(1)(1) (1)
0/    The coefficient of the kinematic viscosity of the fluid 
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