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Abstract.  In this paper Timoshenko beam theory is employed to investigate the vibration characteristics of 

functionally graded carbon nanotube-reinforced composite (FG-CNTRC) Beams with a stiff core in thermal 

environment. The material characteristic of carbon nanotubes (CNT) are supposed to change in the thickness 

direction in a functionally graded form. They can also be calculated through a micromechanical model 

where the CNT efficiency parameter is determined by matching the elastic modulus of CNTRCs calculated 

from the rule of mixture with those gained from the molecular dynamics simulations. The differential 

transform method (DTM) which is established upon the Taylor series expansion is one of the effective 

mathematical techniques employed to the differential governing equations of sandwich beams. Effects of 

carbon nanotube volume fraction, slenderness ratio, core-to-face sheet thickness ratio, different thermal 

environment and various boundary conditions on the free vibration characteristics of FG-CNTRC sandwich 

beams are studied. It is observed that vibration response of FG-CNTRC sandwich beams is prominently 

influenced by these parameters. 
 

Keywords:  functionally graded carbon nanotube-reinforced composite; thermo-mechanical vibration; 

Hamilton’s principle 

 
 
1. Introduction 
 

The need for high performance and low weight structures makes sandwich construction one of 

the best choices in aircrafts, space vehicles and transportation systems. Functionally graded materials 

(FGMs) are composite materials with inhomogeneous micromechanical structure in which the 

material properties change smoothly between two surfaces and leads to a novel structure which can 

withstand large mechanical loadings in high temperature environments (Ebrahimi and Salari 2015). 

Presenting novel properties, FGMs have also attracted intensive research interests, which were 

mainly focused on their static, dynamic and vibration characteristics (Ebrahimi and Rastgoo, 2008a, 

b, c, Ebrahimi 2013, Ebrahimi et al. 2008, 2009a, b, 2016a, Ebrahimi and Zia 2015, Ebrahimi and 

Mokhtari 2015, Ebrahimi and Salari 2015a, b, Tounsi et al. 2016).  

Also many researches have been conducted on vibration, buckling and post-buckling analysis of 
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sandwich structures with FGM face sheets (Zenkour 2005, Bhangale and Ganesan 2006, Pradhan 

and Murmu 2009, Anandrao et al. 2010, Zenkour and Sobhy 2010, Fekrar et al. 2012, Saidi et al. 

2013, Hamidi et al. 2015). Actually, material gradation will reduce maximum stresses and change 

the spatial location where such maximums arise (Rahmani and Pedram 2014). This provides the 

opportunity of fitting material variation to attain desired stresses in a structure. Also many other 

researchers investigated the vibration bending and buckling of nanostructures  Ebrahimi and Salari 

2015a, b, 2016, Ebrahimi et al. 2015a, 2016c, Ebrahimi and Nasirzadeh 2015, Ebrahimi and Barati 

2016a, b, c, d, e, f, Ebrahimi and Hosseini 2016 a, b, c).  

On the other hand, the thermo-mechanical effect on FG structures is studied by many researchers.  

Tounsi et al. (2013) presented a refined trigonometric shear deformation theory for thermoelastic FG 

sandwich plates (Tounsi et al. 2013). Most recently Ebrahimi and Barati (2016g, h, i, j, k, l, m, n, o, 

p, q, r, s, t, u, v, 2017a, b) and Ebrahimi et al. (2017) explored thermal and hygro-thermal effects on 

nonlocal behavior of FG nanobeams and nanoplates. Carbon nanotubes have extraordinary 

mechanical properties. Due to their outstanding properties such as, superior mechanical, electrical, 

and thermal nanotubes have attracted growing interest and are considered to be the most promising 

materials for applications in nanoengineering (Lau and Hui 2002, Lau et al. 2004, Esawi and Farag 

2007). So many applications for carbon nanotubes have been proposed by researchers: conductive 

polymers; energy conversion devices and energy storage; sensors; field emission displays; replacing 

silicon in microcircuits; multilevel chips; probes for SPM (scanning probe microscopy) (Esawi and 

Farag 2007). The CNT-based nanocomposite devices may withstand high temperature during 

manufacture and operation. Various studies show that the physical property of carbon nanotubes 

depends on temperature, from which we believe that the elastic constants of nanotubes, such as 

Young’s modulus and shear modulus, are also temperature dependent (Fidelus et al. 2005, Bonnet et 

al. 2007). However, it is remarkably difficult to directly measure the mechanical properties of 

individual SWCNTs experimentally due to their extremely small size.  

In 1994 Ajayan et al. (Ajayan et al. 1994) studied the polymer composites reinforced by aligned 

CNT arrays. Since then, many researchers inspected the material properties of CNTRCs (Odegard et 

al. 2003, Thostenson and Chou 2003, Griebel and Hamaekers 2004, Hu et al. 2005, Zhu et al. 2007, 

Bakhti et al. 2013, Barzoki et al. 2015, Bidgoli et al. 2015, Tagrara et al. 2015). Ashrafi and Hubert 

(Ashrafi and Hubert 2006) modeled the elastic properties of CNTRCs through a finite element 

analysis. Xu et al. (Xu et al. 2006) examined the thermal behavior of SWCNT polymer-matrix 

composites. Han and Elliott (Han and Elliott 2007) used molecular dynamics (MD), to simulate the 

elastic properties of CNTRCs. These studies proved that adding a small amount of carbon nanotube 

can significantly improve the mechanical, electrical, and thermal properties of polymeric composites. 

Studies on CNTRCs have also revealed that distributing CNTs in a uniform way as the 

reinforcements in the matrix can give only intermediate improvement of the mechanical 

characteristics (Qian et al. 2000, Seidel and Lagoudas 2006). This is principally because of the weak 

interfacial bonding strength between the CNTs and matrix. Shen (Shen 2009) extended the idea of 

FGMs to CNTRCs and founded out that a graded distribution of CNTs in the matrix can lead to an 

interfacial bonding strength. Ke et al. (Ke et al. 2010, Ke et al. 2013) examined the effect of FG-

CNT volume fraction on the nonlinear vibration and dynamic stability of composite beams. Wang 

and Shen (Wang and Shen 2011) studied the vibration of CNTRC plates in thermal environments. 

They mentioned that the CNTRC plates with symmetrical distribution of CNTs have lower natural 

frequencies, but lower linear to nonlinear frequency ratios than ones with unsymmetrical or uniform 

distribution of CNTs. Wang and Shen (Wang and Shen 2012) studied the nonlinear bending and 

vibration of sandwich plates with CNTRC face sheets in sandwich structures with FG-CNTRC face  
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Fig. 1 A simple scheme of sandwich beam with CNTRC face sheets 

 

 

sheets. The effects of nanotube volume fraction, foundation stiffness, core-to-facing thickness ratio, 

temperature change, and in-plane boundary conditions on the nonlinear vibration and bending 

behaviors of sandwich plates with CNTRC facings sheets were considered. Yang et al. (Yang et al. 

2015) examined the dynamic buckling FG nanocomposite beams reinforced by CNT as a core and 

integrated with two surface bonded piezoelectric layers. Wu et al. (Wu et al. 2015) investigated free 

vibration and buckling behavior of sandwich beams reinforced with FG-CNTRCs face sheets based 

on Timoshenko beam theory but they considered neither the temperature dependency of the material 

properties nor the thermal environment effects on the structure. 

In this paper thermo-mechanical vibration of sandwich beams with a stiff core and FG-CNTRC 

face sheets reinforced by SWCNTs are investigated within the framework of Timoshenko beam 

theory. The material characteristic of carbon nanotubes are supposed to change in the thickness 

direction in a functionally graded form. DTM is employed to solve the differential governing 

equations of sandwich beams. A parametric study is conducted to investigate the effects of carbon 

nanotube volume fraction, slenderness ratio, core-to-face sheet thickness ratio, different thermal 

environment and various boundary conditions on the free vibration characteristics of FG-CNTRC 

sandwich beams.  

 

 

2. CNTRC sandwich beam  
 

Consider a symmetric sandwich beam with the length of L, width b and total thickness h 

subjected to an axial load caused by thermal expansion. As shown in Fig. 1 the sandwich beam is 

made of two CNTRC face sheets with thickness of hf and a stiff core layer of thickness hc. Three 

different types of support conditions namely, simply supported-simply supported (S-S), clamped-

clamped (C-C) and clamped-simply supported (C-S) are considered individually. Moreover two 

distributions of CNTs, i.e., V-graded and uniform distributions, are considered. 

The material properties can be determined from the rule of mixture as 

 (1a) 11 1 11

cn

cn m mE V E V E 
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(1b) 

 

(1c) 

where E11
cn

, E22
cn

 and G12
cn

 are Young’s moduli and shear modulus of CNTs, respectively. Em and 

Gm are the properties for the matrix. ηi(i=1,2,3) is CNT efficiency parameter accounting for the 

scale-dependent material properties and can be obtained by matching the elastic modulus of 

CNTRCs achieved from molecule dynamic simulation and those which are extracted from rule of 

mixture. Vm and Vcn are the volume fraction of matrix and the CNTs, respectively. The relation 

between them can be expressed as 

 (2) 

It is supposed that for the FG-CNTRC face sheets Vcn changes linearly across the thickness the 

top face sheet as follows 

 (3a) 

and also for the bottom face sheet 

 (3b) 

in which V
*
 can be described as 

 
(4) 

where wcn is the mass fraction of CNT, and ρm and ρcn 
are the densities of matrix and CNT, 

respectively. There is a simple relation for V
*
cn in UD-CNTRCs which can be given by: Vcn=V

*
cn, 

so it’s obvious that the mass fraction for UD-CNTRC and FG-CNTRC face sheets are equal. The 

density and Poisson's ratio of the CNTRC face sheets can be described in order as 

 (5) 

 
(6) 

in which νm and νcn are Poisson’s ratio of the matrix and CNT, respectively. Because functionally 

graded structures, such as sandwich beams in this case, are used mostly in high temperature 

environment, eventually significant changes in mechanical properties of the ingredient materials 

are to be expected, it is necessary to take into account this temperature-dependency for precise 

prediction of the mechanical reaction. Thus, Young’s modulus and thermal expansion coefficient  
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Table 1 Temperature dependent properties of Young’s modulus and thermal expansion coefficient for Ti-

6A1-4V 

Material Properties P0 P-1 P1 P2 P3 

 
 122.56e+9 0 -4.586e-4 0 0 

 7.5788e-6 0 6.638e-4 -3.147e-6 0 

 

Table 2 Temperature dependent properties of Young’s modulus and thermal expansion coefficient for CNTs 

Temperature (°K) E11
cn

(Tpa) E22
cn

(Tpa) G12
cn

(Tpa) α
cn

(K
-1

) 

300 5.6466 7.0800 1.9445 3.4584 

500 5.5308 6.9348 1.9643 4.5361 

700 5.4744 6.8641 1.9644 4.6677 

 

 

believed to be functions of temperature, as to be shown in Section 3.1, so that E and α are both 

temperature and position dependent. The behavior of FG materials can be predicted under high 

temperature more precisely with considering the temperature dependency on material properties. 

The nonlinear equation of thermo-elastic material properties in function of temperature T(K)
 
can 

be expressed as (Shen 2004) 

 (7) 

where P0, P-1, P1, P2 
and P3 are the temperature dependent coefficients which are presented in 

Table 1. For composite host, PMMA matrix has been chosen. Eventually there are different 

expressions to describe the temperature dependent properties of PMMA; α
m
=45(1+0.0005ΔT)×10

-

6
/K, E

m
=(3.52−0.0034T)Gpa, in which T=T0+ΔT and T0=300K (Yang et al. 2015). To predict the 

correct CNT properties which is dependent to temperature (Zhang and Shen 2006), we should 

estimate CNT efficiency parameters η1 and η2 by matching the Young’s modulus E11 and E22 of 

CNTRCs obtained by the rule of mixture to those obtained from the MD simulations given by Han 

and Elliott (Han and Elliott 2007). It should be noted that only E11 should be used in beam 

theories. The results are shown in Table 2. 
 

 

3. Theoretical formulations 
 

3.1 Governing equations 
 

The displacement of an arbitrary point in the beam along the x and z directions, according to 

Timoshenko beam theory can be expressed by 

,    (8) 

where U(x,t) and W(x,t) are displacement elements of a point in the mid-plane, t is time and ψ is 

the rotation of the beam cross-section. The linear strain-displacement relationship can be described 

as 

,    (9) 

Ti-6Al-4V
( )E Pa

1
( )K


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The normal stress and shear stress are expressed as 

,    (10) 

where 

,    (11) 

The normal force, bending moment and transverse shear force resultants are presented as 

 (12a) 

 
(12b) 

 
(12c) 

where the shear correction factor is expressed by κ=5/6. The inertia related terms and stiffness 

components can be determined from 

 (13a) 

,  
(13b) 

The governing equations of motion of the beam, by using Hamilton’s principle can be defined 

as 

 (14a) 

 
(14b) 

 

(14c) 

in which coefficient Ks is called the Timoshenko shear correction factor and its exact value 

depends on the material properties and cross section parameters of the beam. Here, Ks for 

rectangular beams has been assumed to be 5/6. Also is the thermal resultant and can be 

described as 
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 (15) 

where T0 is the reference temperature.

 

For simply supported-simply supported (S-S), clamped-

clamped (C-C) and clamped-simply supported (C-S) sandwich beams with a movable end at x=L, 

the boundary conditions require 

   at  (16a) 

   at 
 

(16b) 

for a S-S beam, 

   at  (17a) 

   at 
 

(17b) 

for a C-C beam and 

   at  (18a) 

   at 
 

(18b) 

for a C-S beam. 

 

3.2 Dimensionless governing equations 
 

It is better first to clarify the following dimensionless quantities 

 

 

 

(19) 

where I10 
and A110 are the values of I1 and A11 of a homogeneous beam made from pure core 

material. Dimensionless natural frequency of the sandwich beam is expressed by ω. With respect 

to Eq. (18), and substituting Eq. (12) into Eq. (14), the final equations can then be explained in 

dimensionless form as 

 (20a) 

 

(20b) 
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(20c) 

then the transformed boundary conditions turn into 

   at  (21a) 

   at 

 

(22b) 

for a S-S sandwich beam  

   at  (22a) 

   at 

 

(22b) 

for a C-C sandwich beam and 

   at  (23a) 

   at 

 

(23b) 

for a C-S sandwich beam. 

 

 

4. Uniform temperature rise (UTR) 
 

The initial temperature of the sandwich beam is assumed to be (T0=300K), which is a stress free 

state and is uniformly changed to the final temperature of T. The temperature rise is given by 

 (24) 

 

 

5. Solution procedure 
 

5.1 Application of differential transform method to free vibration problem 
 

Differential transform method (DTM) is a semi-analytic transformation technique based on 

Taylor series expansion equations and is a useful tool to obtain analytical solutions of differential 

equations. Certain transformations rules are applied to governing equations and the boundary 

conditions of the system in order to transform them into a set of algebraic equations in terms of the 

differential transforms of the original functions. This method construct an analytical solution in the 

form of polynomials. It is different from the high-order Taylor series method, which requires  
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Table 3 Some transformation rules for one-dimensional DTM (Ju 2004) 

Original function Transformed function 

  

  

 
 

 
 

  

 

 

symbolic computation of the necessary derivative of the data functions and is expensive for large 

orders. The Taylor series method is computationally expansive for large orders. Differential 

transformation of the n
th
 derivative of the function y(x) and differential inverse transformation of Y(k) 

are respectively defined as (Hassan 2002) 

 (25) 

 

(26) 

in which y(x) is the original function and Y(k) is the transformed function. As a consequently of Eqs. 

(25), (26) the following relation can be obtained 

 (27) 

 

(28) 

In this calculations  is small enough to be neglected, and n is determined by 

the convergence of the eigenvalues. From definitions of DTM in Eqs. (47)-(49), the fundamental 

theorems of differential transforms method can be performed which are listed in Table 4. While 

Table 4 presents the differential transformation of conventional boundary conditions. First we 

assume the following variation for w(x,t) and θ(x,t) 
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(31) 

According to the basic transformation operations presented in Table 3, the transformed form of 

the governing Eqs. (30) and (31) around x0=0 may be obtained as 

 (32) 

 
(33) 

Also by using the theorems introduced in Table 4, various transformed boundary conditions can 

be expressed as follows: 

• Simply supported-Simply supported 

 

 
(34a) 

• Clamped-Simply supported 

 

 
(34b) 

• Clamped-Clamped 

 

 
(34c) 

Now by using Eqs. (32) and (33) together with the transformed boundary conditions one can 

obtain the following eigenvalue problem 

 (35) 

where [C] corresponds to the missing boundary conditions at x=0 and Mij
(n)

 are the polynomials in 

terms of (ω) corresponding to the nth  term. For the non-trivial solutions of Eq. (35), it is necessary 

that the determinant of the coefficient matrix set equal to zero 
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Table 4 Transformed boundary conditions based on DTM (Ju 2004) 

x=0 x=L 

Original B.C. Transformed B.C. Original B.C. Transformed B.C. 
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3
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1 2 [ ] 0
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
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Table 5 Convergence study for the first three frequencies with FG-CNTRC face sheets (L/h=20, hc/hf=8) 

n ω1 ω2 ω3 

12 0.14499 - - 

13 0.14502 - - 

14 0.14503 - - 

15 0.14504 0.54167 - 

16 0.14504 0.59675 0.72903 

17 0.14504 0.58092 0.83827 

18 0.14504 0.57080 42.7243 

19 0.14504 0.57184 5.0476 

20 0.14504 0.57289 1.05913 

21 0.14504 0.57279 1.11939 

22 0.14504 0.57269 41.59312 

23 0.14504 0.57270 6.07850 

24 0.14504 0.57270 1.23659 

25 0.14504 0.57270 1.24982 

26 0.14504 0.57270 1.26681 

27 0.14504 0.57270 1.26417 

28 0.14504 0.57270 1.26180 

29 0.14504 0.57270 1.26206 

30 0.14504 0.57270 1.26232 

31 0.14504 0.57270 1.26227 

32 0.14504 0.57270 1.26227 

33 0.14504 0.57270 1.26227 
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Table 6 Comparison of first three dimensionless natural frequencies of S-S sandwich beams with FG-

CNTRC face sheets (L/h=20, hc/hf=8) 

Mode 
 V*

cn=0.12
 

V*
cn=0.17

 
V*

cn=0.28
 

 Present (Wu et al. 2015) Present (Wu et al. 2015) Present (Wu et al. 2015) 

1 
FG 0.1450 0.1453 0.1594 0.1588 0.1844 0.1825 

UD 0.1429 0.1432 0.1566 0.1560 0.1806 0.1785 

2 
FG 0.5727 `0.5730 0.6289 0.6247 0.7261 0.7174 

UD 0.5643 0.5650 0.6180 0.6140 0.7114 0.6997 

3 
FG 1.2623 1.2599 1.3837 1.3689 1.5933 1.5554 

UD 1.2444 1.2429 1.3605 1.3465 1.5623 1.5246 

 

Table 7 First three dimensionless natural frequencies of C-C sandwich beams with FG-CNTRC face sheets 

(L/h=20, hc/hf=8) 

Mode 
 V*

cn=0.12
 

V*
cn=0.17

 
V*

cn=0.28
 

 Present (Wu et al. 2015) Present (Wu et al. 2015) Present (Wu et al. 2015) 

1 
FG 0.3239 0.3240 0.3528 0.3530 0.4031 0.4032 

UD 0.3192 0.3195 0.3467 0.3470 0.3950 0.3949 

2 
FG 0.8724 0.8704 0.9483 0.9443 1.0800 1.0699 

UD 0.8602 0.8588 0.9327 0.9291 1.0594 1.0492 

3 FG 1.6626 1.6520 1.8026 1.7838 2.0441 2.0029 

 UD 1.6404 1.6313 1.7744 1.7569 2.0086 1.9672 

 

 

The i th estimated eigenvalue may be obtained by the n th iteration, by solving Eq. (36). The 

total number of iterations are related to the accuracy of calculations can be determined by the 

following equation 

( ) ( 1)n n

i i     (37) 

 

 

6. Results and discussion 
 

6.1 Comparison studies 
 

Before starting to study the free vibration analysis of sandwich beams with CNTRC facing sheets, 

a comparison is made between the present results and those from the open literature in order to 

validate the present formulation. Table 5 shows the number of repetition for convergence of the first 

three frequencies using DTM. It is found that in DTM after a certain number of iterations 

eigenvalues converged to a value with good precision. According to Table 5 the first natural 

frequency converged after 15 iterations with 4 digit precision while the second and third ones 

converged after 23 and 31 iterations respectively. Table 6 compares numerical dimensionless natural 

frequency of the simply-supported FG sandwich beams with the analytical results (Wu et al. 2015). 

As it can be seen, the proposed results match very well with the results of reference paper. Moreover,  
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Table 8 Effect of nanotube volume fraction on first three natural frequencies of sandwich beams with FG-

CNTRC face sheets (L/h=20, hc/hf=8) 

   ΔT=0 ΔT=200 ΔT=400 

Mode B.S.   V
*
cn   V

*
cn   V

*
cn  

   0.12 0.17 0.28 0.12 0.17 0.28 0.12 0.17 0.28 

1 S-S FG 0.1450 0.1595 0.1844 0.1393 0.1538 0.1789 0.1340 0.1487 0.1741 

 S-S UD 0.1429 0.1566 0.1806 0.1370 0.1509 0.1749 0.1317 0.1457 0.1699 

2 S-S FG 0.5727 0.6289 0.7261 0.5518 0.6086 0.7065 0.5319 0.5899 0.6893 

 S-S UD 0.5643 0.6180 0.7114 0.5432 0.5976 0.6917 0.5231 0.5785 0.6741 

3 S-S FG 1.2623 1.3837 1.5933 1.2166 1.3394 1.5505 1.1725 1.2980 1.5124 

 S-S UD 1.2444 1.3605 1.5623 1.1983 1.3159 1.5193 1.1539 1.2740 1.4807 

1 C-C FG 0.3239 0.3528 0.4031 0.3121 0.3414 0.3922 0.3008 0.3309 0.3826 

 C-C UD 0.3192 0.3467 0.3950 0.3072 0.3353 0.3841 0.2958 0.3245 0.3742 

2 C-C FG 0.8724 0.9483 1.0800 0.8407 0.9177 1.0508 0.8100 0.8891 1.0246 

 C-C UD 0.8602 0.9327 1.0594 0.8283 0.9019 1.0300 0.7973 0.8729 1.0034 

3 C-C FG 1.6626 1.8026 2.0441 1.6003 1.7425 1.9891 1.5423 1.6881 1.9379 

 C-C UD 1.6404 1.7744 2.0086 1.5778 1.7140 1.9505 1.5193 1.6579 1.8989 

1 C-S FG 0.2251 0.2474 0.2857 0.2167 0.2391 0.2778 0.2088 0.2316 0.2708 

 C-S UD 0.2218 0.2430 0.2799 0.2133 0.2347 0.2718 0.2052 0.2270 0.2647 

2 C-S FG 0.7166 0.7860 0.9059 0.6905 0.7607 0.8814 0.6655 0.7372 0.8597 

 C-S UD 0.7063 0.7727 0.8880 0.6801 0.7472 0.8634 0.6548 0.7234 0.8414 

3 C-S FG 1.4584 1.5962 1.8337 1.4052 1.5446 1.7838 1.3538 1.4961 1.7389 

 C-S UD 1.4383 1.5703 1.7992 1.3848 1.5184 1.7492 1.3329 1.4694 1.7039 

 

 

the first three dimensionless natural frequencies for the C-C FG-CNTRC beam are tabulated in Table 

7. The parameters used in this example are the same as those in Ref. (Wu et al. 2015). A good 

agreement is obtained, again. 
 

6.2 Free vibration analysis 
 

In this study, poly (methyl methacrylate), i.e., PMMA with Em=2.5
 
Gpa, ρm=1190 kg/m

3 
and 

νm=0.3, is choosen to be the matrix material for CNTRCs. The armchair (10, 10) SWCNTs, with 

material properties of E11
cn

=5.6466 TPa, E22
cn

=7.08 TPa, G12
cn

=1.9445 TPa, ρcn=1400 kg/m
3
 and 

νcn=0.175 at room temperature, (Shen and Zhang 2010) are selected as the reinforcement for 

CNTRCs. The CNT efficiency parameter ηj is obtained by matching the Young’s modulus E11 and 

E22 and shear modulus G12 of CNTRCs determined from the rule of mixture against those from the 

MD simulations given by Han and Elliott (Han and Elliott 2007). The following values presented 

by Shen and Zhang (Shen and Zhang 2010): η1=0.137, η2=1.022, η3=0.075 are used for the case of 

V
*

cn=0.12, η1=0.142, η2=1.626, η3=1.138 for V
*

cn=0.17; and η1=0.141, η2=1.585, η3=1.109 for 

V
*

cn=0.28. Also, Titanium alloy is chosen for. Titanium alloy (Ti-6Al-4V) as the core material has 

the following characteristics: Ec=113.8 GPa, ρc=4430 kg/m
3
 and νc=0.342. The thickness of the 

sandwich beam is chosen as 10 mm totally, and kept unchanged in all numerical situations while 

the thickness of core layer and face sheets change arbitrarily as the core-to-face sheet thickness ratio  
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Fig. 2 First three dimensionless natural frequencies of C-C, S-S and C-S sandwich beams with CNTRC 

face sheets with different CNT volume fraction 
 

Table 9 Dimensionless first three natural frequencies of sandwich beams with FG-CNTRC face sheets and 

different values of L/h(hc/hf=8, V
*
cn=0.17) 

   ΔT=0 ΔT=200 ΔT=400 

Mode B.S.   L/h   L/h   L/h  

   10 20 30 10 20 30 10 20 30 

1 S-S FG 0.3145 0.1595 0.1066 0.3043 0.1538 0.1021 0.2945 0.1487 0.0983 

 S-S UD 0.3090 0.1566 0.1047 0.2988 0.1509 0.1001 0.2893 0.1457 0.0962 

2 S-S FG 1.1943 0.6289 0.4237 1.1556 0.6086 0.4094 1.1192 0.5899 0.3965 

 S-S UD 1.1752 0.6180 0.4162 1.1363 0.5976 0.4018 1.0995 0.5785 0.3886 

3 S-S FG 2.4953 1.3837 0.9434 2.4116 1.3394 0.9130 2.3315 1.2980 0.8849 

 S-S UD 2.4597 1.3605 0.9270 2.3757 1.3159 0.8964 2.2952 1.2740 0.8678 

1 C-C FG 0.6661 0.3528 0.2379 0.6443 0.3414 0.2300 0.6237 0.3309 0.2227 

 C-C UD 0.6557 0.3467 0.2337 0.6339 0.3353 0.2257 0.6131 0.3245 0.2183 

2 C-C FG 1.6884 0.9483 0.6483 1.6308 0.9177 0.6272 1.5753 0.8891 0.6078 

 C-C UD 1.6657 0.9327 0.6371 1.6078 0.9019 0.6159 1.5521 0.8729 0.5962 

3 C-C FG 3.0220 1.8026 1.2518 2.9148 1.7425 1.2115 2.8114 1.6881 1.1747 

 C-C UD 2.9874 1.7744 1.2308 2.8794 1.7140 1.1902 2.7758 1.6579 1.1529 

1 C-S FG 0.4781 0.2474 0.1660 0.4626 0.2391 0.1599 0.4482 0.2316 0.1547 

 C-S UD 0.4702 0.2430 0.1630 0.4547 0.2347 0.1596 0.4400 0.2270 0.1515 

2 C-S FG 1.4468 0.7860 0.5331 1.3987 0.7607 0.5156 1.3529 0.7372 0.4995 

 C-S UD 1.4254 0.7727 0.5238 1.3772 0.7472 0.5061 1.3311 0.7234 0.4898 

3 C-S FG 2.7758 1.5962 1.0983 2.6799 1.5446 1.0629 2.5874 1.4961 1.0301 

 C-S UD 2.7397 1.5703 1.0795 2.6438 1.5184 1.0439 2.5510 1.4694 1.0107 

 

 

is changed with the following values: hc/hf=8, 6, 4. The natural frequencies with respect to the 

effect of initial thermal environment are presented in Tables 8-10. Table 8 and Fig. 2 present the  
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Fig. 3 First three natural frequencies of C-C, S-S and C-S sandwich beams with CNTRC face sheets 

with different slenderness ratios 
 

 
Fig. 4 First three natural frequencies of C-C, S-S and C-S sandwich beams with CNTRC face sheets 

with different core-to-face thickness ratio 
 

 

first three natural frequencies of C-C, S-S and C-S sandwich beams with CNTRC face sheets with 

different CNT volume fractions V
*
cn.  

The core-to-face sheet thickness ratio and the slenderness ratio are kept unchanged at hc/hf=8 

and L/h=20, respectively. It is observed that the natural frequency of the sandwich beam increases 

with an increase in the CNT volume fraction V
*
cn but decreases as the temperature increases. The 

C-C sandwich beam has a higher natural frequency than the same C-S beam and the C-S beam 

higher than S-S one. Furthermore, it is observed that the natural frequencies of the sandwich beam 

with UD-CNTRC face sheets is also lower than those of the beam with FG-CNTRC face sheets. 

This is because the sandwich beam with UD-CNTRC face sheets has a lower stiffness than the 

beam with FG-CNTRC face sheets.  

Table 9 and Fig. 3 present the first three natural frequencies of C-C, S-S and C-S sandwich 

beams with CNTRC face sheets but with different slenderness ratio L/h. The core-to-face sheet 

thickness ratio and the CNT volume fraction are kept unchanged at hc/hf=8 and V
*

cn=0.17,  
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Table 10 Dimensionless first three natural frequencies of sandwich beams with FG-CNTRC face sheets and 

various values of  hc/hf (L/h=20, V
*

cn=0.17) 

 

 

respectively. It is observed that the natural frequency of the sandwich beam decreases with an 

increase in the slenderness ratio but decreases as the temperature increases. The C-C sandwich 

beam has a higher natural frequency than the same C-S beam and the C-S beam higher than S-S 

one. Furthermore, it is observed that the natural frequencies of the sandwich beam with UD-

CNTRC face sheets is also lower than that of the beam with FG-CNTRC face sheets. This is 

because the sandwich beam with UD-CNTRC face sheets has a lower stiffness than the beam with 

FG-CNTRC face sheets.  

Table 10 and Fig. 4, present the first three natural frequencies of C-C, S-S and C-S sandwich 

beams with CNTRC face sheets but with different core-to-face thickness ratio hc/hf. The 

slenderness ratio and the CNT volume fraction are kept unchanged at L/h=20 and V
*
cn=0.17, 

respectively. It is observed that the natural frequency of the sandwich beam increases with an 

increase in the core-to-face thickness ratio but decreases as the temperature increases. The C-C 

sandwich beam has a higher natural frequency than the same C-S beam and the C-S beam higher 

than S-S one. Furthermore, it is observed that the natural frequencies of the sandwich beam with 

UD-CNTRC face sheets is also lower than that of the beam with FG-CNTRC face sheets. This is 

because the sandwich beam with UD-CNTRC face sheets has a lower stiffness than the beam with 

FG-CNTRC face sheets.  
 

 

7. Conclusions  

   ΔT=0 ΔT=200 ΔT=400 

Mode B.S.  hc/hf hc/hf hc/hf 

   8 6 4 8 6 4 8 6 4 

1 S-S FG 0.1595 0.1661 0.1779 0.1538 0.1607 0.1729 0.1487 0.1560 0.1686 

 S-S UD 0.1566 0.1617 0.1703 0.1509 0.1562 0.1651 0.1457 0.1513 0.1606 

2 S-S FG 0.6289 0.6549 0.7016 0.6086 0.6362 0.6849 0.5899 0.6194 0.6708 

 S-S UD 0.6180 0.6380 0.6721 0.5976 0.6191 0.6553 0.5785 0.6020 0.6408 

3 S-S FG 1.3837 1.4406 1.5427 1.3394 1.3998 1.5065 1.2980 1.3629 1.4756 

 S-S UD 1.3605 1.4047 1.4803 1.3159 1.3636 1.4440 1.2740 1.3262 1.4126 

1 C-C FG 0.3528 0.3673 0.3934 0.3414 0.3568 0.3840 0.3309 0.3474 0.3760 

 C-C UD 0.3467 0.3579 0.3770 0.3353 0.3473 0.3675 0.3245 0.3377 0.3594 

2 C-C FG 0.9483 0.9870 1.0564 0.9177 0.9587 1.0313 0.8891 0.9331 1.0097 

 C-C UD 0.9327 0.9628 1.0143 0.9019 0.9344 0.9892 0.8729 0.9084 0.9673 

3 C-C FG 1.8026 1.8741 2.0047 1.7425 1.8210 1.9575 1.6881 1.7710 1.9152 

 C-C UD 1.7744 1.8304 1.9290 1.7140 1.7772 1.8819 1.6579 1.7268 1.8394 

1 C-S FG 0.2474 0.2575 0.2759 0.2391 0.2499 0.2689 0.2316 0.2431 0.2631 

 C-S UD 0.2430 0.2508 0.2642 0.2347 0.2431 0.2572 0.2270 0.2361 0.2511 

2 C-S FG 0.7860 0.8183 0.8762 0.7607 0.7949 0.8555 0.7372 0.7740 0.8379 

 C-S UD 0.7727 0.7976 0.8404 0.7472 0.7741 0.8195 0.7234 0.7528 0.8015 

3 C-S FG 1.5962 1.6613 1.7781 1.5446 1.6136 1.7357 1.4961 1.5703 1.6992 

 C-S UD 1.5703 1.6212 1.7085 1.5184 1.5733 1.6661 1.4694 1.5295 1.6292 
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Thermo-mechanical vibration characteristics of sandwich beams with CNTRC face sheets have 

been examined based on the Timoshenko beam theory and semi analytical DTM. The effects of 

CNT volume fraction, core-to-face sheet thickness ratio, slenderness ratio, and end supporting 

conditions on the free vibration behaviors of stiff-cored sandwich beams with CNTRC face sheets 

with respect to uniform temperature change revealed through a parametric study. Numerical results 

show that CNT volume fraction, end supporting conditions, and slenderness ratio have a 

significant influence on the natural frequencies, whereas the effects of temperature change and 

core-to-face sheet thickness ratio is much less pronounced. The natural frequencies of the 

sandwich beam decrease with an increase in temperature change, core-to-face and slenderness 

ratio, but they increase with an increase in CNT volume fraction. The numerical results also point 

out that the sandwich beam with UD-CNTRC face sheets has lower vibration performances than 

FG-CNTRC the beam with face sheets. 
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