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Abstract.  During the last decades, Pendulum Bearings with one or more concave sliding surfaces have 

been dominating bridge structures. For bridges with relative small lengths, the use of classical pendulum 

bearings could be a simple and cheaper solution. This work attempts to investigate the effectiveness of such 

a system, and especially its behavior for the case of a seismic excitation. The results obtained have shown 

that the classical pendulum bearings are very effective, mainly for bridges with short or intermediate length. 
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1. Introduction 
 

Although considerable progress has been made in earthquake engineering towards the end of 

last century, catastrophic bridge failure examples are found wherever large-scale earthquakes 

occur.  

In the last years, besides the use of multilayer elastomeric isolators, an alternative solution has 

been developed: the friction pendulum bearing systems, taking advantage of a different approach 

in contrast to the friction systems. 

Among the structures, bridges are vulnerable when subjected to severe earthquakes. Bridge 

structural damages occur primarily in the piers, which may in turn result in collapse of the bridge 

spans. Although the ductility design concept has been widely accepted for seismic design of 

structures in engineering practice, this may not be appropriate for bridges since they are short of 

structural redundancy by nature. Nevertheless, ultimate strength design does not seem to work for 

bridge structures as often the piers are found to fail in shear rather than flexure. The effort on 

protection of bridges against earthquakes should therefore be focused on minimizing the forces to 

be carried by the piers, in particular the shear forces. Although rubber bearings have been 

extensively used in base isolation systems, sliding bearings have found more and more 

applications in recent years due to economical reasons. 

Zayas et al. (1987) conducted several experimental tests on a friction pendulum (FPS) 

earthquake resisting system. Kawamura et al. (1988) studied a sliding-type base isolation system 

identifying its composition and element properties. Buckle and Mayes (1990) presented a review  
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on seismic isolation and performance of structures through practical applications. Constantinou et 

al. (1993) presented an experimental and analytical study of a friction pendulum system (FPS) for 

sliding seismic isolation systems of bridges. Kim and Yun (2007) studied the seismic response 

characteristics of bridges using double concave friction pendulum bearings with tri-linear 

behavior. Marin-Artieda et al. (2009) presented an experimental study of friction pendulum 

bearing for bridge applications. Gao and Yuan (2014) presented a seismic response analysis of 

cable-sliding friction pendulum bearings in curved girder bridges. 

Dynamics of sliding structures is a highly non-linear problem due to friction mechanism. 

Analytical solutions are complicated and restricted to harmonic motions for systems with no more 

than two degrees of freedom under idealized conditions as shown in the works of Westermo and 

Udwadia (1983) and Constantinou et al. (1993). More realistic transient responses to isolating 

sliding systems can be obtained only numerically. 

Many numerical tests on a rigid frame model were conducted by Mosqueda et al. (2004). 

Khoshnoudian and Hagdoust (2009) showed that the interaction between the stiffness of the two 

horizontal directions reduces structural shear, and that the vertical component of an earthquake 

considerably affect the lateral response of the bridge. 

It is clear, that in the last years, the protection of bridges against earthquakes is focused on the 

use of rubber bearings and sliding bearings, while the old classical pendulum rolling bearings are 

practically abandoned. One must mention at this point the works by Guo et al. (2009), Madhekar 

and Jangid (2010) and Cheng et al. (2010) where viscous dampers are employed as base isolator 

systems in bridges. Yang et al. (2011) presented an experimental study with dampers on 

suspension bridges, while Moliner et al. (2012) studied the retrofit of an existing railway bridge 

with viscoelastic dampers. The effect of tuned mass dampers and other semi-active systems on the 

behavior of bridges are also presented in the works of Daniel et al. (2012), Maddaloni et al. 

(2013), Wu et al. (2014) and Casalotti et al. (2014). 

The present work attempts to investigate the effectiveness of a classical rolling pendulum 

bearing (CPRB) system and especially, its behavior for the case of a seismic excitation. The CPRB 

solution with different forms (see Fig. 1) was described, patented and finally used by Touaillon 

(1870). 

 

 
2. Introductory concepts 
 

2.1 The classical pendulum rolling bearing (C.P.R.B.) 
 

Let us consider a C.P.R.B. isolator with one concave rolling like the one shown in Fig. 1(a). 

 

 

 

(a)                                             (b)                                                               (c) 
 

Fig. 1 The use of a CPRB with one, two and three concaves 
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Fig. 2 Kinematics of a C.P.R.B. with one concave 

 

 

For angles φ up to ~15
o
 (0.2618 rad), which is a usual limit-value of the maximum 

displacement of a friction isolators, it is tanφ-sinφ=0.009<<1. 

Therefore, one can set 

1cos

sintan




                                                           (1) 

Analyzing the weight G into the components F and V, the following relation F=G sinφ is valid, 

or according to Fig. 2 

R
GF i                                                                (2) 

This mechanism acts as damper through the forces F (Fig. 2) that are developed because of the 

weight G. The friction forces, due to rolling friction, can be neglected, given that the rolling 

friction coefficient (for a steel ball or a cylinder rolling on steel), is up to 0.004. On the other hand, 

the angle of the friction cone amounts up to 0.23°, which means a very small static friction. 

It is obvious that the possibilities of such bearings are limited due to their limited strength and 

therefore, they can be applied on bridges with total length up to 70 or 80 meters. 

 
2.2 The bridge 

 
Let us consider a bridge under earthquake forces but without live loads resting on F.P.B. 

isolators. The total lateral displacement of an arbitrary point A(x) at position x along the length of 

the bridge is given by the following relation (see Fig. 3) 

)t,x()t()t(f)t,x( oi                                                  (3) 

where f(t) is the displacement of the foundation due to earthquake, υi(t) is the displacement of the 

bridge support from the isolator’s axis, and υο(x,t) is the elastic deformation of the bridge at point 

A(x) due to bending.  
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Considering for example that each edge of the bridge is based on four supports (see Fig. 3) and 

under condition of a non-deformable cross-section, the total acting forces are 
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Thus, on each extreme support V1, it will be 
8

gm
Vi


 , and since it is V1=3V2 and 

V1+V2∙b/3=H∙e/2, one finally has 
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Fig. 3 Displacement of a point A on the bridge 
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Fig. 4 Reaction forces developing at the supports 
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Therefore, the forces acting on Support 1 will be 
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where e is the distance between the gravity center and the isolator. Similarly, for a bridge based on 

two isolators at each end, it will be 
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3. The governing equations of motion 
 

The divergence forces (i.e., the inertia forces caused by an earthquake) are due to the total 

displacement of the bridge and thus, they will be equal to 

 





0

oi

0

dx)f(mdxmFe                                             (7) 

The above forces must be equilibrated by the restoring forces Gυi/R, while for values of angle 

φ<15°,
 
the following equation is valid 

0
R

Gdxm i

0







                                                       (8a) 

On the other hand, the equation of motion of the bridge is 0mcIE z    , which due to 

Eq. (3) becomes 

iioooz mcfmfcmcIE                                       (8b) 

Solution of the above system of Eqs. (8a) and (8b) gives the unknowns υo(x,t) and υi(t). The 

elastic displacement υo(x,t) can be expressed as follows 




  )t()x()t,x(o                                                   (9) 

where Ψρ(x) are the shape functions of the bridge for lateral displacements and Φρ(t) are time 

functions under determination. Introducing Eq. (9) into Eqs. (8a) and (8b), because of Eq. (3), and 

taking into account that Ψρ(x) satisfy the equation of free motion, one obtains after some 

manipulations the following system of equations of motion 
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From the above system of Eqs. (10a) and (10b), one can determine the unknown functions υi(t) 

and Φρ(t). 

 

 

4. Solution of the problem 
 

In order to solve the above system, the Laplace transformation is employed. Thus, by setting 
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with initial conditions 

0)0(f)0()0( i                                         (12a,b,c) 

Eqs. (10a) and (10b) become as follows 





















































 











nto1:with

0UppU
m

c
FppF

m

c

dx

dx

p
m

c
p

0FpUpU
R

g
dx)x(p

i
2

i
2

0

2

022

2
i

2
i

0

2










              (13a,b) 

Solution of the above system of Eq. (13) gives the unknowns Ui(p) and φρ(p). 
Therefore, it will be 

)p(UL)t(,)p(L)t( i
1

i
1 


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                                       (14a,b) 

and from the above linear system one obtains the unknowns φρ(p) and Ui(p) under the form 

)p(Q
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)p(




  , where Nρ(p) and Qρ(p) are polynomials with respect to p, where Qρ(p) is of 

132



 

 

 

 

 

 

Effectiveness of classical rolling pendulum bearings 

higher order than Nρ(p). Hence, Heaviside’s rule can be applied leading finally to the following 

expression for Фρ(t): 
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, where pr are the roots of the 

polynomial Qr. 

 

 

5. Numerical examples and discussion 
 

5.1 The isolator 
 

Let us consider the CPRB shown in Fig. 5, which effectiveness is under investigation. At first, 

one has to comply with the following geometrical characteristics and limitations: 

• The diameter of the sphere (or cylinder) must be: d>h=R(1-cosφ), which for φ<15° gives 

d>0.034 R                                                        (15a) 

• The maximum displacement υi must be: υi<R∙sinφ or  

υi< 0.2588 R                                                     (15b) 

• Because of CPRB strength limitations, the maximum load that can be undertaken by such a 

mechanism is also limited. Therefore, a CPRB may have the form of Figs. 1(a), 1(b), 1(c), etc. 

This last solution of a rolling ball bearing with two or more concaves was described, patented and 

finally used by Jules Touaillon (1870). 

 

5.2 The bridge 
 

Let us consider next a single-span simply supported bridge with the following data: span length 

L=70.0 m, mass per unit length m=1500 kg/m, and cross-sectional moment of inertia Iz=2.0 m
2
. 

The first three eigenfrequencies are: ω1=10.66, ω2=95.92, and ω3=266.45 sec
-1

. The bridge has 

a cross-section like the one shown in Fig. 3, with width b=7.5 and distance e=1.2 m. It has been 

found that for span lengths L>20 m, the eigenfrequencies of a bridge are affected by the radius R 

of the concave less than 1.5% (Westermo and Udwadia 1983). 

According to Eq. (5b), one obtains the reactions V1=15000 kN and V2=13500 kN, which 

correspond to a similar distress of the supports. 
 

 

 

φ φ 
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h

  

d

  

 

Fig. 5 A typical CPRB 
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5.3 The isolator’s and bridge’s behavior 
 

The ground motion considered, is given by the expression tsinekf t   , with k=0.05, 

β=0.20, and Ω=8 sec
-1 ( 2sec/m3 ), Ω=10 sec

-1
 ( 2sec/m9.4 ), Ω=12 sec

-1 ( 2sec/m98.6 ), 

where k is a constant that depends on the soil characteristics, β is the damping ratio and Ω is the 

frequency of the ground motions (Abrahamson et al. 1991), while three cases of earthquake 

acceleration are considered. The above ground motion is chosen as being an unfavorable one, 

since it corresponds to a near-source earthquake (occurring at distance less than 70 km from the 

bridge) and has the character of a shock.  

 

5.3.1 Motion in parallel with ox-axis 
In this case, it is υο=0, and the system (10a,b) reduces to the following equation 

0)t(f)t()R/g()t( ii                                                     (16) 

Applying the equations of §4, one obtains the plots of Figs. 6, 7 and 8. In these plots the 

displacements υi are drawn for various values of Ω (8, 10, 12) and R (0.6, 0.8, 1.2), respectively. 

Finally, in Fig. 9 the displacements υi are drawn for Ω=10 and various values of R (0.6, 5, 20). 

It is observed that the mechanism under study is effective, absorbing the motion with small 

displacements even for high earthquake’s accelerations (γ=7 m/sec
2
). 

 

 

1 2 3 4 5
t

-0.2

-0.1

0.1

0.2

vi

 

1 2 3 4 5
t

-0.2

-0.1

0.1

0.2

vi

 
Fig. 6 The displacement υi for R=0.6 m and Ω=8( 

__ ), Ω=10 ( _ _ ), Ω=12(- -) sec
-1

 

Fig. 7 The displacement υi for R=0.8m and Ω=8( 

__ ), Ω=10 ( _ _ ), Ω=12(- -) sec
-1
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Fig. 8 The displacement υi for R=1.2 m and Ω=8( 

__ ), Ω=10 ( _ _ ), Ω=12(- -) sec
-1

 

Fig. 9 The displacement υi for Ω=10 sec
-1 

and 

R=0.6 ( __ ), R=5(- -), R=20( _ _ ) m 
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Fig. 10 The displacements υi and υo for R=0.6 m and Ω=8( __ ), Ω=10 ( _ _ ), Ω=12(- -) sec
-1 
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Fig. 11 The displacements υi and υo for R=0.8 m and Ω=8( __ ), Ω=10 ( _ _ ), Ω=12(- -) sec
-1 
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Fig. 12 The displacements υi and υo for R=1.2 m and Ω=8( __ ), Ω=10 ( _ _ ), Ω=12(- -) sec

-1 
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Fig. 13 The displacements υi and υo for Ω=10 sec
-1

 and R=0.6 ( __ ), R=5( --- ), R=20 ( _ _ ) m 
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Fig. 14 Geometry of a cylindrical bearing 

 
 
5.3.2 Motion in parallel with oy-axis 
The plots of Figs. 10, 11, 12 and 13 show the same behavior as in the previous figures but for 

motion in parallel with oy-axis. 

It is observed that the studied mechanism of isolators is very effective, minimizing the 

deformations of the bridge υo (υo=0.32 m at x=L/2 without isolators, for γ=6.9 m/sec
2
). The 

decrease of the deformation υo amounts up to 93% for R=1.2 m and γ=6.9 m/sec
2
 and up to 87% 

for R=0.6 m and γ=6.9 m/sec
2
. 

 
 
6. Design of a C.R.P.B. device 
 

6.1 Bearing capacity 
 

Manufactures of ball bearings typically publish “LOAD RATINGS” for each bearing they 

produce. The methods used to calculate loads, is possible to vary from manufacturer to 

manufacturer. However, both ABMA and ISO have published standards related to load ratings. 

• ABMA std. 9-Load Ratings and Fatigue life for Ball Bearings 

• ABMA std. 12.1 and 12.2-Instrument Ball Bearings 

• ISO 76-Static Load Ratings 

• ISO 281-Dynamic Load Ratings and Rating Life. 

With regard to load ratings, one must take into account that static load ratings and dynamic 

load ratings are calculated on completely different ways and that there is no direct relationship to 

each other. 

The Basic Static Load Rating applies to bearings where motion does not occur or occurs only 

infrequently. The basic load ratings and calculation methods are based on methods described by 

the above mentioned ISO recommendations. 

As a standard of permissible static load, the basic load rating is specified as follows:  

• Maximum contact pressure at the contact point 4200 MPa (1 MPa=100 N/cm
2
).  
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Fig. 15 The required C.R.P.B. device 

 

 

• Total permanent deformation of the compressed zone can be, approximately, 1/10000
th
 of the 

rolling elementary diameter. 

• The basic load rating for stainless steel is 80% of that for standard bearing steel. 
According to the above rules, one can get the following (see also Fig. 14): 

4
2 102r
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ttancons)146.1(~rad020.0 o                                          (17.1) 

From the sketch of Fig. 14, it is obtained 

r
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Therefore, for a safe undertaking of a load V, the required length d of the cylinder of Fig. 14, 

can be determined by 
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6.2 Design of the required C.R.P.B. 
 

According to the results of §5, it is ascertained that the maximum displacements along both Ox 

and Oy axes are 















m2.1Rform25.0
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The distress of the supports is about 14000 kN or using four supports, one has 3500 kN for 

each support. 

If a C.R.P.B. with R=1.2 m is chosen, one must have D>0.034*R=0.041 m while the allowed 

maximum displacement is: 0.2588*R=0.31 m. 

Thus, a cylinder with D=7 cm is selected. From §6.one has cm07.05.3020.0r   and 

cm5.59
4200007.02

350000

2

V
d

per







  or 2 cylinders with 40 cm length each. 

The so-designed C.R.P.B. device (shown in Fig. 15) can undertake loads acting on both 

directions since the rolling cylinders operate along two vertical axes. 

 
 
7. Conclusions 
 

Based on the results of the CPRB model considered herein, one can draw the following 

conclusions: 

• The CPRB systems are effective for a wide variety of earthquakes.  

• For motions acting in parallel to O-x or O-y axes, the isolator’s displacements come up with a 

magnitude from 0.15 to 0.31 rad. These last values occur for seismic accelerations higher than 6.9 

m/sec
2
. 

• The decrease of the bridge’s oscillations can be in the order of 90-95%, e.g., for γ=6 m/sec
2
 it 

is υo=0.038 m when using CPRB, while it is υo=0.32 m without CPRB. 

• As the concave radius R increases the elastic displacement υo decreases and the displacement 

υi of the device increases, respectively. This last displacement reaches unacceptable values for R>2 

m.  
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