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Abstract.  We propose a heat jet approach for a two-dimensional square lattice with nearest 

neighbouring harmonic interaction. First, we design a two-way matching boundary condition that 

linearly relates the displacement and velocity at atoms near the boundary, and a suitable input in terms 

of given incoming wave modes. Then a phonon representation for finite temperature lattice motion is 

adopted. The proposed approach is simple and compact. Numerical tests validate the effectiveness of 

the boundary condition in reflection suppression for outgoing waves. It maintains target temperature for 

the lattice, with expected kinetic energy distribution and heat flux. Moreover, its linear nature facilitates 

reliable finite temperature atomic simulations with a correct description for non-thermal motions. 
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1. Introduction 
 

Atomic simulations have become an indispensable tool in physics, mechanics, nano-materials 

and engineering. Although the computing power keeps growing, in most real applications it is still 

not adequate for a complete atomic resolution of the physics. Moreover, even one can afford such 

numerical expenses, the ultimate goal of computational sciences is an understanding of the 

underlying system out of big data, rather than merely the production of such data by computers. 

Therefore, to properly characterize the physical problem, to correctly specify the mathematical 

settings, and to design appropriate algorithms become even more important than the early days 

when the computable system sizes were much smaller.  

Finite temperature atomic simulations pose subtle issues in this regard, even for seemingly 

simple crystalline solids. On the one hand, statistical mechanics, particularly the non-equilibrium 

theory, is based on a probabilistic description of the underlying microscopic system. It faces 

substantial challenges when we really delve into a microscopic sublattice, namely, when the 

number of atoms becomes moderate. In such a subsystem, even the definition of thermal physical 

quantities can be questionable. Nevertheless, one still borrows concepts emerged from large 

systems and clarifies the limitations and makes modifications, e.g., see (Lepri et al. 2003) and 

references therein. On the other hand, it is well known that many heat transport properties and 
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mechanical properties of solids depend on temperature. Hence, it is important to take thermal 

fluctuations and non-thermal motions into consideration simultaneously in atomic simulations. 

To realize a heat-bath or thermostat for a lattice at target temperature, there are various 

methods, e.g., (Anderson et al. 1980, Berendsen et al. 1984, Nosé 1984 and Hoover 1985). The 

most popular ways include deterministic e.g., (Nosé 1984 and Hoover 1985) and Langevin 

stochastic heat bath (Bussi and Parrinello 2007, Dhar 2008). A Nosé-Hoover heat bath imposes a 

nonlinear feed-back to the atomic system after evaluating the deviation of the system average 

kinetic energy from the target temperature. A Langevin stochastic heat bath takes a delicate 

balance between random force and damping according to the fluctuation-dissipation theorem. One 

either connects all atoms with a heat bath, or several atoms near the boundaries with it. For the 

former, a non-thermal motion in a finite temperature simulation is accounted in the system kinetic 

energy. This leads to an overestimated transient temperature, and consequently an over-damping 

for the non-thermal motion. We remark that when the thermal fluctuations dominate and the 

system size is big enough, such overestimation and over-damping may be ignored. For the latter, 

the overestimation of temperature and over-damping for non-thermal motion do not occur. 

However, when the non-thermal motion propagates towards the boundaries, it is likely reflected 

back, unless special treatments are designed for the boundaries. 

There are extensive works using the heat baths to explore thermal conduction in one-

dimensional atomic chains with the FPU-β potential (Lepri et al. 2003, Xiong et al. 2014), the 

Toda potential (Hatano 1999), the Frenkel-Kontorova potential (Ai and Hu 2011), the on-site 

potential (Giardinà et al. 2000), asymmetric potentials (Zhong et al. 2012, Savin and Kosevich 

2014) and with mass disorder (Dhar 2008, Dhar et al. 2011), etc. In contrast, there are fewer 

results for two-dimensional lattices, due to computational costs and challenging numerical issues 

(Jackson and Mistriotis 1989, Lippi and Livi 2000, Yang et al. 2006, Xiong et al. 2010, Nishiguchi 

et al. 1992, Barik 2006, Yang 2002). Different from traditional heat baths, Karpov et al. proposed 

a phonon heat bath for harmonic chain and triangular lattice (Karpov et al. 2007). Without 

modifying the dynamic equations for interior atoms, they suggested to adopt a phonon 

representation for heat source and inject it via time history boundary condition. It allows non-

thermal motions added on the thermal fluctuations. However, the time history kernel treatment is 

rather expensive, and therefore not practical for atomic simulations at finite temperature in general. 

We have proposed a heat jet approach for the one-dimensional atomic chain (Tang and Liu 2015). 

The main difference lies in the boundary treatment. We designed a linear two-way boundary 

condition that simultaneously suppresses reflection for outgoing waves and allows injection of 

incoming waves. The incoming waves maintain thermal fluctuations in the computational sub-

chain, again in terms of a phonon representation. We demonstrated that this approach actually 

applies to weakly nonlinear chains, or at moderately high temperature. 

In this paper, we extend the heat jet approach to the out-of-plane motion in a linear square 

lattice. Again the key issue is the design of an effective two-way boundary condition that fulfills 

reflection suppression and source wave injection. Then adopting a phonon representation for the 

source term, we realise a thermostat suitable for finite temperature atomic simulations. 

In the rest of this paper, we first introduce the governing equations, and formulate a matching 

boundary condition. Based on this condition, we design a two-way boundary treatment. Heat 

source is then described. In Section 3, we discuss thermodynamics quantities in atomic settings. 

Numerical illustrations are then presented in Section 4. We make some concluding remarks in 

Section 5. 
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Fig. 1 Square lattice with nearest neighboring interaction 

 
 
2. Formulation of heat jet approach for square lattice 
 

In this section, we first describe the governing equation for a square lattice with harmonic 

interaction potential. Then we formulate a matching boundary condition that well suppresses 

spurious reflections, as well as incorporates wave inputs. With a heat source derived from a 

phonon representation of finite temperature atomic motion, we then obtain a close form of heat jet 

approach for atomic simulations at finite temperature. 

 

2.1 Lattice dynamics model 
 

We consider out-of-plane motion in an infinite square lattice of equal-mass atoms. See Fig. 1. 

Under nearest neighbouring interaction with harmonic potential 2( )
2


k

V r r , the Hamiltonian is 

2

,

1, , , 1 ,[ ( ) ( )]
2

 


        

m n

m n m n m n m n

m n

p
H V u u V u u

M
 (1) 

Here, M is the mass, k is the elastic constant, 
,

m nu  is the displacement of (m, n) atom away from 

its equilibrium position, and 
, ,
 m n m np Mu  is its momentum. 

Let the lattice constant be a . We define dimensionless quantities 

2

, , , ,1, / , / / , / , / .          m n m n m n m na u u a t t M k p p a Mk H H a k  (2) 

The rescaled Hamiltonian reads 

H

2

,

1, , , 1 ,[ ( ) ( )]
2

 
     

m n

m n m n m n m n

m n

p
H V u u V u u  (3) 

Accordingly, the non-dimensional Newton equation reads 

, 1, 1, , 1 , 1 ,4 .       m n m n m n m n m n m nu u u u u u  (4) 
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Fig. 2 Dispersion relation of the square lattice in the first Brillouin zone 

 

 
Fig. 3 Schematic plot of atomic simulations for square lattice 

 

 

A monochromatic wave with wave vector ( , )p q   takes the form of 
( )

, ~
 p qi t m n

m nu e
  

. 

Substituting this into the Newton equation, we find the dispersion relation 

2 2( , ) 2 sin sin
2 2

 
p q

p q

 
    (5) 

Due to periodicity, we restrict the wave vector ( , )p q   in the first Brillouin zone 

[ , ] [ , ]      . See Fig. 2. 

 

2.2 Matching boundary condition 

 
To alleviate the immense load for computing the full atomic dynamics, one selects a much 

smaller domain for numerical simulations. This can be either an atomic simulation, or a multiscale 

simulation. The latter involves dynamical information exchange across the atomic scale and a 

coarse scale. At zero temperature, subdomain atomic simulations may often be performed with an 

artificial boundary treatment only, to avoid spurious reflections. In contrast, for a finite  
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Heat jet approach for finite temperature atomic simulations... 

 
Fig. 4 Schematic plot of the left matching boundary condition 

 

 

temperature simulation, thermal motion must be injected in a suitable way to maintain fluctuations 

in the interior domain. See Fig. 3. To be specific, we consider a rectangular computational domain 

containing Nx×Ny atoms. We now design an accurate boundary treatment, which effectively 

suppresses spurious wave reflections for outgoing waves, meanwhile allows incoming waves 

being freely injected into the computational domain. 

We start with a semi-infinite sub-lattice as the computational domain, namely, m>1 as shown in 

the left subplot of Fig. 4. We first assume all atoms in the rest domain (m≤0) to be at equilibrium 

initially, and construct an artificial boundary condition to reproduce the correct dynamics inside 

the numerical subdomain. It amounts to make all outgoing waves passing through the numerical 

boundary without reflection. As one cannot afford the immense numerical cost for imposing an 

exact boundary condition in terms of the time history kernel treatment (Karpov et al. 2007, Pang 

and Tang 2011), we design instead an accurate boundary condition (Wang and Tang 2013), which 

is local in both space and time. In this way we considerably reduce the numerical cost while retain 

decent reflection suppression. 

We discover by try and error that more atoms selected in the transverse direction helps 

absorbing incoming waves of high frequency. Meanwhile, adding atoms in the longitudinal 

direction helps absorbing incoming waves with large incident angle. Accordingly, we construct a 

matching boundary condition by relating the displacements and velocities near the boundary in a 

linear form. 

5 5

,0 , 2,1 2, 1 2, 1 2, 1 ,0 , 2,1 2, 1 2, 1 2, 1

1 1

0.     

 

      m m n n n m m n n n

m m

c u c u c u b u b u b u  (6) 

Considering the symmetry and linearity, we take 2,1 2, 1c c , 2,1 2, 1b b , and 1,0 1c . 

Substituting the wave form 
( )

, ~
 p qi t m n

m nu e
  

 into Eq. (6) and discarding a common factor

( ) p qi t n
e

  
, we define a matching residual function 
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5
( 1) ( ) ( )

,0 2,1

1

5
( 1) ( ) ( )

,0 2,1

1

( , ) ( , ) ( )

( ).

  



  



 
    

 

  





p p q p q

p p q p q

i m i i

p q p q m

m

i m i i

m

m

i c e c e e

b e b e e

    

    

    

 (7) 

For a normal incident wave with ξq=0, the matching residual function may be put as 

5 5
( 1) ( 1)

,0 2,1 ,0 2,1

1 1

( ,0) ( ,0) 2 2 .
 

 

 
     

 
 p p p pi m i i m i

p p m m

m m

i c e c e b e b e
   

    (8) 

Noticing that

2

3 3
( )

( ) ( ), 1 ( )
2

     pi p

p p p p p

i
i i O e i O

 
      , we perform Taylor expansions 

and require 
2( ,0) ( ) p po  . This yields the following algebraic equations. 

5

,0 2,1

1

2 0,


   m

m

b b  (9) 

5 5

,0 2,1 ,0 2,1

1 1

2 ( 1) 2 0,
 

     m m

m m

c c m b b  (10) 

25 5

,0 2,1 ,0 2,1

1 1

( 1)
( 1) 2 0.

2 


     m m

m m

m
m c c b b  (11) 

Next, we may specify a certain wave vector ( , ) 

p q   and require ( , ) 0  p q  . This means 

transparent wave propagation across the boundary at such a wave vector, and mathematically leads 

to the following equations, 

5

,0 2,1

1

5

,0 2,1

1

( , )sin( ( 1)) ( , )(sin( ) sin( ))

cos( ( 1)) (cos( ) cos( )) 0,

        



    



    

      





m p q p p q p q p q

m

m p p q p q

m

c m c

b m b

          

    

 (12) 

5

,0 2,1

1

5

,0 2,1

1

( , ) cos( ( 1)) ( , )(cos( ) cos( ))

sin( ( 1)) (sin( ) sin( )) 0.

        



    



    

      





m p q p p q p q p q

m

m p p q p q

m

c m c

b m b

          

    

 (13) 

The choice of ( , ) 

p q   in Eq. (12) and Eq. (13) determines the overall quality of the boundary 

condition. We select four vectors, namely, (0.5,0), (1.5,0), (0.5,0.5) and (1.5,1.5), as shown by 

solid triangles in Fig. 5. 
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Fig. 5 The solid triangles represent wave vector (0, 0) for the long wave limit, and the selected wave 

vectors ( , ) 

p q  . The curves are the contour lines for the dispersion relation 

 

 

Solving the Eqs. (9)-(11) for the long wave limit, and Eqs. (12)-(13) for the four selected wave 

vectors, we get the following coefficients 

1,0 2,0 3,0 4,0 5,0

2,1 2, 1

1.0000, 3.3842, 5.7937, 0.0057, 0.5930,

0.6733,

c c c c c

c c 

      

 
 

1,0 2,0 3,0 4,0 5,0

2,1 2, 1

3.8274, 8.5111, 4.5064, 6.3485, 1.6292,

2.2354.

      

  

b b b b b

b b
 

To check the quality for this set of parameters, we compute the reflection coefficient. 

Substituting the wave form 
( ) ( )

, ( , )
   

 p q p qi t m n i t m n

m n p qu e R e
     

   into Eq. (6), the reflection 

coefficient reads 

( , )
( , ) .

( , )


 

 

p q

p q

p q

R
 

 
 

 (14) 

As seen from Fig. 6, the proposed matching boundary condition suppresses reflections in a 

broad band, also effective for incoming waves with big wave number and large incident angle. The 

reflection coefficient is less than 1 over the whole right-half first Brillouin zone, indicating 

stability. We further remark that the symmetry consideration in taking 2,1 2, 1c c  and 2,1 2, 1b b   
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Fig. 6 Reflection coefficient of the matching boundary condition 

 

 

leads to symmetric reflection suppression effects, as it is easy to show that R(ξp,ξq)= R(ξp,−ξq). In 

another word, for waves at incident angles a and -a, the proposed matching boundary condition 

performs exactly the same. See the two lower right subplots of Fig. 6 for the reflection coefficient 

along ξp=ξq and ξp=−ξq. We further notice that extremely low reflection is reached at ξp=0.5, 1.5, as 

a consequence of our design for the boundary conditions. 

We remark that the reflection coefficient is continuous with respect to the wave vector, except 

at the long wave limit. This is due to the fact that by our design Δ(0,0)=0, which makes the 

reflection coefficient being indefinite of the so-called 0/0 type. To circumvent the difficulty, we let 

(ξp,ξq)=(ξ cos a, ξ sin a). Using the L’Hospital’s rule for ξ→0
+
, we find that 

5 5

,0 2,1 ,0 2,1

1 1

5 50

,0 2,1 ,0 2,1

1 1

2 cos ( 1) 2cos

lim ( cos , sin ) .

2 cos ( 1) 2cos


 



 

 
    

  
 

    
 

 

 

m m

m m

m m

m m

c c m b b

R

c c m b b


 

   

 

 (15) 

The dependency on the angle a may be observed from the different values of reflection 

coefficient in the right subplots of Fig. 6 at ξp=0. Actually it may be proved that for a normal 

incidence, in the long wave limit have different values as |R(ξp,0)| tends to 0, due to the 

requirement on coefficients in Eq. (10). 

If a given incoming wave component 
(1)

, ( )m nw t  is injected into the computational domain (Tang 

2010), we apply the above matching boundary condition to the pure outgoing component 
(1)

, ,( ) ( )m n m nu t w t , and obtain 
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1, 2,0 2, 3,0 3, 4,0 4, 5,0 5, 2,1 2, 1 2, 1

(1)

1,0 1, 2,0 2, 3,0 3, 4,0 4, 5,0 5, 2,1 2, 1 2, 1

( )

( ) ( ).

 

 

      

       

n n n n n n n

n n n n n n n n

u c u c u c u c u c u u

b u b u b u b u b u b u u f t
 (16) 

Here the source term is expressed in terms of 
(1)

, ( )m nw t , 

(1) (1) (1) (1) (1) (1) (1) (1)

1, 2,0 2, 3,0 3, 4,0 4, 5,0 5, 2,1 2, 1 2, 1

(1) (1) (1) (1) (1) (1) (1)

1,0 1, 2,0 1, 3,0 3, 4,0 4, 5,0 5, 2,1 2, 1 2, 1

( ) ( )

( ).

 

 

      

      

n n n n n n n n

n n n n n n n

f t w c w c w c w c w c w w

b w b w b w b w b w b w w
 (17) 

In the same manner, we treat the other three boundaries. On the right boundary, we take 

5

, ,0 1 , 2,1 1, 1 1, 1

2

5
(2)

,0 1 , 2,1 1, 1 1, 1

1

( )

( ) ( ),

     



     



  





  





x x x x

x x x

N n m N m n N n N n

m

m N m n N n N n n

m

u c u c u u

b u b u u f t

 (18) 

5
(2) (2) (2) (2)

,0 1 , 2,1 1, 1 1, 1

1

5
(2) (2) (2)

,0 1 , 2,1 1, 1 1, 1

1

( ) ( )

( ).

     



     



  

  





x x x

x x x

n m N m n N n N n

m

m N m n N n N n

m

f t c w c w w

b w b w w

 (19) 

On the bottom boundary, we take 

5

,1 ,0 , 2,1 1,2 1,2

2

5
(3)

,0 , 2,1 1,2 1,2

1

( )

( ) ( ),

 



 



   

   





m n m n m m

n

n m n m m m

n

u c u c u u

b u b u u f t

 (20) 

5
(3) (3) (3) (3)

,0 , 2,1 1,2 1,2

1

5
(3) (3) (3)

,0 , 2,1 1,2 1,2

1

( ) ( )

( ).

 



 



  

  





m m m n m m

n

n m n m m

n

f t c w c w w

b w b w w

 (21) 

On the top boundary, we take 

5

, ,0 , 1 2,1 1, 1 1, 1

2

5
(4)

,0 , 1 2,1 1, 1 1, 1

1

( )

( ) ( ),

     



     



   

   





y y y y

y y y

m N n m N n m N m N

n

n m N n m N m N m

n

u c u c u u

b u b u u f t

 (22) 
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5
(4) (4) (4) (4)

,0 , 1 2,1 1, 1 1, 1

1

5
(4) (4) (4)

,0 , 1 2,1 1, 1 1, 1

1

( ) ( )
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     



     



  

  





y y y

y y y

m n m N n m N m N

n

n m N n m N m N

n

f t c w c w w

b w b w w

 (23) 

 

2.3 Heat source via phonon representation 
 

For the entire lattice, a propagating lattice wave is a combination of Fourier modes 

11 11 12 12

, , , , , , ,

,

21 21 22 22

, , , , , ,

( ) cos( ) cos( )

cos( ) cos( ).

       

       

exact

m n p q p q p q p q p q p q p q p q

p q

p q p q p q p q p q p q p q p q

u t a t m n a t m n

a t m n a t m n

       

       
 (24) 

Here the wave vector components ξp, ξq∈[0, π], and the corresponding frequency is 

2 2

, 2 sin ( ) sin ( )
2 2

 
p q

p q

 
 . The amplitudes ,

ij

p qa  and phases ,

ij

p q  ( , 1,2i j ) are specified later. 

When restricted to the computational domain with Nx×Ny atoms, these waves are maintained 

under suitable inputs through the boundaries. Noticing the wave propagation direction (Tang and 

Liu 2015), we take the right-going modes to calculate the source term for the left boundary Eq. 

(17) 

(1) 11 11 12 12

, , , , , , ,

,

( ) cos( ) cos( ).       m n p q p q p q p q p q p q p q p q

p q

w t a t m n a t m n         (25) 

In a similar way, we take the left-going modes for the right boundary 

(2) 21 21 22 22

, , , , , , ,

,

( ) cos( ) cos( ).       m n p q p q p q p q p q p q p q p q

p q

w t a t m n a t m n         (26) 

We take the upward modes for the bottom boundary 

(3) 11 11 21 21

, , , , , , ,

,

( ) cos( ) cos( ).       m n p q p q p q p q p q p q p q p q

p q

w t a t m n a t m n         (27) 

We take the downward modes for the top boundary 

(4) 12 12 22 22

, , , , , , ,

,

( ) cos( ) cos( ).       m n p q p q p q p q p q p q p q p q

p q

w t a t m n a t m n         (28) 

Based on a phonon representation for finite temperature lattice motion (Karpov et al. 2007, 

Born 1954), we may confine , [ / 4,3 / 4]p q    . In numerical implementations, only discrete 

wave numbers are chosen, at a step size 
40

 


  for both p  and q . Let Nc count the number of 

different modes in the specified interval. The total number of the different modes for each 
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boundary equals to 2Nc. If the target temperature is T, we take amplitude 
, 2

,2
ij

p q

c p q

T
a

N 
 to 

realize equal energy distribution among all modes. Furthermore, , [0,2 ]ij

p q   are the random 

phases. 

Our formulation actually allows wave inputs at different temperature for each direction. For 

instance, if we take TL and TR for the right-going wave and left-going wave, respectively, the 

amplitudes are taken as 

1 2

, ,2 2

, ,

,
2 2

 j jL R
p q p q

c p q c p q

T T
a a

N N 
 (29) 

for j=1,2.  

 

 

3. Microscopic definitions of thermodynamic quantities 
 

Following (Lepri et al. 2003) and (Barik 2006), we define local temperature and heat flux for 

the square lattice. The local energy contributed by (m,n) atom is 

2

, , 1, , , 1,

, 1 , , , 1

1 1
( ) [ ( ) ( )

2 2

( ) ( )].

 

 

    

   

m n m n m n m n m n m n

m n m n m n m n

h t u V u u V u u

V u u V u u

 (30) 

The first term represents the kinetic energy, while the other terms represent the sum of half the 

pairwise potential energy. 

We define a time-dependent system temperature (average kinetic energy), 

2

,

1 1

1
( ) ( ).

 

  
yx

NN

m n

m nx y

T t u t
N N

 (31) 

When local equilibrium is reached, a local temperature may be computed from 

2

, ,

1
( ) .

 
c

t

m n m n
t

c

T u d
t t

   (32) 

Here tc is a proper truncation time, and t is big enough. The local temperature of m-th layer and 

n-th layer are respectively defined as 

, ,

1 1

1 1
, .

 

  
y x

N N

m m n n m n

n my x

T T T T
N N

 (33) 

Substituting the exact lattice motion Eq. (24) with amplitudes specified by Eq. (29) into Eq. 

(32), we get an exact expression for the local temperature, after some lengthy but straightforward 

calculations, 
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11 12 11 21

, , , , ,

,

11 22 12 21

, , , ,

12 22 21

, , ,

1
cos( 2 ) cos( 2 )

2 2

+ cos( 2 2 ) cos( 2 2 )

+ cos( 2 ) cos( 2

[
        

        

      

exact L R
m n L q p q p q L R p p q p q

p qc

L R p q p q p q L R p q p q p q

L R p p q p q R q p q p

T T
T T n T T m

N

T T m n T T m n

T T m T n

     

       

      22

, )]q

 (34) 

The temperature over the whole lattice is then naturally 
2


 L RT T

T . 

On the other hand, the local energy evolves according to 

,

1, , 1, , , 1, , 1,

, 1 , , 1 , , , 1 , , 1

1 1
( )( ) ( )( )

2 2

1 1
( )( ) ( )( ).

2 2

   

   

     

     

m n

m n m n m n m n m n m n m n m n

m n m n m n m n m n m n m n m n

dh
u u u u u u u u

dt

u u u u u u u u

 (35) 

We define a horizontal transient heat flux 

, , 1, , 1,

1
( ) ( ) ( ) ( ) ( ) ,

2
 

        
x

m n m n m n m n m nj t u t u t u t u t  (36) 

which represents the heat flow from (m, n) atom to (m+1,n) atom. Similarly, we define the vertical 

transient heat flux 

, , , 1 , , 1

1
( ) ( ) ( ) ( ) ( ) ,

2
 

        
y

m n m n m n m n m nj t u t u t u t u t  (37) 

which represents the heat flow from (m, n) atom to (m,n+1) atom. 

The heat flux vector is then 

, , ,( , ). x y

m n m n m nj j j  (38) 

A discrete version of its divergence reads 

, 1, , , 1

, .
  

   

x x y y

m n m n m n m nD

m n

j j j j
j

a a
 (39) 

This gives a conservation law for energy, 

, ,( ) 0.  D

m n m nh t j  (40) 

We further define the time average of heat flux 

, , , ,

1 1
( ) , ( ) . 

  
c c

t t
x x y y

m n m n m n m n
t t

c c

J j d J j d
t t t t

     (41) 
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According to the exact lattice motion, we can find exact expressions 

, 11 12

, , ,

, ,

21 22

, ,

sin
( ) cos( 2 )

2

cos( 2 ) ,

[

]

     

   


px exact

m n L R L q p q p q

p q c p q

R q p q p q

J T T T n
N

T n


  



  

 (42) 

and 

, 11 21

, , ,

, ,

12 22

, ,

sin
cos( 2 )

2

cos( 2 ) .

[

]

   

   


qy exact

m n L R p p q p q

p q c p q

L R p p q p q

J T T m
N

T T m


  



  

 (43) 

Finally, we define an integral for the horizontal heat flux of m-th layer to monitor the heating 

process more clearly, 

,
0

1

1
( ) ( ) .



 
yN

t
x x

m m n

ny

j t j d
N

   (44) 

 

 

4. Numerical tests 
 

In this section, we first verify reflection suppression effectiveness for the matching boundary 

conditions. Then we investigate the boundary inputs and the performance of the boundary 

treatments under such inputs. We perform atomic simulations for thermal fluctuations at finite 

temperature and analyze the kinetic energy distribution and heat flux. At last, we simulate atomic 

motion at finite temperature, with a non-thermal part injected upon a thermal equilibrated state. 

We take a computational domain with N=80×80 atoms and use the second order Runge-Kutta 

method at a time step size Δt=0.01. The details of initial value and boundary conditions are 

specified later on. 

 

4.1 Reflection suppression 
 

First, we take a Gaussian hump for initial displacement profile 

2 /100

, (0) 50 cos cos ,
2 40

 r

m n

r r
u e


 (45) 

with 

2 2 2( 40) ( 30) .   r m n  (46) 

The velocity is uniformly zero initially. This gives a symmetric profile centered at the (40,30) 

atom. The matching boundary conditions are applied to the four boundaries of the computational 

domain. As shown in Fig. 7, the hump propagates outward. At time t=30, the wave front reaches 

the boundaries and then vanishes gradually out of the computational domain without observable 

reflection. The subsystem reaches equilibrium shortly after t=70. 
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Fig. 7 Propagation of the Gaussian hump: (a) um,n(0); (b) um,n(10); (c) um,n(30); (d) um,n(50); (e) um,n(60); 

(f) um,n(70)  

 

  

  
Fig. 8 Gaussian hump: (a) u79,40(t); (b) u79,2(t); (c) 

79,40 79,40( ) ( ) exactu t u t ; (d) 
79,2 79,2( ) ( ) exactu t u t  
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Fig. 9 Normal incident wave from the left boundary: (a) vm,n(30); (b) vm,n(120); (c) vm,40(120); (d) um,40(120) 

 

 

To better illustrate the effectiveness, we depict two representative atoms. The (79,40) atom lies 

at the center of the left boundary. The other atom (79,2) lies at the lower right corner. In Fig. 8, We 

make a comparison with the reference solution, which is obtained from simulating a system large 

enough. The wave profiles are basically the same for the two atoms. The hump reaches corner with 

a delay, as it takes longer time to arrive. In the subplots (a) and (b), we observe that the numerical 

solution coincides fairly well with the reference solution for both atoms. This demonstrates the 

accuracy of the proposed boundary treatment. More careful check shows that the discrepancy is 

bigger for the corner atom in subplot (b), particularly at the peaks. This may be better observed 

from the difference between the numerical solution and exact solution in subplots (c) and (d). The 

differences are both quite small, indicating that the matching boundary condition proposed in this 

work well suppresses reflections. We observe that the difference in u79,2(t) is bigger than that in 

u79,40(t), which is due to the so-called corner reflections. Corner reflection is a subtle issue, and 

very expensive to resolve cleanly (Pang and Tang 2011). 

 

4.2 Input through the boundaries 
 

The two-way matching boundary conditions serve for two purposes, namely, to suppress 

reflections for outgoing waves and to allow injection of incoming ones. 

First, we put at the left boundary a monochromatic normal incident wave in the form of 

(1)

, ,

,

1
( ) cos( ) m n p q p

p q

w t t m 


 with wave vector (ξp, ξq)=(0.5,0), whereas no input at the right  
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Fig. 10 Oblique incident wave: (a) (ξp, ξq)=(0.5,0.5), 11 31

, ,p q p q   from the left and bottom boundaries; 

(b) (ξp, ξq)=(1,2), 11 31

, ,p q p q  from the left and bottom boundaries; (c) 2
( , ) ( , )

3 3
p q

 
   only from the 

left boundary 

 

 

boundary. To better clarify the quality for wave injection, we apply periodic boundary conditions 

at the top and bottom boundaries. All atoms are at equilibrium initially. 

As shown in Fig. 9, the monochromatic wave is injected from the left boundary, and propagates 

toward the right boundary. At t=120, the wave front has passed through the right boundary without 

observable reflection. Due to the periodic boundary condition, the square lattice is equivalent to a 

one-dimensional atomic chain in the horizontal direction. The wave is uniform in the vertical 

direction. Subplot (c) shows the horizontal velocity profile of the wave, which is sinusoidal. The 

horizontal displacement profile in subplot (d) shows a displacement drift. We have analyzed it 

elsewhere and found that the drift is determined by both the initial data and the boundary input. In 

particular, if initial data is adopted consistent with the input mode as 
(1) (1)

, , , ,(0) (0), (0) (0) m n m n m n m nu w u w , the displacement drift disappears.  

Next, we investigate oblique wave injection. Matching boundary conditions are taken at all four 

boundaries. Let an oblique wave go toward the upper right direction in the infinite lattice. It enters 

the numerical sublattice only through the left and bottom boundaries. Accordingly, we send a 

monochromatic wave for these two boundaries in form of 
(1) (3)

, , , ,( ) ( ) cos( )    m n m n p q p q p qw t w t t m n    . In subplot (a) of Fig. 10, we display the velocity 

profile at t=3000 for a numerical example with (ξp, ξq)=(0.5,0.5), both a three-dimensional view 

(upper row) and a top view (lower row). The wave is successfully injected into the sublattice. The 

wave propagation direction coincides with the incident angle, which is π/4. 

It is worth mentioning that there are two angles related to wave propagation, corresponding to 
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the phase velocity and the group velocity. The former gives an angle 

arctan .
q

p





 (47) 

On the other hand, the group velocity is 

( , ) ,

2 2 2 2

sin sin
, .

2 sin sin 2 sin sin
2 2 2 2

 
 
  
 

  
 

p q

p q

p q

p q p q

 

 


   
 (48) 

This gives another angle 

sin
arctan .

sin

 
  

 
 

q

p





 (49) 

For the wave vector (ξp, ξq)=(0.5,0.5), both angles are π/4. To check which of the two angles 

governs the wave injection, we put along the left boundary (1) 11

, , ,( ) cos( )   m n p q p q p qw t t m n    , 

and along the bottom boundary (3) 31

, , ,( ) cos( )   m n p q p q p qw t t m n    . Now we set the phases 

different and take (ξp, ξq)=(1,2), for which the angle for phase velocity is θ=1.107 (close to 
3


), 

and that for group velocity is η=0.824 (close to 
4


). The resulting wave profile, again at t=3000, is 

not a monochromatic one. It is even not a plane wave, a discontinuity appears along the direction 

of η rather than θ, due to the mismatch of the random phase of the incident waves. See subplot (b). 

We further check the propagation direction by removing the bottom input, and take 

2
( , ) ( , )

3 3
p q

 
  , for which θ is again approximately 

3

  and 
4




 . As shown in subplot (c), the 

wave front clearly lies along the π/4 direction.  

We conclude that an oblique wave propagates according to the group velocity. Consequently, if 

the incident wave has a mismatch in phase, namely, 11 31

, ,p q p q  , there develops a discontinuity 

along the direction with the angle η. Consequently, in the heat bath inputs, we cannot arbitrarily 

assign the amplitudes and random phases for the four boundaries. The amplitudes and the random 

phases should be consistent for each monochromatic wave mode. 

 
4.3 Heat bath and finite temperature simulations 

 
Now, we are ready to simulate the harmonic square lattice at finite temperature. Matching 

boundary condition with inputs are applied to the four boundaries. The inputs are in the form of 

phonon representation described in Section 2. The initial data for the atomic displacement and 

velocity in the computational subdomain are set to zero. 
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Fig. 11 Heating process for TL=TR=20: (a) system temperature; (b) local temperature; (c) m-th layer 

temperature; (d) n-th layer temperature; (e) horizontal heat flux; (f) vertical heat flux 

 

 

First, we inject heat jets at temperature TL=TR=20. As shown in subplot (a) of Fig. 11, the 

system temperature T(t) rises up to the target temperature T0=20 as expected, at a time about 

t=100. This corresponds to the time for injected waves propagating to the other side of the 

subdomain. At thermal equilibrium, the local temperature Tm,n fluctuates around the target 

temperature. See subplot (b). The m-th layer temperature Tm and the n-th layer temperature Tn are 

displayed in subplots (c) and (d). Comparison with the exact profile given by Eq. (34) exposes 

good agreement between the numerical result and the exact profile. The computed temperatures 

are slightly higher near the boundaries. This is due to long time integration, as well as minor yet 
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Fig. 12 Heating process for TL=32, TR=8: (a) system temperature; (b) local temperature; (c)m-th layer 

temperature; (d) n-th layer temperature; (e) horizontal heat flux; (f) vertical heat flux 

 

 

existing numerical reflections. In subplots (e) and (f), the time-average of horizontal heat flux 
,

x

m nJ  

and vertical heat flux 
,

y

m nJ  fluctuate around zero, indicating that thermal equilibrium is reached. 

Next, we inject heat jets at different temperatures TL=32 and TR=8. In subplot (a) of Fig. 12, the 

system is again heated to the target temperature T0=20. The heating process and the local 

temperature are similar to the previous case. However, in subplot (e), the horizontal heat flux ,

x

m nJ  

fluctuates around a certain value, higher than the previous case. Actually this mean value of ,

x

m nJ  

is approximately 5.57, consistent with the exact expression Eq. (42). On the other hand, the 
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Fig. 13 The integrals of the horizontal heat flux 

3 ( )xJ t , 
40 ( )xJ t  and 

77 ( )xJ t  with temperature of inputs: 

(a) TL=TR=20; (b) TL=32, TR=8 

 

   

   
Fig. 14 Atomic simulation of a Gaussian hump at finite temperature by the heat jet approach: (a) 

, (2000)m nu ; (b) 
, (2010)m nu ; (c) 

, (2020)m nu ; (d) 
, (2040)m nu ; (e) 

, (2060)m nu ; (f) 
, (2100)m nu  

 
 

vertical heat flux 
,

y

m nJ  still fluctuates around zero in subplot (f). The difference in the heat flux 

reveals a net heat flow from left side to right side. Moreover, as seen from subplot (c), no 

horizontal temperature gradient is established when different temperatures are applied to the two 

sides, because no phonon scattering exists in the harmonic lattice. 

As calculated before, the lattice target temperature is the mean of the heat jet temperatures at 

the two sides, namely equals to 
2

L RT T
. The temperature profiles distribute randomly for each run 

due to the random heat sources. The fluctuations in the system temperature and the local 

temperature decrease when more normal modes are included in general. 

We further display the integrals of the horizontal heat flux in Fig. 13. In subplot (a) for the same 

temperature at two sides, 3 ( )xj t  rises up to about 400, and 77 ( )xj t  decreases to about -400. 
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Fig. 15 Nominal system temperature in finite temperature atomic simulation with TL=TR=20 

 

 

This shows a thermal flow. When the steady state is established, the heat flux integrals 3 ( )xj t , 

40 ( )xj t  and 77 ( )xj t  oscillate around a certain level. In contrast, when the temperatures are different 

at two sides, the integral curves in subplot (b) rise indefinitely. They have the same slope, 

corresponding to the average of ,

x

m nJ  in Fig. 12(e). 

Finally, we illustrate a finite temperature atomic simulation. Adding the Gaussian hump Eq. 

(45) at t=2000 upon a thermal equilibrated state with TL=TR=20, we simulate the evolution of the 

non-thermal motion in the lattice at finite temperature. 

In Fig. 14, the Gaussian hump spreads on top of the thermal fluctuations, and propagates 

gradually outward. At t=2020, the hump reaches the boundaries and further goes out, until 

vanishes at t=2100. The amplitude of the Gaussian hump is bigger than the thermal fluctuations 

initially. So the nominal system temperature goes up sharply when it is added at t=2000. See Fig. 

15. Along with the Gaussian hump propagation, the nominal system temperature decreases 

quickly. When the hump completely leaves the lattice, the nominal system temperature returns 

back to the target temperature. 

 

 

5. Summary 
 

In this paper, we formulate a heat jet approach to realize a linear thermostat for the out-of-plane 

motion of a square harmonic lattice. It is based on a two-way matching boundary condition, which 

is designed by matching the dispersion relation at long wave limit as well as a set of selected wave 

vectors. We perform a reflection coefficient analysis and numerical tests to demonstrate the 

effectiveness of this boundary treatment for reflection suppression. This guarantees the 

computational sublattice correctly recover the physics of the entire lattice if waves propagate 

outward only. In addition, with a source term designed by the two-way boundary condition and a 

given incoming wave, the boundary treatment allows full injection without numerical artifact. This 

is demonstrated by a numerical example of an incident plane wave. Analytical proof is similar to 

the one dimensional case (Tang and Liu 2015), which we omit here. We further explore the 
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manner for setting up source terms from the four boundaries of a rectangular sublattice. Waves 

actually propagate along a direction dictated by the group velocity, instead of by the phase 

velocity. If the phases or the amplitudes for different boundaries are not in full agreement, 

numerical discontinuities appear. This understanding guides us to design numerical sources 

appropriate for the phonon representation of thermal fluctuations. As everything is linear in the 

proposed approach, we readily obtain explicit expressions for the dynamics of the atomic motions 

and accordingly those for the thermodynamic quantities. Numerical tests verify these expressions. 

In particular, the sublattice temperature at thermal equilibrium is the mean of the boundary input 

temperatures. Numerical tests illustrate the atomic motions and thermodynamic process. 

With all these preparatory works done, finite temperature atomic computations are performed. 

Stemmed from the linear nature of the governing system and the algorithm, the proposed heat jet 

approach precisely reproduces a superposition of wave propagation for the non-thermal part and 

thermal fluctuations, without overestimation of the system temperature or the over-damping of the 

non-thermal motion. Therefore, the designed boundary treatment fulfills the goal of reproduce 

faithfully the numerics of the entire lattice, at the cost of computing a small subsystem. 

As we have demonstrated for one dimensional chains, the heat jet approach for the square 

lattice applies to moderately nonlinear systems at a temperature not very high. Furthermore, it 

provides a key component in accurate finite temperature multiscale computations, under a suitable 

framework such as finite difference multiscale approach (Tang 2008, Tang et al. Preprint). Our 

approach, as it is clear and linear, may provide a new reliable numerical platform for the study of 

thermal conduction problems. 

We remark that a vital component in the proposed heat jet approach is the design of an 

effective boundary condition. This is highly nontrivial for each crystalline structure and potential. 

Furthermore, in high space dimensions, the phonon representation involves enormous summations, 

and induces heavy computing costs. Reasonable yet physically meaningful simplifications are 

desirable. 
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