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Abstract.  This paper deals with the free vibration analysis of a dynamical coupled system: flexible gravity 
dam- compressible rectangular reservoir. The finite element method is used to compute the natural 
frequencies and modal shapes of the system. Firstly, the reservoir and subsequently the dam is modeled by 
classical 8-node elements and the natural frequencies plus modal shapes are calculated. Afterwards, a new 
21-node element is introduced and the same procedure is conducted in which an efficient method is 
employed to carry out the integration operations. Finally, the coupled dam-reservoir system is modeled by 
solely one 21-node element and the free vibration of dam-reservoir interaction system is investigated. As an 
important result, it is clearly concluded that the one high-order element treats more precisely than the 
eight-node elements, since the first one utilizes fifth-degree polynomials to construct the shape functions and 
the second implements polynomials of degree two. 
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1. Introduction 
 

Dams can be counted as very important man-made structures which are constructed by paying 

high prices and have exerted a powerful influence over the lives of thousands. Modeling such 

significant structures should be in a way that reflects the actual behavior of the correlated 

fluid-structure system, considering the fact that fluid and the structure are in direct contact with 

each other and the overall response of the system is dependent on their interaction. Thereby, these 

structures could be designed in such a way to withstand strong earthquakes with minimal damages.  

One of the major factors in the analysis and design of concrete gravity and arch dams in 

seismic areas is the effect of hydrodynamic pressure due to ground movement during an 

earthquake. Analysis of interacting fluid-structure systems under dynamic loads is the case that has 

attracted the interest of many researchers during years. Due to the complexity of such systems, 

utilizing accurate and non-numerical analysis is almost impossible and applying numerical and 

approximate techniques will be inevitable. For instance, Hall and Chopra (1982) treated dam and 

fluid domain as substructures and modelled them with finite elements to investigate the 

hydrodynamic effects in the acceleration response of concrete gravity dams. Moreover, Fenves and 
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Chopra (1984) extended the previous studies to include the effects of alluvium and sediments 

invariably present at the bottom of actual reservoirs Fenves and Chopra (1984). Leger and 

Bhattacharjee (1992) presented a rational methodology to develop simple 

dam-foundation-reservoir models for nonlinear analysis. Valliappan and Zhao (1992) investigated 

dynamic response of concrete gravity dams including dam-water-foundation interaction by using a 

finite element and infinite element coupling model Valliappan and Zhao (1992). Subsequently, 

Zhao et al. (1995) carried out an investigation into the effect of reservoir bottom sediment on the 

seismic response of concrete gravity dams using the finite and infinite element coupled method. 

Furthermore, Ghaemian and Ghobarah (1999) conducted a nonlinear seismic fracture response 

analysis of concrete gravity dams which includes the dam–reservoir interaction, to investigate the 

performance of different reservoir interaction models. Also, Yazdchi et al. (1999) presented a 

computational method for the non-linear seismic response of concrete gravity dams using 

continuum damage mechanics. Similarly, Calayir and Karaton (2005) investigated the earthquake 

damage response of the concrete gravity dams with considering the effects of dam-reservoir 

interaction by selecting a continuum damage model which was a second-order tensor and included 

the strain softening behavior for the concrete material. Samii and Lotfi (2007) compared two 

methods for modal analysis of concrete gravity dams, one based on using coupled modes, while 

the other utilized decoupled modes of dam and reservoir. Bouaanani and Lu (2009) assessed the 

use of a potential-based fluid finite element formulation for seismic analysis of dam–reservoir 

systems. Afterward, Miquel and Bouaanani (2010) proposed a procedure for a simplified 

evaluation of the fundamental vibration period of dam-water systems, which is compared with 

potential-based finite elements approach. Continuing their pervious study, Miquel and Bouaanani 

(2011) developed analytical and simplified solutions for dynamic analysis of structures vibrating in 

contact with water. Moreover, Mirzayee et al. (2011) analyzed seismic behavior of fractured 

concrete gravity dams considering dam–reservoir interaction effects, they obtained dynamic 

response of the reservoir using boundary element method. Attarnejad and Kalateh (2012) presented 

a numerical model and its finite element implementation that used to compute the cavitation 

effects on seismic behavior of concrete dam and reservoir systems. Furthermore, Karaca and 

Küçükarslan (2012) analyzed dam-reservoir interaction for a vibrating structure in an unbounded 

and incompressible and inviscid fluid by using homotopy analysis method. Burman et al. (2012) 

analyzed Coupled gravity dam–foundation using a simplified direct method of soil-structure 

interaction. In addition, Hariri et al. (2013) solved the coupled dam-reservoir-foundation system in 

Lagrangian-Eulerian domain using Newmark-β time integration method. Mridha and Maity (2014) 

investigated the nonlinear response of concrete gravity dam-reservoir system by conducting 

experiments and compared the experimental results with numerical analysis. Moreover, Keivani et 

al. (2014) obtained the closed-form solution of fluid-structure interaction problem in the frequency 

domain and compared it with finite element analysis. 

In this paper, modeling of the problem domain including ideal triangular gravity dam and 

rectangular reservoir is performed by finite elements method. For this purpose, firstly, the classical 

8-node elements are used. The integrations of the structure mass and stiffness matrices plus the 

fluid quasi-mass and quasi-stiffness matrices are accomplished by both exact and application of 

the Gauss integration methods. In the next stage, after introducing a high-ordered 21-node 

triangular element, in which shape functions are obtained based on complete polynomial of degree 

5, the dynamic analysis of gravity dam, rectangular reservoir and dam-reservoir system is 

accomplished. It is noteworthy that the advantages of this kind of elements due to utilizing 

high-degree complete polynomials in the form of shape functions include better approximation of 

60



 

 

 

 

 

 

Free vibration analysis of gravity dam-reservoir system utilizing 21 node-33… 

 

unknown quantity variations, creating higher order continuity at nodes and boundaries, possibility 

of modeling curved boundaries-particularly for complex geometries, increasing the accuracy of 

solutions and more rapid convergence. It should be pointed out that using high-degree 

interpolation functions cause complexity in integration associated with finite element matrices and 

protracts calculations. In this study, at first, integrals are calculated by this accurate but extremely 

time consuming procedure, but then, Gauss numerical integration in triangular elements with a 

large number of points will be used. By doing this, without causing any harm to the accuracy of 

the answers, the time for finding them will be reduced significantly. 

The paper is organized as follows. Initially, the required theoretical foundations will be 

presented. Afterward, exact and numerical solution of the rectangular reservoir free vibration is 

given. Subsequently, the ideal triangular dam will be analyzed with the aid of 8 and 21-node 

elements. Thereafter, the main innovative aspect of this paper is introduced in the fifth section, in 

which the interaction of dam-reservoir system will be analyzed with the aid of 21-node element 

utilizing 33 Gauss points. Finally, last section is devoted to the qualitative results of the study. 

 

 

2. Theoretical foundations 
 

This section is dedicated to an overview of the requirements of the finite element method, 

including the Gauss points of the triangle, the dynamic analysis of structures and fluids using finite 

element, Stokes-Navier equation, Helmholtz equation in matrix form, and interaction analysis of 

dam-reservoir system by finite element method (Rao 2011). 

 

2.1 Finite element in structure dynamic analysis 
 

The dynamic analysis of structures, in the most general three-dimensional case, is reviewed 

here briefly. In dynamic problems, the displacements, velocities, strains, stresses, and loads are all 

time dependent. The procedure involved in deriving the finite element equations of a dynamic 

problem can be stated by these steps: idealizing the body into e finite elements; assuming the 

displacement model of element e as 

  , , , [ ( , , )]{ ( )}
e

U x y z t N x y z D t
                     (1) 

and finally, deriving the element characteristic (stiffness and mass) matrices and characteristic 

(load) vector. For this purpose, the strain at any point inside the element can be expressed as 

  [ ]{ }eB D 
                                (2) 

where  is strain vector, and [B] is strain-displacement matrix which relates strain components 

inside the element to element nodal displacements. Moreover, the stress–strain relations in matrix 

form is 

   [ ]D 
                              (3)

 

where [D] is the material or constitutive matrix. In the case of two-dimensional problems, the 

material matrix would have only three rows and three columns. For example in plane strain 
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problems matrix [D] reduces to 

[ ]

1 0

1 0
(1 )(1 2 )

1 2
0 0

2

D
E

 

 
 





 
 
 

 
 

 
 
                       (4)

 

In the following, the governing equation of each component would be derived by utilizing 

Hamilton’s principle and Lagrangian function 

pL T  
                                 (5)

 

the kinetic and potential energies (T and 𝜋𝑝) can be expressed as 

1

1
{ } [ [ ] [ ] ]{ }

2

T T

e V
T D N N dV D


  

                      (6)
 

and 

11

1

1

[ ] [ ][ ]
1

{ } { } { } [ ] { } [ ] { }
2

T

e v

T T T

p
S V

e

B D B dVD D D N t dS N b dV
 

   
     

  
  

   (7)

 

where V is the volume, ρ is the density of material, S1 is the surface of the body on which surface 

forces{ }t are prescribed and{ }b is the body force vector.  

The matrices involving the integrals can be defined as follows: 

element mass matrix 

[ ] [ ] [ ]e T

V
M N N dV                            (8)

 

element stiffness matrix 

[ ] [ ] [ ][ ]e T

V
K B D B dV                           (9)

 

vector of element nodal forces produced by surface forces 

1
1[ ] [ ] { }T

s
S

P N t dS 
                           (10)

 

vector of element nodal forces produced by body forces 

[ ] [ ] { }T

b
V

P N t                               (11)
 

Thus, total load vector of the structure is 

 { ( )} { }s be
P t P P 

                           (12)
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Now, by utilizing the above relations, the desired dynamic equation of motion of the undamped 

structure is 

[ ]{ }( ) [ ]{ ( )} { ( )}M D t K D t P t                       (13)
 

It should be noted that, in the case of free vibration with no external forces, the recent relation 

gives the following eigenvalue problem 

2([ ] [ ]){ } {0}K M O                          (14)
 

By solving Eq. (14), the natural frequencies and mode shapes could be found. 

 

2.2 Finite element in fluid dynamic analysis 
 

Significant contributions are made in the solution of different types of fluid flow problems 

using the finite element method. This section presents a summary of the basic concepts and some 

equations of fluid mechanics including Navier-Stokes equation (Rao 2011). 

 

2.2.1 Acoustic wave equation 
The equation governing fluids in motion, is a partial differential equation which is called 

Navier-Stokes equation. This equation could be derived by employing Reynolds transport theorem, 

principles of mass conservation, continuity equation, and principle of conservation of momentum, 

Newton's second law and Newtonian fluid relations as 

2 21 1
( )

3 2

V
b p e V V V V

t
  

  
                             (15)

 

where, 𝑏⃗ , 𝑝, 𝜌, 𝜇, 𝑒̇, and 𝑉⃗ , represent body forces vector acting on the fluid, pressure, density, 

dynamic viscosity, volumetric dilation rate, and velocity vector, respectively. Furthermore, by 

assuming that the fluid is inviscid, with small amplitude irrotational motion, Eq. (15) reduces to 

the Euler equation 

V
b p

t



 
                               (16)

 

by applying some mathematical approaches, one could obtain 

2

2

1
P P

c
 

                             (17)
 

which is the final equation governing the compressible inviscid fluids and will be utilized in this 

study. 

 

2.2.2 Helmholtz equation in matrix form 
After stating governing equation of the compressible inviscid fluids with small amplitude 

irrotational motion in the previous section, herein by using Galerkin’s weighted residual method, 

Eq. (17) is expressed in matrix form 
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2

quasi-stifness matrix quasi-mass matrix

flux vector

1
([ ] [ ] [ ] [ ] [ ] [ ]) { } ([ ] [ ] { }

([ ] )

e e

e

T T T T

x x y y z z

D D

T

B

N N N N N N dVol P N N dVol P
c

P
N dBou

n

  






 


    (18)

 

in which, 𝐷𝑒 and B
e
 are the domain of three-dimensional fluid element and the boundary of the 

element respectively. Furthermore, Nx represents the partial derivative of interpolation function N 

with respect to x and 𝑛⃗  is the outward drawn normal to the boundary. The overall and assembled 

matrix form of Eq. (18) is 

       G P H P R 
                          (19)

 

which is matrix form of Helmholtz equation. Knowing the matrix form of governing equations of 

fluids and solids, one can couples them and obtain the matrix equation governing the fluid-solid 

interaction behavior. 

 

2.3 Interaction analysis of dam-reservoir by finite element method 
 

In such a problem, the presence of interaction implies that the response of both subsystems 

must be evaluated simultaneously. Free vibration analysis of this system gives the dynamic 

parameters such as frequencies and mode shapes. It is noteworthy that, since the solid-fluid 

interacting behavior occurs at their common boundary, selected elements should act like a 

translator to transmit solids’ displacement degrees of freedom to fluids’ pressure degrees of 

freedom. Fig. 1 illustrates the boundary conditions of the problem, which includes interaction 

boundary condition. 

By finding the derivatives of velocity potential function directed perpendicular to the direction 

of common boundary, one can obtain the acceleration and velocity components in that direction 

n
n

VP
a

n t
 


   
                            (20)

 

Eq. (20) is the interaction boundary condition. It should be noted that displacements, velocities 

and accelerations of fluid and structure are equal along the n direction.  

After obtaining the interaction boundary condition and in order to find fluid-solid interaction 

relationships, firstly the matrix equation of governing fluid in the vicinity of solid should be 

simplified (Eq. (19)), knowing that 

   u n Q D
                             (21)
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Fig. 1 Solid-fluid common boundary 

 

 

in which   Q D  is acceleration vector of structure’s points, and by utilizing Eq. (20),  R  

vector can be obtained as 

 

       

[ ]

[ ]

e

n

e

T

B

a

T

f
B

P
R N dBou

n

R N n Q dBou D







 
 

  


 
 

 




                  (22)

 

Moreover, the interaction matrix witch converts solid acceleration to fluid flux is as below 

     [ ]
e

T

B
B N n Q dBou 

                       (23)
 

Thus, the matrix form of governing equation of compressible inviscid fluid free vibration in 

vicinity of vibrating solid is 

          0fG P H P B D  
                   (24)

 

Furthermore, the governing equation of solid free vibration is 

       0M D K D 
                        (25)

 

it is clear that hydrodynamic forces resulting from vibrating fluid in the vicinity of solid causes the 

right side of the equation change from zero to {Ft}. 
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   
e

x
T

t y
B

z

t

F Q t dBou

t

  
  

   
  
  



                        (26)

 

note that {t} includes traction vector components which leads to 

   
e

x
T

t y
B

z

n

F Q P n dBou

n

  
  

   
  
  



                     (27)

 

Meanwhile, hydrodynamic pressure function of fluid can be expressed through interpolating 

functions as P= [N]{P}, therefore 

         
e

TT

t
B

BouF Q n N d P                      (28)
 

Interestingly, the interaction matrix (Eq. (23)) appears in the relations again, but in transposed 

form. As can be seen, the transpose of [B] converts fluid pressure to equivalent nodal force of solid. 

Thus, the governing equation of solid in the vicinity of vibrating fluid would be as 

          0M D K D B P  
                    (29)

 

By combining (24) and (29), one can acquire vibrating solid-fluid interaction equation 

   
   

 

 
   
   

 

 

 

 
system unknownmass matrix of the stiffness matrix ofsystem unknown vectorinteractional system the systemvector

0 0

00

T

f

DM DK B

B G PHP

             
        

              

            (30)

 

Thus, for determining the natural frequencies and mode shapes of the system, an eigenvalue 

problem should be solved 

   2
0

sys sys
Det K M 

                         (31)
 

which would be utilized frequently in this study. 

 

2.4 Gauss points in triangle 
 

One of the main steps in derivation of the matrix equations governing the finite element is the 

evaluation of integrals that include interpolation functions or their derivatives. Normally, they 

cannot be found accurately, and therefore, utilizing numerical methods for calculations is essential. 

There are several schemes available for the numerical evaluation of definite integrals. Among 

them, Gauss method has been proved to be most useful in finite element applications. The method 
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needs the function in the integral to be calculated at points called key points (Fig. 2), multiplied to 

Gauss weights and added. For instance, the following Gauss-type formula has been developed by 

Hammer and Stroud in which the key points and weights for triangular elements would be in terms 

of barycentric coordinates 

( ) ( ) ( )

1 2 3 1 2 31
( , , ) ( , , )

n i i i

iiA
f L L L w f L L L


 

                 (32)
 

where for maximum n = 7 

(1) (1) (1)

1 1 2 3

(2) (2) (2)

2 1 2 3

(3) (3) (3)

3 1 2 3

(4) (4) (4)

4 1 3 2

(5) (5) (5)

5 1 2 3

(6) (6) (6)

6 1 3 2

(7) (7)

7 1 2

27 1
;  

60 3

8 1
;  , 0

60 2

8 1
;  0,

60 2

8 1
;  , 0

60 2

3
;  1, 0

60

3
;  0, 1

60

3
;  0,

60

w L L L

w L L L

w L L L

w L L L

w L L L

w L L L

w L L L

   

   

   

   

   

   

   (7)

3 1
                     (33)

 

 

2.4.1 Innumerable Gauss points in triangular element 
In 1985, Dunavant provided a method for calculating integrals of polynomial functions on 

triangular area using Gauss's rules and some laws of mathematics (Dunavant 1985). His rules, 

which are very efficient in symmetric modes and can be used for finding the integrals of 

high-degree functions, will be described here.  

 

 

Fig. 2 Locations of the integration points 
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Fig. 3 Barycentric coordinates 

 

 

Since solving an integral is time-consuming and cumbersome, usually Gauss method is used. 

This famous method for triangular elements would be in terms of barycentric coordinates which is 

defined in Fig. 3 (Dunavant 1985). 

Integrals of the desired functions on the triangular area using Gauss's law in general form can 

be expressed as follows 

1

( , , ) ( , , )
ng

i i i i

iA

f dA A w f     


 
                   (34)

 

where wi is the weight associated with the i
th
 Gaussian point of location (αi,βi,γi), and ng is the 

number of sampling points. Accordingly, in order to evaluate the integral, the function shall be 

evaluated at several sampling points, multiplied by an appropriate weight wi, and added. By 

successive application of product rules and using the changes of variables one can reach the 

following relation (Dunavant 1985) 

   
1 1

( , , ) 1 , ,
4

m n

i i i i i i

i jA

A
f dA w u w f     

 

  
              (35)

 

in which, the Gaussian points and weights in the u direction are ui and wi, and in the v direction are 

uj and wj respectively.  

It is worth mentioning that for an arbitrary complete polynomial of order p, number of terms 

can be determined using  

( 1)( 2)

2

p p
np

 


                           (36)
 

as an example consider p=2, knowing that α + β + γ - 1= 0, then  

 2 2( , ) 1f a                          (37)
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where, {a} is polynomial coefficients vector. With the following simple formula, which is for 

integration of polynomial terms in natural coordinates, the left-hand side of (35) can be obtained 

! !
2

( 2)!

i i

A

i j
dA A

i j
  

 
                         (38) 

therefore 

( , ) [12,4,4,2,1,2]
12

A

A
f dA  

                      (39) 

and then the right-hand side of (35) is 

 

 

 

2 2

1 1 1 1 1 1 1

1

2 2

2 2

( , ) 1 ...

                             + 1 ...

                             + 1

ng

i i i

i

i i i i i i i

ng ng ng ng ng ng ng

A w f Aw a

Aw a

Aw a

       

     

     



   

   

  



           (40) 

by equating the right-hand sides of (39) and (40) and reduction of dependent equations, one can 

write  

1

0 1
ng

i

i

w


 
                             (41) 

2

1

1
0

6i

ng

i

i

w


 
                           (42) 

The number of independent equations for different values of p is obtained by 

2( 3)

12

pp
m

 


                           (43) 

in which for p=0 to 5 

3, 4, 1,0, 1, 4p      
                          (44)

 

Since the reduction in the number of equations by algebraic operations for higher values of p is 

cumbersome, instead of the natural triangle coordinates, the triangle shown in Fig. 4 is considered, 

and the polynomials are expressed in polar coordinates (Dunavant 1985). 

Thereafter, the moment equations are as follows (Dunavant 1985) 

1 1 2

1
0 0,01 1

1
n n n

i ii i n
w w w v



  
    

                     (45)
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Fig. 4 Triangle polar coordinates 

 

 

1 1 2

1
,31 1

cos(3 )
n n nj j

i i i i i j ki i n
w r w r k v



  
  

                  (46)
 

where 

2 ,  0 3j p k j   
                          (47)

 

and 

3 evenj k 
                               (48)

 

By using symmetry and some mathematical operations the polar moments are as follows 

(Dunavant 1985) 

3
,3 2

3

1 cos3
 

(cos )( 2)2 3
j k j

ka
v da

aj j



 






                     (49)

 

Reference (Dunavant 1985) has classified Gaussian points and weights into three groups. 

Moreover, values of m, (j, 3k) and vj,3k are tabulated in this reference for up to m = 44 

corresponding to p = 20. It is worth mentioning that the total number of unknowns is 

0 1 2
2 3n n n n  

                            (50)
 

and the number of Gaussian points is 

0 1 2
3 6ng n n n  

                            (51)
 

Values of n1 and n2 can be determined through (Lyness and Jespersen 1975) 

 1 2( ) 3 / 2n E d n                              (52)
 

and  
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 2 2 ( ) 2 / 3n E d                               (53)
 

in which 

 21
( ) ( 3)

12
dE d d   

                        (54)
 

 2

2

1
( ) ( 6) ( 3)

12
dE d E d d     

                   (55)
 

Moreover, for obtaining the value of n0, it is required that (Lyness and Jespersen 1975) 

0 1 2
2 3 ( )n n n E d  

                           (56)
 

Extracting Gauss Points and Weights 

By utilizing relations presented in previous section for a function of degree 12, which is the 

main topic of this research, a system of nonlinear equations having 19 unknowns including

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 6 7 8, , , , , , , , , , , , , , , , ,  and w w w w w w w w r r r r r r r r    will be formed 

1 2 3 4 5 6 7 8
1w w w w w w w w         

2 2 2 2 2 2 2 2

1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8

1

4
w r w r w r w r w r w r w r w r         

     3 3 3 3 3 3 3 3

1 1 2 2 3 3 4 4 5 5 6 6 6 7 7 7 8 8 8

1
cos 3 cos 3 cos 3

10
w r w r w r w r w r w r w r w r            

4 4 4 4 4 4 4 4

1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8

1

10
w r w r w r w r w r w r w r w r         

     5 5 5 5 5 5 5 5

1 1 2 2 3 3 4 4 5 5 6 6 6 7 7 7 8 8 8

2
cos 3 cos 3 cos 3

35
w r w r w r w r w r w r w r w r            

6 6 6 6 6 6 6 6

1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8

29

560
w r w r w r w r w r w r w r w r         

     6 6 6 6 6 6 6 6

1 1 2 2 3 3 4 4 5 5 6 6 6 7 7 7 8 8 8

1
cos 6 cos 6 cos 6

28
w r w r w r w r w r w r w r w r           

     7 7 7 7 7 7 7 7

1 1 2 2 3 3 4 4 5 5 6 6 6 7 7 7 8 8 8

1
cos 3 cos 3 cos 3

28
w r w r w r w r w r w r w r w r            

8 8 8 8 8 8 8 8

1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8

11

350
w r w r w r w r w r w r w r w r         

     8 8 8 8 8 8 8 8

1 1 2 2 3 3 4 4 5 5 6 6 7 7 7 7 8 8 8

1
cos 6 cos 6 cos 6

40
w r w r w r w r w r w r w r w r           
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     9 9 9 9 9 9 9 9

1 1 2 2 3 3 4 4 5 5 6 6 7 7 7 7 8 8 8

37
cos 3 cos 3 cos 3

1540
w r w r w r w r w r w r w r w r          

   

     9 9 9 9 9 9 9 9

1 1 2 2 3 3 4 4 5 5 6 6 7 7 7 7 8 8 8

1
cos 9 cos 9 cos 9

55
w r w r w r w r w r w r w r w r            

10 10 10 10 10 10 10 10

1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8

13

616
w r w r w r w r w r w r w r w r         

     10 10 10 10 10 10 10 10

1 1 2 2 3 3 4 4 5 5 6 6 7 7 7 7 8 8 8

1
cos 6 cos 6 cos 6

55
w r w r w r w r w r w r w r w r         

  

 

 

12 12 12 12 12 12 12 12

1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8

425

28028
w r w r w r w r w r w r w r w r         

 

     12 12 12 12 12 12 12 12

1 1 2 2 3 3 4 4 5 5 6 6 6 7 7 7 8 8 8

1
cos 12 cos 12 cos 12

91
w r w r w r w r w r w r w r w r         

 As mentioned earlier, wi represents Gaussian weights and ri is the point radial distance from the 

center of the triangle. Solving the system of equations with a numerical method releases the 

unknowns as follows 

w1 0.07719319932 r1 0.4646521693   

w2 0.1310776336 r2 0.3191731769   

w3 0.1885746727 r3 -0.186368845   

w4 0.1043883388 r4 -0.6172715634   

w5 0.01849878315 r5 -0.9360479486   

w6 0.2422293466 r6 0.4361200406 α6 0.7230991102 

w7 0.1341406392 r7 0.5880308643 α7 0.6566569228 

w8 0.1038973867 r8 0.7909154485 α8 0.9479205829 

 

Moreover, obtaining the values of α,β and γ, leads to the location of 33 Gauss points which are 

tabulated in following table (Dunavant 1985) and can be seen in Fig. 5. 

The 33 obtained Gauss points will be employed to calculate time consuming integrals of degree 

12, conveniently in short period of time. 

     11 11 11 11 11 11 11 11

1 1 2 2 3 3 4 4 5 5 6 6 6 7 7 7 8 8 8

49
cos 3 cos 3 cos 3

2860
w r w r w r w r w r w r w r w r          

     11 11 11 11 11 11 11 11

1 1 2 2 3 3 4 4 5 5 6 6 6 7 7 7 8 8 8

2
cos 9 cos 9 cos 9

143
w r w r w r w r w r w r w r w r          

     12 12 12 12 12 12 12 12

1 1 2 2 3 3 4 4 5 5 6 6 6 7 7 7 8 8 8

137
cos 6 cos 6 cos 6

10010
w r w r w r w r w r w r w r w r         

72



 

 

 

 

 

 

Free vibration analysis of gravity dam-reservoir system utilizing 21 node-33… 

 

 

 

Fig. 5 Location of 33 Gauss points 

 

 
Table 1 Gauss coordinates for p=12 

weight α β γ 

0.025731066440455 0.023565220452390 0.488217389773805 0.488217389773805 

0.043692544538038 0.120551215411080 0.439724392294460 0.439724392294460 

0.062858224217885 0.457579229975768 0.271210385012116 0.271210385012116 

0.034796112930709 0.744847708916828 0.127576145541586 0.127576145541586 

0.006166261051559 0.957365299093580 0.021317350453210 0.021317350453210 

0.040371557766381 0.115343494534698 0.275713269685514 0.608943235779788 

0.022356773202303 0.022838332222257 0.281325580989940 0.695836086787803 

0.017316231108659 0.025734050548330 0.116251915907597 0.858014033544073 

 

 

3. Rectangular reservoir dynamic analysis 
 

Herein, dynamic analysis of free vibration of the fluid within the rectangular reservoir is 

performed. The analysis is conducted by using the exact and finite element methods, and 

frequencies of the reservoir are obtained by different ratios of length to depth. 

 

3.1 Closed-form solution 
 

Using Fourier transformation, Helmholtz equation (Eq. (17)) can be transferred to frequency 

domain 
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2 2
2 1

2

m n
w c

a b


   
    

                               (57)

 

by which natural frequencies of the free vibration of the rectangular reservoir could be obtained. In 

Eq. (57), c is the velocity of pressure waves in water and b is the depth of the reservoir assumed to 

be equal to 1440 meters per second, and 200 meters respectively. By solving the above equation 10 

first natural frequencies of the reservoir for different ratios of length to depth (a/b) are calculated 

and tabulated in Table 2. 

 

3.2 Fluid Analysis by means of FEM 
 

In this part, the analysis of the problem by using the finite element method with the aid of a 

computer program (Mathematica) is discussed. Different length to depth ratios of reservoir is 

considered in order to observe the impacts of reservoir length changes on the natural frequencies 

of the fluid. In Fig. 6, the finite element model of a typical rectangular reservoir model with the 

ratio of the length to depth of three is displayed in which eight-node quadratic elements are used. 

Following table and chart demonstrate the results of analysis of reservoirs with different length 

to depth ratios. 

 

3.3 Comparison between closed form and analytical solutions 
 

Comparing the results of dynamic analysis of the reservoir using finite element method 

expressed in previous section and responses obtained by closed form solution, can validate the 

accuracy of finite element method responses and the related developed computer program. Table 4 

shows obtained natural frequencies and errors due to numerical analysis: 

 

 
Table 2 natural frequencies of closed form solution 

Mode 

No. 
Length/Depth=1 Length/Depth=2 Length/Depth=3 Length/Depth=4 

1 1.8000 1.8000 1.8000 1.8000 

2 4.0249 2.5456 2.1633 2.0125 

3 5.4000 4.0249 3.0000 2.5456 

4 6.4900 5.4000 4.0249 3.2450 

5 7.4216 5.6921 5.1264 4.0249 

6 9.0000 5.6921 5.4000 4.8466 

7 9.0000 6.4900 5.5317 5.4000 

8 9.6933 7.4216 5.9093 5.4745 

9 10.9490 7.6368 6.2642 5.6921 

10 11.5256 9.0000 6.4900 5.6921 
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As can be seen in Table 4, the responses obtained from the free vibration analysis of rectangular 

reservoir with aid of finite elements are in a very good agreement with the results of exact solution. 

The most important reason can be this fact that quadratic elements are used rather than tow-linear 

four-node elements. Moreover, greater natural frequencies obtained from finite element method 

compared to the exact solution was predictable, since the application of approximate interpolation 

functions make model stiffer. 

 

 

 

Fig. 6 Typical reservoir model 

 

 
 

Table 4 Comparison between natural frequencies of closed form and FEM results 

Mode 

No. 

Length/Depth=1 Length/Depth=2 Length/Depth=3 Length/Depth=4 

Closed 

form 

FE 

analysis 

Error 

(%) 

Closed 

form 

FE 

analysis 

Error 

(%) 

Closed 

form 

FE 

analysis 

Error 

(%) 

Closed 

form 

FE 

analysis 

Error 

(%) 

1 1.8000 1.800 0.001 1.8000 1.800 0.001 1.8000 1.800 0.001 1.8000 1.800 0.001 

2 4.0249 4.025 0.009 2.5456 2.546 0.004 2.1633 2.163 0.002 2.0125 2.013 0.008 

3 5.4000 5.403 0.052 4.0249 4.025 0.009 3.0000 3.000 0.002 2.5456 2.546 0.000 

4 6.4900 6.493 0.041 5.4000 5.403 0.052 4.0249 4.025 0.009 3.2450 3.245 0.002 

5 7.4216 7.433 0.151 5.6921 5.695 0.047 5.1264 5.128 0.029 4.0249 4.025 0.009 

6 9.0000 9.012 0.135 5.6921 5.695 0.047 5.4000 5.403 0.052 4.8466 4.848 0.023 

7 9.0000 9.034 0.375 6.4900 6.493 0.041 5.5317 5.534 0.050 5.4000 5.403 0.052 

8 9.6933 9.725 0.331 7.4216 7.433 0.151 5.9093 5.912 0.045 5.4745 5.477 0.051 

9 10.9490 11.028 0.722 7.6368 7.641 0.057 6.2642 6.269 0.072 5.6921 5.695 0.047 

10 11.5256 11.568 0.371 9.0000 9.012 0.135 6.4900 6.493 0.041 5.6921 5.695 0.047 
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Fig. 7 Changes of natural frequencies for different L/D ratios 

 

 

4. Free vibration analysis of ideal triangular dam 
 

In this section, free vibration analysis of ideal right triangular dam is carried out. It is 

noteworthy that human do not yet have an exact solution to this problem. In the following 

subdivision, the analysis of dam by eight and twenty-one node elements would be explained. 

 

4.1 Modeling by 8-Node element  
 

The ideal dam modelled by eight-node triangular elements which analysis would be performed 

by a program written in the mathematical software Mathematica, is shown in Fig. 8. Dam height 

and foundation length are 200 and 160 meters, respectively. Furthermore, density, modulus of 

elasticity and Poisson’s ratio of the used concrete are equal to 2528 kg/m3, 27.5 Gpa and 0.2, 

respectively. 

 

 

 

Fig. 8 Dam modelled by eight-node triangular elements 
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Table 5 Natural frequencies of dam (modeled with 20 elements) 

Mode No. Natural Frequency (Hz) 

1 2.28766 

2 5.19004 

3 6.03763 

4 8.9302 

5 13.17190 

6 13.3479 

7 16.0823 

8 17.1728 

9 18.5568 

10 20.3533 

 

 

 

As it can be seen in Fig. 8, dam consists of twenty elements and seventy one nodes. Each node 

has two degrees of freedom with horizontal and vertical displacements. It should be noted that, the 

base of the triangle is connected to the ground by fixed joints and bottom nodes do not have any 

degrees of freedom. Hence, total degrees of freedom of the dam is one hundred and twenty four, 

which is exactly equal to the dimensions of mass and stiffness matrices.  

The developed program firstly, calculates mass and stiffness matrices for all elements. 

Afterwards, they would be assembled and eigenvalue problem would be created (Eq. (14)). 

Solving the eigenvalue problem releases natural frequencies of the dam. Table 5 shows the results 

of free vibration analysis of the dam. 

Furthermore, ten first mode shapes of the dam are displayed in the Fig. 9. 

 

4.2 Introducing of 21-node element 
 

Herein the aforesaid dam would be analyzed with the help of only one twenty-one-node 

triangular element instead of eight-node elements. The appropriate interpolation functions could be 

obtained by utilizing full fifth-degree polynomial functions. For this purpose, firstly, mass and 

stiffness matrices are calculated and then the eigenvalues and dam natural frequencies are 

extracted. It should be mentioned that, the analysis would be carried out in two ways; once the 

mass and stiffness matrices are computed with the precise integrating which is time-consuming 

and cumbersome, and the other time, Gauss integration will be used. It is noteworthy that the 

method for obtaining the Gauss points is explained in section 2.4. Moreover, it is worth noting that 

boundary conditions remain the same for this element. Fig. 10 shows the ideal triangular dam 

which is modelled by one twenty-one-node element. 

Free vibration analysis results conducted with only one twenty-one-node element can be seen 

in table 6. Moreover, Fig. 11 compares the results obtained by using two different elements. 
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Fig. 9 Mode shapes of triangular Dam (20 elements) 
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Fig. 10 Dam modeled with one element 

 

 
Table 6 Natural frequencies of dam (modeled with one element) 

Mode No. Natural Frequency (Hz) 

1 2.28766 

2 5.17996 

3 6.03582 

4 9.00004 

5 13.2516 

6 14.6035 

7 16.1159 

8 18.4042 

9 20.8832 

10 22.6872 

 

 

 

Fig. 11 Comparison between frequencies of dam models 
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Smaller frequencies in the first three modes of the 21-node element diagram compared to 8-node 

element diagram, indicates that the values obtained from the dam analysis with twenty-one-node 

element are more accurate in the lower modes than values obtained from the dam analysis with 

eight-node elements. 

 

 

 

Fig. 12 Mode shapes of triangular Dam (one element) 
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In order to draw mode shapes, a special technique is used. For eight-node elements model, 

firstly, node displacements were calculated and then, by connecting the deformed nodal points to 

each other, the mode shapes were extracted. Herein, for drawing dam deformation a large number 

of lines with same intercepts are considered. Line intercepts assumed to be equal to 200 meters in 

order to pass through the dam crest. Consequently, one can obtain the equation of the lines and 

find the corresponding points on each line to identify the new position of each point and plot the 

relevant mode shape which can be seen in Fig. 12. 

 

 

5. Interaction analysis of dam-reservoir by 21-node element 
 

The fifth section which is the most important part of this research from innovative perspective, 

is devoted to the interaction analysis of the gravity dam-reservoir system, by the twenty-one-node 

element and the aid of thirty-three Gauss points. 

 

5.1 Dam modeling by 21-node element with numerous Gauss points 
 

Previously, in part 4.2, the twenty-one-node triangular element and the model of gravity dam 

constructed by only one element was introduced. Therein, the necessary integrations for obtaining 

the mass and stiffness matrices were carried out in an accurate but time consuming way (about an 

hour and a half for each matrix), using Mathematica program. But here, due to the introduced 

efficient and effective Gauss integration method with numerous Gauss points in section 2.4.1, the 

calculation will be conducted again with the same precision in a much faster process (about one 

second for each matrix). Afterwards, dam model with Gauss points is displayed and it is avoided 

publishing results for brevity. It is obvious that with respect to selection of a large number of 

Gauss points, the results of numerical integration will be exactly the same as the results of the 

accurate integration. Fig. 13 shows the ideal model of the triangular dam, made up of only one 

twenty-one node element. Note that the larger and the smaller points are element nodes and points 

of Gauss, respectively. 

 

 

 

Fig. 13 Dam model with 21 node-33 gauss point element 
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5.2 Reservoir modeling by 21-node element with numerous Gauss points 
 

After introducing the ideal model of the triangular dam made up of only one twenty-one node 

element, herein, the fluid in the rectangular reservoir will be modelled for four different length to 

depth ratios utilizing two, four, six, and eight 21-node-element, again with 33 Gauss points. After 

the free vibration analysis, the natural frequencies of the fluid, itself, will be extracted. It is 

noteworthy that the natural frequencies were obtained for the mentioned states in accurate 

(non-numerical) and finite element (numerical) methods previously in section 3, but with help of 

eight-node elements. The reservoir model and the natural frequencies obtained from the analysis 

are presented in the following table and figure. 

 

 
Table 7 Natural frequencies of dam (modeled with 21 node-33 gauss point element) 

Mode 

No. 
Length/Depth=1 Length/Depth=2 Length/Depth=3 Length/Depth=4 

1 1.80000 1.80000 1.80000 1.80000 

2 4.02504 2.54558 2.16333 2.01246 

3 5.40061 4.02504 3.00001 2.54558 

4 6.50268 5.40061 4.02504 3.24501 

5 7.44700 5.69533 5.12738 4.02504 

6 9.06628 5.69746 5.40061 4.84725 

7 9.18883 6.50268 5.53302 5.40061 

8 9.95085 7.44700 5.91375 5.47546 

9 11.19290 7.66395 6.26954 5.69533 

10 12.07020 9.06628 6.50268 5.69746 

 

 

 

Fig. 14 Reservoir model with 21 node-33 gauss point element (L/D=1) 
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5.3 Results for dam-reservoir interaction 
 

Up to here, dam and the reservoir were analyzed independently. In this section, the model of 

interacted dam-reservoir will be constructed and its free vibration will be analyzed utilizing 

twenty-one-node elements. Outcome of the analysis is the coupled natural frequencies of the 

system which are smaller than decoupled natural frequencies of components in each vibration 

mode. Similar to previous section, the coupled dam-reservoir model and natural frequencies of free 

vibration are provided in Table 7 and Fig.15. 

Moreover, the results from the analysis of dam itself, the fluid in the rectangular reservoir with 

a length of two hundred meters, and gravity dam- rectangular reservoir with the same 

length-system are compared in table 9 to denote the difference between the dynamic behaviors of 

coupled system with each of the single components. 

 

  
Table 8 Natural frequencies of reservoir (modeled with 21 node-33 gauss point elements) 

Mode No. Length/Depth=1 Length/Depth=2 Length/Depth=3 Length/Depth=4 

1 1.54206 1.59801 1.61228 1.61618 

2 2.17812 2.00697 1.91681 1.86946 

3 3.91873 2.67144 2.32627 2.17080 

4 4.96998 3.96430 3.04035 2.61666 

5 5.45902 4.82698 3.98242 3.26152 

6 5.93840 5.42215 4.73056 3.99217 

7 6.60330 5.69443 5.26616 4.64049 

8 7.49872 5.81974 5.41708 5.03833 

9 8.55207 5.99300 5.56806 5.40981 

10 9.08954 6.56996 5.87140 5.49861 

 

 

 

 

Fig. 15 Reservoir model with 21 node-33 gauss point element (L/D=1) 
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Table 9 Comparison between natural frequencies of dam, reservoir and the coupled system 

Mode No. Sole dam Sole Fluid Coupled System 

1 2.28766 1.80000 1.54206 

2 5.17996 4.02504 2.17812 

3 6.03582 5.40061 3.91873 

4 9.00004 6.50268 4.96998 

5 13.2516 7.44700 5.45902 

6 14.6035 9.06628 5.93840 

7 16.1159 9.18883 6.60330 

8 18.4042 9.95085 7.49872 

9 20.8832 11.1929 8.55207 

10 22.6872 12.0702 9.08954 

 

 

6. Conclusions 
 

The main objective of this research involved the free vibration dynamic analysis of gravity 

dam-rectangular reservoir system. This analysis was performed in the frequency domain and the 

final results included frequency and shape modes of the system. It is worth noting that all the 

analysis was carried out using finite element method and the problem domain was modeled by 

eight and twenty-one-node elements. 

The research was carried out in this pattern that sections one and two provided the necessary 

theoretical foundations in which the method for extracting the key points and weights 

corresponding to thirty-three Gauss points for integration of polynomial of degree twelve 

proportional to triangular area was expressed. Section three was devoted to dynamic analysis of 

free vibration of the fluid within the rectangular reservoir, wherein the exact solution of reservoir 

free vibration was described firstly, then finite element method using 8-node elements was applied 

and finally a comparison was made between results which were natural frequencies. Section four 

was dedicated to free vibration analysis of ideal triangular dam utilizing eight and 

twenty-one-node elements. The integrations for twenty-one-node element were performed using 

accurate procedure. Eventually, section five illustrated the dam-reservoir coupled system analysis 

using twenty-one-node elements and utilizing thirty-three Gauss points, and the obtained results 

were compared in tables. In this section different length to depth ratios of the reservoir were 

considered.  

Some qualitative consequences achieved from the quantitative results of this research are as 

follows: 

1. With regard to the third section, one can realize that the finite element method is a very 

efficient and powerful method for free vibration analysis of compressible inviscid fluids. 

2. Interestingly, the results of the analysis of the right triangle with only one twenty-one-node 

element in the first three modes of vibration, which are the most important modes, were 

more accurate than the results from the model made by twenty quadratic 

eight-node-elements which has seventy-one nodes totally (having 50 nodes and 100 
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degrees of freedom more than five-degree-element). It is noteworthy that due to this fact 

that the possibility of obtaining an exact solution and closed formulation for the free 

vibration analysis of a right triangle has not been provided yet, for obtaining much more 

pleasant estimation, the accuracy of interpolation functions were increased by enhancing 

their degree which leads to the creation of a new twenty-one-node-triangular element that 

the base of its shape functions was formed with a complete polynomial of degree 5.  

3. Time needed for the analysis of coupled dam-reservoir system was reduced thousands 

times by taking advantages of Gauss integration method with 33 points and utilizing 

twenty-one-node elements for both structure and fluid. 
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