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Abstract. Wastewater process models are the essential tools for understanding relevant aspects 
of wastewater treatment system. Wastewater process modeling provides more options for upgrades and 
better understanding of new plant design, as well as improvements of operational controls. The software 
packages (BioWin, GPS-X, Aqua designer, etc) solve a series of simulated equations simultaneously in order 
to propose several solutions for a specific facility. Research and implementation of wastewater process 
modeling in combination with computational fluid dynamics enable testing for improvements of flow 
characteristics for WWTP and at the same time exam biological, physical, and chemical characteristics of 
the flow. Application of WWTP models requires broad knowledge of the process and expertise in modeling. 
Therefore, an efficient and good modeling practice requires both experience and set of proper guidelines as a 
background. 
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1. Introduction 
 

The progressive deterioration of water resources and the large amount of polluted water 

generated in industrialized and urbanized countries put on the Wastewater Treatment Processes 

(WWTP) a fundamental importance in the water quality protection. Guidelines and regulations 

(Directive 91/271/CEE referring to the wastewater pollution control and treatment) enforce the 

adoption of specific quality parameters (maximum allowed concentration) for the treated 

wastewater. Processes are generally divided into the primary, secondary and tertiary 

stage/treatment technology, including appropriate facilities and equipment. The most common 

demand for municipality wastewater is a secondary treatment, including primary - mechanical 

treatment and secondary - biological treatment of wastewater. Inside a biological unit of the 

wastewater treatment plant, the Activated Sludge Process (ASP) is the most frequently used 

technology for the removal of the organic pollutant from wastewater. It is quite reliable, the most 

cost-effective and very flexible process. It is adaptable to any kind of wastewater and has the 

capacity of producing high quality effluent. 

Taking into account current environmental problems and water scarcity, it is not unrealistic to 

believe that the trend of development of new WWTPs will be continued all over the world. At the 
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same time, loads on existing plants are expected to increase due to the growth of urban areas. This 

situation demands more efficient treatment procedures for wastewater.  

Therefore, experts have begun to explore how wastewater process modeling could be combined 

with computational fluid dynamics to further expand the capabilities of both tools. Also, modeling 

and simulation can significantly contribute to understanding and design of activated sludge 

wastewater treatment plants. Process models are the essential tools for understanding wastewater 

treatment system behavior. A wastewater treatment plant model describes the biochemical and 

physical processes involved in the technical purification of wastewater. Through the biochemical 

processes, the organic matter and nutrient content of the wastewater is eventually converted into 

carbon-dioxide, nitrogen and a particulate fraction (cell material). The step is a physical separation 

of exceeded sludge and removed cell material. Wastewater process simulators can provide insights 

for plant upgrades, new plant designs, and improvements of operational controls. The decisions 

made in the design and optimization of WWTPs have significant financial and environmental 

impacts. 

The paper presents the mathematical models which are used the most for modeling of the 

biological processes for domestic wastewater treatment.  

The overview of the Activated Sludge Models (ASM) and some of the commercial programs 

based on linear or non-linear dynamic models will be presented in this paper shortly. 

 

 

2. Fundamentals of the wastewater biological treatment with activated sludge  
 

The activated sludge treatment process is the process in which waste water is brought into 

contact with a suspended culture of microorganisms in an aerobic environment. The aerobic 

environment is achieved by the use of diffused air, or mechanical aeration, or even by pure oxygen. 

This operation takes place in a bioreactor known as an aeration basin. Microbiological reactions 

occur in the bioreactor, resulting in the growth of new bacteria and the oxidation of organic 

compounds in the waste water. The schematic flow diagrams shown in Fig. 1 include the 

nomenclature used in the following mass-balance equations. All designs of biological treatment 

reactor are based on using mass balances across a defined volume for each specific constituent of 

interest (i.e., biomass, substrate, etc.). 

The mass balance includes the flow rates for the mass of the constituent entering and/or leaving 

the system and appropriate reaction rate terms for depletion or production of the constituent within 

the system. 

 

Legend: 

Q – influent (m
3
/s), 

S0 – readily biodegradable substrate (mg COD/l), 

X0 - concentration of biomass in influent (gVSS/m
3
), 

V - reactor volume (aeration tank) (m
3
), 

X - concentration of biomass in the reactor (g/m
3
), 

S – concentration of biodegradable substrate in tank (mg BOD/l), 

Qw –waste sludge flowrate (m
3
/d), 

Qr – return sludge (m
3
/s), 

XR – concentration of MLSS (mg/l),(Biomass) 

Xe – concentration of biomass in effluent (gVSS/m
3
). 
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Fig. 1 Schematic diagram of activated sludge treatment process with model nomenclature with wasting from

 the sludge return line 
 

 

Simplified word statement is:  

Accumulation = inflow – outflow + net growth 

Symbolic representation is 

   VRXQXQQQXV
dt

dX
gRwew  0

                  (1) 

Where is: 

dX/dt - rate of change of biomass concentration in reactor measured as VSS/m
3
dRg - net rate of biomass 

production, gVSS/m
3
d  

If it is assumed that the concentration of microorganisms in the influent can be neglected and 

that steady-state condition prevail (dX/dt =0), Eq. (1) can be simplified to yield  

d
suRwew k
X

r
Y

VX

XQXQQ


 )(

                         (2) 

Where is: 

Y – synthesis yield coefficient, g VSS/g Bs COD 

rsu – rate of substrate concentration change due to utilization, g/m
3
, d 

kd – endogenous decay coefficient, g VSS/g VSS, d 

 

The substrate utilization rate in a biological system can be modeled with the following 

expression for soluble substrates. Because the mass of substrate is decreasing with time due to 

substrate utilization and Eq. (3) is used in substrate mass balances, a negative value is shown.  

SK

kXS
r

s

su




                                     (3) 
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Where is: 

k – maximum specific substrate utilization rate, g substrate/g microorganisms*d 

Ks – half-velocity constant, substrate concentration at one-half maximum specific substrate utilization rate, 

g/m
3
 

S – growth-limiting substrate concentration in solution, g/m
3
 

 

The inverse of the term on the left-hand side of Eq. (2) is defined as the average solids retention 

time (SRT), as given below. 

Rwew XQXQQ

VX
SRT




)(
                              (4) 

In the mass balance for the complete-mix reactor, presented above, the SRT was introduced as 

the fundamental process parameter that affects the treatment efficiency and general performance 

for the activated sludge treatment process. 
 

Substrate mass balance: 

The mass balance for substrate utilization in the aeration tank (see Fig. 1) is given by Eq. (5): 

Accumulation = inflow – outflow + generation (Metcalf and Eddy 2003) 

VrQSQSV
dt

dS
su 0

                               (5) 

Substituting the value for rsu (Eq. (3)) and assuming steady-state conditions (dS/dt=0), Eq. (5) 

can be written as: 

))((0
SK

kXS

Q

V
SS

s 


                                 (6) 

The term 1/SRT is also related to μ, the specific biomass growth rate, as given by Eq. (7). 

            
 d

su k
X

r
Y

SRT

1

                            (7) 

Substituting Eq. (3) into Eq. (7) yields can be described with 

d

s

k
SK

YkS

SRT





1

                                 (8) 

The volume of the aeration tank divided by the influent flowrate is τ, the hydraulic retention 

time. 

If Eq. (8) is solved for the term S/ (Ks+S) and substituted into Eq. (6), the following expression 

is obtained for the biomass concentration in the aeration tank 















SRTk

SSYSRT
X

d )(1

)(
)( 0


                               (9) 
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As given by Eq. (9), the reactor biomass concentration is a function of the system SRT, the 

aerobic aeration tank τ, the synthesis yield coefficient, the amount of substrate removed (S0-S), 

and the endogenous decay coefficient.  

As it shown in Fig. 1, part of the concentrated sludge is recycled in order to maintain enough 

mass of viable organisms in the bioreactor and reasonable food-to-mass (F/M) ratio (Metcalf and 

Eddy 2003). 

                                      (10) 

Where is: 

F/M=food to biomass ratio, gBOD or bsCOD/gVSS*d 

τ - hydraulic retention time of aeration tank, V/Q, d 

 

Due to the fact that new cells are being continually formed, a portion of the total biomass must 

be continuously wasted from the system. Solids are usually wasted from the recycle line, but, 

alternatively, they could be wasted directly from the bioreactor. The sludge’s age and solid 

retention time affect significantly the quality of the biological treatment. A system characterized by 

a large SRT would lead to deterioration of the quality of the process if subjected to mass loadings. 

Transient inputs are handled better with high solid levels and long hydraulic detention times. 

Shock loads of different types – hydraulic, quantitative, or in combination – do not produce 

equivalent disruptions of effluent quality for equal increases in the biomass loading rate. Other 

biochemical processes, such as nitrification and denitrification, may be developed in the bioreactor. 

Theory of the dynamic behavior of the activated sludge processes has been thoroughly 

investigated and presented in literature (Gujer et al. 1999). 

The relationship between specific growth rate of microorganisms and substrate concentration is 

             
SK

XS

s 
 max

                                   (11) 

Where is: 

µ- the specific biomass grow rate,  

µmax – maximum specific bacterial growth rate, g new cell/g cells, d. 

 

The modeling of the biochemical processes is based on several basic kinetic equations, 

describing bacterial growth, substrate utilization and the endogenous metabolism (decay) of 

bacteria, as well as the hydrolysis of entrapped organics. In the last 40 years, several activated 

sludge models have been developed, describing the biochemical processes in various manners 

(Eckenfelder et al. 2000). 

Since the activated sludge treatment process is essentially composed of two main units, as it is 

shown in Fig. 1 (bioreactor and settling tank, linked together with a recycle line for returned 

sludge), a computation model for each unit is separately defined as a sub-model. 

 

 

3. Modeling of wastewater treatment plant 
 

3.1 Reasons and approach to modeling  

X

S
MF


0/ 
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Activated sludge wastewater treatment is a highly complex physical, chemical and biological 

process, and variations in wastewater flow rate and its composition, combined with time-varying 

reactions in a mixed culture of microorganisms, make this process non-linear and unsteady. The 

efficiency of the process is established by measuring the quantities that indicate quality of the 

treated wastewater, but that can only be determined at the end of the process. If the water quality is 

not acceptable, it is already too late for its improvement. Since there is no possibility of retracing 

the steps of the process back, all the mistakes in the control of the process could induce an 

ecological disaster on a small or big scale. Therefore, models that describe this process 

appropriately may be used as a basis for monitoring and optimal control of the process 

development. 

Usually, engineers do not appreciate the dynamic character of the process, and steady-state 

procedures are still almost exclusively used to simplify the whole systems. The transient loading 

studies of activated sludge treatment process are the interest of technologists, microbiologists and 

engineers. The practical interest of engineers is focused on the design and control of the activated 

sludge process which is related to understanding of the mechanisms involved in biological growth 

and reproduction. It should be stressed that mathematical models are applicable both in the design 

and operation of treatment plants. 

 

The main reasons for modeling wastewater treatment can be summarized as: 

1. Research purposes (calibration and validation of the hydraulic model, biological model, 

aeration model, etc.) 

2. Optimal selection of the best technology through more comparable options for WWTP 

3. Cheaper than building/modifying the real system 

4. Easier than carrying out testing on existing systems  

5. Risk-free – see the consequences before implementation. 

 

The approach to build a WWTP model includes the following steps: 

1. Definition of the WWTP model purpose, or the objectives of the model application (design, 

reconstruction, control, learning). 

2. Model selection, which means the selection of appropriate models needed to describe the 

different WWTP units that should be considered in the simulation, i.e. selection of the activated 

sludge model, the sedimentation model, etc.  

3. Hydraulic determination of the models for the whole plant, or specific units of WWTP (i.e. 

hydraulics of the aeration tanks, secondary settling tanks, etc.). 

4. Determination of the wastewater and biomass characterization, including biomass 

sedimentation (influent and effluent data, design parameters, etc.). 

5. Calibration and verification of the activated sludge model parameters. 

6. Evaluation of the different WWTP scenarios (i.e. optimization of the WWTP operation, process 

improvement, different technical (structure) solution, etc.). 

In conducting process modeling to explore increasing a wastewater treatment system's capacity, 

process engineers first visit the existing plant to gather information and data. They determine the 

extent of model calibration and sensitivity analysis recommended for the specific objective, such 

as planning or detailed design. An existing flow and loading condition scenario is then analyzed 

using the simulator. Each model is calibrated to minimize observable discrepancies between field 

data and model predictions and can then be used to evaluate wet-weather treatment strategies. In 
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addition, a sensitivity analysis can determine effects that different conditions have on plant 

capacity. 

Wastewater process modeling can enhance projects involving an entire range of wastewater 

treatment processes, including physical-chemical; biological, such as activated sludge; and solids, 

such as thickening, digestion, and dewatering. It has become particularly useful to meet the 

effluent limits for nitrogen and phosphorus removal. 

The mathematic modeling deals with static or dynamic behavior of activated sludge processes.  

Static models take some assumptions in the calculations, for example, constant hydraulic load, a 

constant concentration of biomass in the pool for a longer period, etc., which simplifies the whole 

system of calculation and interpretation of the results. As an example, there is a modelling 

according to ATV-A 131 standard, which is the most frequently used approach in design of WWTP 

larger than 500 PE (population equivalents) and describing the elimination of carbon, nitrogen and 

phosphorus compounds. It is based on the hydraulics and kinetics equation with determined values 

of the parameters, formed as a database of coefficients. 

Dynamic simulation allows presentation depending on the biological treatment, as well as 

understanding and validation of certain processes in WWTP facilities. Approach to static modeling, 

based on some simplification and input assumptions, is not appropriate for understanding, 

researching and for prediction of the dynamic behavior of the system.  

Dynamic models, such as the example of Activated Sludge Model 1 (ASM 1) describes the 

removal of carbon and nitrogen (nitrification and denitrification) in a system with activated sludge 

in the correlation with the variation of the whole system through the time. It is expected from the 

models to predict behavior of the chosen technology and system in different situations as well as 

designs, and to adjust WWTP facilities in the manner of optimization of each unit and provide the 

expected results of applied treatment processes. 

Today, a lot of commercial computation softwares with wide and different possibilities are 

developed by different companies. Some of them are in the following list divided into the groups 

of static or dynamic programs: 

 Simulation programs for steady (static) applications are: ANA / ANA win, Aqua Designer, 

ARA-BER, REVIVAL EXPERT, DENICOMP, Denika/Denika plus, Denni, SASS, etc. 

 Simulation programs for unsteady (dynamic) applications are: AQUASIM, Arasim, ASIM, 

DENISIM, EFOR ApS, GPS-X, SASSPRO, SIMBA, STOAT, WEST, etc.  

In the following chapter the focus will be on the overview of the Activated Sludge Model 1 

(ASM1), which is the “state of the art” as theoretical mathematical model depicting the biological 

processes occurring in the activated sludge section of a wastewater treatment plant. As already 

mentioned above, it describes carbon oxidation, nitrification and denitrification process. Empirical 

models will also be mentioned, as well as commercial programs based on static models, which are 

very often used during the design process of the plants.  

 

3.2 Review of the models development 
 

Wastewater treatment plants are very complex hydro-technical facilities. Calculation and design 

of WWTP are based on a multidisciplinary approach, including knowledge of technology, 

hydraulics, biology, chemistry, physics, structure and math. Why do we need WWTP models? The 

WWTP models enhance the plant design and understanding of the process control.  

Theoretical models are based on the physics and biochemistry principals involved in the 

descriptions of the behavior of the processes involved in activated sludge wastewater treatment. 
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Emphasis is usually put on the modeling of the processes in the biological reactor and on the 

hydrodynamic modeling of the secondary, settler tanks, and less on the hydraulic modeling of the 

whole wastewater treatment plant. WWTP models usually do not explicitly describe flow 

propagation through the reactors. Usually, hydraulics of the treatment plant is not sufficiently well 

known and can only be approximated or considered as a fix value for each unit. Frequently applied 

simplification is that the plant is considered as a few constant volume tanks with continuously 

complete mixing in series. The modeling of the biochemical processes is based on several basic 

kinetic equations, describing bacterial growth, substrate utilization and the endogenous 

metabolism (decay) of bacteria, as well as the hydrolysis of entrapped organics.  

The first model which was developed in the early 20th century is the Activated Sludge Model 

(ASM). Developing the Activated Sludge Model No. 1 the IAWQ (International Association on 

Water Quality - now IWA), Task Group on Mathematical Modeling for Design and Operation of 

Biological Wastewater Treatment Processes introduced a new paradigm for the mathematical 

modeling of activated sludge systems. ASM1 as it was introduced in 1987 (Henze et al. 2000) has 

become a major reference for extensive scientific research and design of WWTP. The ASM1, 

ASM1, ASM2 and ASM3 are now widely used for wastewater treatment plant design, 

optimization, operation and training.  

 

3.3 Dynamic simulation of wastewater treatment plants – ASM models 
 

Activated sludge plants transform organic matter into biomass. The process is composed of two 

main units: a biological reactor and a settler. The effective operation of the process requires the 

biomass to be removed from the liquid stream (in the secondary settler) prior to being discharged 

in the receiving waters. The sedimentation of the particles in the liquor is achieved by gravity 

along with the density differences between the particles and the liquid. The complex behavior of 

the secondary settler and its importance for the successful operation of the ASP have made the 

settling process a great challenge for researchers working in the field of mathematical modeling. 

For that reason, different models are present in literature and usually combined with ASM models 

for research or design purpose. A significant problem in the evaluation of the activated sludge 

process is that it is difficult to separate the dynamics of the biological reactor from the settler, 

because of the recycle flow. From a modeling point of view, the components of the wastewater are 

described differently for the biological reactor and the secondary settler.   

 
 

 

Fig. 2 Simple configuration for the activated sludge process 
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There are several models, proposed by the International Water Association (IWA), describing 

the biological process in the activated sludge plant (ASM1, ASM2, ASM3) (Mulas et al. 2006). 

The ASM1, ASM2 and ASM3 models incorporate carbon oxidation, nitrification and 

denitrification, and ASM2 also describes the biological and chemical phosphorus removal. The 

ASM models have been “updated” several times since the first coming out of the ASM1 and most 

of the problems identified in the earlier versions have been corrected. The models are based on 

COD units (use chemical oxygen demand to define organic pollution) and ASM3 has a total 

organic carbon (TOC) based version as well. 

• ASM1, the Activated Sludge Process Model No.1 can be considered as the reference model 

since it triggered the general acceptance of the biological process modeling. ASM1 was primarily 

developed to describe the removal of organic compounds and nitrogen with simultaneous 

consumption of oxygen and nitrate as electron acceptor. Furthermore, the model aims at yielding a 

good description of the sludge production. COD (Chemical Oxygen Demand) was adopted as the 

measure of the concentration of organic matter. Generally, the ASM1 model consists of 13 

components or state variables (Table 1) involved in 8 reactions. 

• ASM2, the Activated Sludge Process Model No.2 extends the capabilities of the ASM1 to the 

description of bio-phosphorus. ASM2 is the most complex model and it requires knowledge of the 

19 concentration and 22 of biological processes. 

• ASM2d, the Activated Sludge Process Model No.2d is built on the ASM2 model adding the 

denitrifying activity of Polyphosphate Accumulating Organisms (PAOs) to allow a better 

description of the dynamics of phosphate and nitrate removal. 

   • ASM3, the Activated Sludge Process Model No.3 was also developed for biological nitrogen 

removal, with basically the same goal as the ASM1. The major difference between the ASM1 and 

the ASM3 models is that the latter recognizes the importance of storage polymers in the 

heterotrophic activated sludge conversion. ASM3 model requires knowledge of the 13 components 

of wastewater and 12 processes. 

The ASM models and the equations are publicly available. Mathematical models related to 

ASM1 are implemented in various computer codes for the simulation of the behavior of activated 

sludge systems treating municipal wastewater of mainly domestic origin. 

Beside the very high complexity of these models, their main disadvantage is the fact that they 

are created especially for modeling of wastewater treatment process originated from households 

(municipal water). The principle application of ASM model is not exactly suitable for industrial 

wastewater and does not describe well enough all the dynamics of the processes. 

Limitations of non-structural models could be overcome by using empirical models. These 

models are simple and do not require prior knowledge of the process. Development of the model is 

based on statistical analysis of experimental data, establishing a mutual dependence and relation of 

certain variables. Dependence is expressed by the function (equation model). There are two basic 

types of these models - linear and nonlinear. 

Linear empirical models are most commonly used to describe linear, non-linear processes, or 

complex bioprocesses. Their application is based on the assumption that non-linear processes can 

be approximated by a linear function. 

Development of linear models is based on the application of modeling methods such as 

Multiple Linear Regression (MLR) or the method of Partial Least Squares (PLS). 

 

3.3.2 State Variables of ASM model  
The ASM1 model allows us to describe phenomena of organic matter and nitrogen removal. In 
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fact, the main classification of state variables in the model is based on organic matter, expressed in 

terms of COD and nitrogen compounds (Table 1). The organic matter is further divided into 

biodegradable COD (SS and XS), non-biodegradable COD (SI and XI) and active biomass (XBH 

and XBA). 

The readily biodegradable substrate is assumed to be made up of simple soluble molecules that 

can be easily absorbed by the organisms and metabolized for energy and synthesis. In contrast, 

slowly biodegradable substrate consists of relatively complex molecules that require enzymatic 

breakdown prior to absorption and utilization. Non-biodegradable organic matter is biologically 

inert and passes through the system without change in form. It can be soluble (SI), which leaves 

the process at the same concentration as it enters and particulate (XI), becoming enmeshed in the 

activated sludge and leaving the system mainly as the wastage flowrate. Moreover, the biomass is 

divided into heterotrophic (XBH) and autotrophic biomass (XBA). As an extra component, XP is 

included to take into account the inert particulate arising from cell decay. As for the organic part, 

nitrogenous matter can be divided into two categories: non-biodegradable and biodegradable. With 

respect to the biodegradable part, the particulate portion is associated to the non-biodegradable 

particulate COD. The soluble portion is usually negligible and is not incorporated into the model. 

The biodegradable matter is divided into free and ionized ammonia (SNH), soluble organic 

nitrogen (SND), and particulate organic nitrogen (XND).  

The last stage of the process is hydrolysis of soluble organic nitrogen in parallel with the 

hydrolysis of slowly biodegradable organic matter. The soluble organic nitrogen is converted into 

ammonia. For the sake of simplicity, the autotrophic conversion of ammonia to nitrate is 

considered to be a single step process which requires oxygen.  

 

 
Table 1 ASM1 State Variables 

State Variable ASM1 Notation 

Soluble inert organic matter SI gCOD/m
3
 

Readily biodegradable substrate SS gCOD/m
3
 

Particulate inert organic matter XI gCOD/m
3
 

Slowly biodegradable substrate XS gCOD/m
3
 

Active heterotrophic biomass XHB gCOD/m
3
 

Active autotrophic biomass XBA gCOD/m
3
 

Part. Prod. From biomass decay XP gCOD/m
3
 

Dissolved Oxygen SO gO2/m
3
 

Nitrite and Nitrate Nitrogen SNO gN/m
3
 

Free and Ionized Ammonia SNH gN/m
3
 

Soluble biodegr. Organic N SND gN/m
3
 

Part. Biodegr. Organic N XND gN/m
3
 

Alkalinity SALK Molar units 
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Fig. 3 Activated sludge model 1 – Model process 
 

 

That means that a unique state variable (SNO) represents nitrate/nitrogen compounds in the 

activated sludge system. Furthermore, one variable is included to represent the dissolved oxygen 

consumption in the activated sludge system, SO. 

Even if inclusion of alkalinity, SALK, in the conversion process is not essential, its inclusion in 

the model is also desirable because it provides information whereby undue changes in pH can be 

predicted.  

Fig. 3 presents in a schematic way how different compounds participate in the conversion 

processes (Martinello et al. 2000). There is a list of model parameters, kinetics and stoichiometric, 

used in equations of the model (Henze et al. 2000). 
Kinetic and stoichiometric parameters of the ASM1 models, shown on the Fig. 3 are listed below:  

Activated Sludge Model 1 - Model parameters 

 
The stoichiometric parameters are: 

Heterotrophic yield (g XBH CODformed (g CODutilised)
-1

 YH 

Autotrophic yield (g XBA CODformed (gNutilised)
-1

) YA 

Fraction of biomass yielding particulate products  (dimensionless) fp 

Mass N/mass COD in biomass (g N (g COD)
-1

 in biomass (XBA and 

XBH)) 

iXB 

Mass N/mass COD in products from biomass (g N (g COD)
-1

 in XP) iXP 

The kinetic parameters are: 

Heterotrophic maximum specific growth rate (day
-1

) H 

Heterotrophic decay rate (day-1) bH 

Half-saturation coefficient for heterotrophs (g COD m
-3

) Ks 

Oxygen half-saturation coefficient for heterotrophs (g O2 m
-3)

 KOH 
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Nitrate half-saturation coefficient for denitrifying 

heterotrophs 

(gNO3-Nm
3
) KNO 

Autotrophic maximum specific growth rate (day
-1

) A 

Autotrophic decay rate (day
-1

) bA 

Oxygen half-saturation coefficient for autotrophs (g O2 m
-3)

 KOA 

Ammonia half-saturation coefficient for autotrophs (gNH3-Nm
3
) KNH 

Correction factor for anoxic growth of heterotrophs (dimensionless) Ηg 

Ammonification rate (m
3
(g COD day)

-1
) ka 

Maximum specific hydrolysis rate gXS(gXBH COD day)
-1

) kh 

Half-saturation coeff. for hydrolysis of slowly 

biodegradable substrate 

gXS(gXBH COD)
-1

) kx 

Correction factor for anoxic hydrolysis (dimensionless) ηh 

 
The state variables included in the ASM1 are the fundamental components that act upon the 

process, but they are not always measurable or interpretable in many practical applications. 

Therefore, some composite variables can be calculated from the state variables in order to combine 

them into forms that are typically measured in reality, such as COD (Chemical Oxygen Demand), 

TSS (Total Suspended Solids) and TN (Total Nitrogen) with conversion coefficients 0.75 

[gSS/gCOD] for the inert and particulate material and 0.9 [gSS/gCOD] for the heterotrophic and 

autotrophic biomass. Two types of microorganisms carry out the reactions in ASM1 processes: 

heterotrophs and autotrophs. 

In literature, the kinetic and stoichiometric parameters are reported. The parameters selection of 

a mathematical model is known as model calibration and as a consequence of high 

interdependence of the state variables, troublesome nonlinearities, lacking identifiably and 

verifiability, the calibration of the model can be difficult and laborious. The calibration task 

becomes very hard especially because the data available from wastewater treatment plants are 

generally very variable and not always reliable. 

Most of biological process models follow the standard matrix notation. The notation makes 

clear the processes incorporated in the model and the state variables involved. The matrix is 

usually referred to Petersen Matrix and is well known by the modelers of biological wastewater 

treatment system. Table –matrix for ASM 1 comprises the state variables (13) and important 

processes, (8) shown in separated rows.   

The Activated Sludge Model 2 (ASM2) is an extension of the ASM1 model, but more complex 

and includes more components which are required to characterize the system. Additional 

biological processes are included, primarily in order to deal with biological phosphorus removal. 

The most significant difference between ASM1 and ASM2 is the fact that the biomass has a 

cell-internal structure, and therefore its concentration cannot simply be described with the XH 

(heterotrophic organisms) parameter. In addition, the model also contains two chemical processes 

which may be used to model chemical precipitation of phosphorus.  
The ASM1 model was based entirely on COD for all particulate organic matter, as well as the 

total concentration of the activated sludge, whereas ASM2 includes poly-phosphates (XPP), a 

fraction of the activated sludge which is of primary importance for the performance of the 

activated sludge system, but which does not exert any COD. For this reason, the possibility of 

including total suspended solids (TSS) in the model was introduced. TSS allows for inclusion of 

mineral particulate solids in the influent to treatment plants, as well as generation of solids in the 

context of precipitation of phosphorus. 
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The matrix of ASM 1 is given in Fig. 4 
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The actual process rate is shown in the far right column: 

• 1 is the aerobic growth of heterotrophs; 

• 2 is the anoxic growth of heterotrophs; 

• 3 is the aerobic growth of autotrophs; 

• 4 is the decay of heterotrophs; 

• 5 is the decay of autotrophs; 

• 6 is the ammonification of soluble organic nitrogen; 

• 7 is the hydrolysis of entrapped organics; 

• 8 is the hydrolysis of entrapped organic nitrogen. 
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Activated Sludge Model 3 (ASM3) was developed to correct some of the deficiencies of the 

earlier ASM1 and to include the advances in activated sludge modeling achieved in the decade 

following the publication of ASM1(Gujer et al. 1999). It includes 12 biochemical processes and 13 

components. Neither biological nor chemical phosphorus removal processes are included in 

ASM3. 

Today, the ultimate goal is to promote the correct use of ASM-type models by practitioners, and 

to overcome any major obstacles that prevent widespread use of Activated Sludge Modeling in 

practice. 

The main objectives cited for building and using a model are: optimization (59%), design (42%) 

and prediction of future operations (21%).  

The modeling tasks differ depending on the organization type as follows:  

• Optimization (daily plant operation, control...) is the main objective regardless of the 

organization type (commercial simulation programs), 

• Private companies use models for design (new plant design and expansion) more than any 

other organization types (usually commercials simulation programs), 

• Universities are the only ones having a significant use of models for educational and 

research purposes.  

 

3.3.3 Restrictions in implementation of activated sludge models 
Regarding application of ASM in literature, some constraints are reported. The ASM1 (and 

ASM3) was developed for the simulation of the aerobic and anoxic treatment of domestic 

wastewater in activated sludge systems. ASM1 and ASM3 have been developed based on 

experience in the temperature range of 8–23°C. Outside of this range, model application may lead 

to very significant errors and even model structure may become unsatisfactory. ASM3 (and ASM1) 

does not include any processes that describe biomass behavior in an anaerobic environment. 

Development of ASM3 is based on experience in the range of pH values from 6.5 to 7.5. The 

concentration of bicarbonate alkalinity (SALK) is supplied to give early warnings when pH values 

below this range are to be expected. Alkalinity must be dominated by bicarbonate. ASM3 cannot 

deal with elevated concentrations of nitrite. ASM3 (and ASM1) is not designed to deal with 

activated sludge systems with very high load or small SRT (<1 day) where flocculation/ adsorption 

of XS and storage may become limiting.  

 

 
4. Commercial software 
 

Specific commercial software usually contains extended database and libraries of predefined 

process models referring to the whole wastewater treatment plant. The process configuration to be 

simulated can be easily designed and constructed by appropriate choosing of process unit blocks 

and connecting. Pop-up windows allow modifying the model parameters. Following is the list of 

some of the softwares, divided into static and dynamic applications (ATV-DVWK-A 131E, 2000; 

GPS-X, 2008):  

 Simulation programs for steady (static) applications are: ANA / ANA win, Aqua Designer, 

ARA-BER, REVIVAL EXPERT, DENICOMP, Denika/Denika plus, Denni, SASS, etc. 

 Simulation programs for unsteady (dynamic) applications are: AQUASIM, Arasim, ASIM, 

DENISIM, EFOR ApS, GPS-X, SASSPRO, SIMBA, STOAT, WEST, etc. An overall 

process model is developed by using some of commercial software (like GPS-XTM) which 
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solve a series of simulated equations simultaneously to propose a custom solution for a 

specific facility.  

For instance, GPS-X is the most advanced tool available for the mathematical modeling, 

simulation, optimization and management of wastewater treatment plants. The user-friendly drag 

and drop interface and comprehensive database of unit processes allow users to quickly and easily 

assemble a treatment plant model, enter characterization data, and run simulations (Fig. 5). It can 

virtually cover all of the unit processes found in a wastewater treatment plant, including advanced 

nutrient removal models, fixed-film operations, anaerobic reactors, secondary settler and so on 

(GPS-X, 2008).  

The GPS-X is a modular multi-purpose modeling environment for the simulation of municipal 

and industrial wastewater treatment plant. With regard to the bioreactor in the activated sludge 

process, the whole ASM family is included in the GPS-X library. For each process unit many 

different attributes and characteristics that uniquely describe the object must be specified. For this 

reason, physical parameters like the real dimension of the unit and kinetic and stoichiometric 

parameters for the biological reactor should be provided to the simulator. It should be also noted 

that the aeration basin model can be represented with different configurations. The GPS-X owns 

two important modules: the analyzer and the optimizing module (GPS-X, 2008).  

 
 

 

Fig. 5 GPS-X interface (GPS-X, 2008) 
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The improvement in WWTP design, analyses and optimization using GPS-X are following: 

 Compare various design or operating strategies 

 Verify existing plant capacity 

 Isolate and quantify bottlenecks in liquid or solids lines  

 Assess potential flow increases or regulatory changes  

 Identify cost saving strategies (energy usage, reduction, ...) 

 Evaluate impact of new technology 

 Support regulatory decision.  

 
4.1 Static simulations programs 
 
Simulation programs are in general divided into two groups: static and dynamic. Previously, as 

example for dynamic software, GPS-X simulation program was briefly presented. In this section, 

simulation program developed by BITCom DE will be presented shortly. This software has been 

used for design and optimization of the process for several WWTP in FBiH in last few years.  

AQUA DESIGNER is the powerful tool for the design of wastewater treatment plants, incl. 

preliminary treatment, biological and sludge treatment. AQUA DESIGNER provides numerous 

results for presentation and approval, including buildings, machines, operational costs and scaled 

drawings (Aqua Designer, Software, 2010). 

With AQUA DESIGNER various processes for continuous flow plants with separate stage 

denitrification, intermittent denitrification or simultaneous denitrification, and also for carbon 

degradation, or only nitrification, can be calculated. Design includes the biological stage, but also 

preliminary treatment and sludge treatment. Sludge treatment includes thickener, digester with gas 

and heat production unit. Loads and balances for supernatant and dry solids are also displayed and 

reported. Operational costs, energy demand, consumables, sludge removal, energy production 

from the sludge treatment will also be taken into consideration. 

 

 

Fig. 6 AQUA DESIGNER flow diagram (Aqua Designer, Software, 2010) 
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Options for SBR or MBR technology for WWTP are included. Furthermore, other units of the 

plant, such as secondary sedimentation tank, sludge treatment and grit chamber, are the part of the 

design tools. 

The aeration system is also included in modeling by Aqua Designer. The aeration system is the 

most important equipment of a wastewater plant. 75% of the energy used for the wastewater 

treatment is covered by the aeration system. The correct design of the aeration system is the basis 

for a good operation and the operational costs. As the energy costs are the main cost value of an 

aeration system, a real comparison of different systems must concern both the operation and the 

investment costs of the whole life cycle. Detailed reports, operational cost, key figures, drawings 

etc. are provided as results. 

One of the special characteristics of AQUA DESIGNER is the consistent guidance of the user 

by a flow diagram. From the first sight, current processing status is visible, the selected way of 

design or process and the possible alternatives (Fig. 6). The flow diagram of the Aqua Designer 

software is shown in Fig. 6. 

Opening the new windows, in order from top to bottom, is easy and selection is possible by 

click on the individual windows (Fig. 7), with defined parameters for the calculation of individual 

process and units. Also, it is possible to define and give the option of parameters (dimensions of 

specific facilities, equipment or characteristics of the process...). 

 
 

 

Fig. 7 AQUA DESIGNER – Calculation steps for WWTP (10.000 PE) (Aqua Designer, Software, 2010) 
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5. Conclusions 
 

The wastewater treatment process is usually operated under highly variable loading conditions 

with the variability of influent and effluent quality because of the time-varying change in flow-rate 

and composition of wastewater. That is the reason why complexity of the activated sludge 

processes demands more and more accurate and well developed modeling techniques. Generally 

speaking, models are most often used by researchers for optimization purposes, while in public or 

private companies most models are used for design studies. 

Activated Sludge Models and other commercial simulation programs are now widely used for 

wastewater treatment plant design, optimization, operation and training. Plenty of modeling 

software can be found on the markets which are based on the ASM modeling concepts and 

equations. There is a great interest for further testing of the process modeling concepts, as well as 

for required improvements of already existing models for WWTP modeling. 

Engineers, mathematicians, technologists and other experts for wastewater have been 

developing wastewater process modeling aiming to further expand the capabilities of developed 

models. Working on various aspects of the same issues and technologies will enable engineers to 

examine and improve biological, physical and chemical characteristics of treatment, and also 

hydraulic and technical design of WWTP. 
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