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Abstract.  Strip footing is an important type of shallow foundations and is commonly used beneath the 
walls. Analysis of shallow foundation involves the determination of stresses and deformations. Element free 
Galerkin method, one of the important mesh free methods, is used for the determination of stresses and 
deformations. Element free Galerkin method is an efficient and accurate method as compared to finite 
element method. The Element Free Galerkin method uses only a set of nodes and a description of model 
boundary is required to generate the discrete equation. Strip footing of width 2 m subjected to a loading 
intensity of 200 kPa is studied. The results obtained are agreeing with the values obtained using analytical 
solutions available in the literature. Parametric study is done and the effect of modulus of deformation, 
Poisson’s ratio and scaling parameter on deformation and stresses are determined. 
 

Keywords:  strip footing; mesh free; element free galerkin method; vertical deformations; stress 

distribution 

 
 
1. Introduction 
 

Shallow foundations are one of the important classes of structural foundations. A shallow 

foundation transmits structural loads to the soil strata at relatively small depths. Terzaghi defined a 

shallow foundation as the one which is laid at a depth Df such that Df is smaller than width of 

foundation.  

The estimation of settlement and stress distribution of shallow foundations is an important topic 

in the design and construction of buildings and other related structures. In general, settlement of a 

foundation consists of two major components—elastic settlement (Se) and consolidation settlement 

(Sc) (Ranjan and Rao 2011). In turn, the consolidation settlement of a submerged clay layer has 

two parts; that is, the contribution of primary consolidation settlement (Sp) and that due to 

secondary consolidation (Ss) (Ranjan and Rao 2011). For a foundation supported by granular soil 

within the zone of influence of stress distribution, the elastic settlement is the only component that 

needs consideration.  

In the present study element free Galerkin method (EFGM) is used to determine the settlements 

and stress distribution beneath a strip or continuous footing. Meshfree method is a method used to 
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establish system of algebraic equations for the whole problem domain without the use of a 

predefined mesh for the domain discretization (Belytschko 1994, Dolbow and Belytschko 1998, 

Park and Leap 2000, Liu and Gu 2005, Kumar and Dodagoudar 2010, Mategaonkar and Eldho 

2011, Mategaonkar and Eldho 2012, Thomas et al. 2013, Pandey et al. 2013). EFGM is a 

Meshfree method developed recently to eliminate the structure of mesh and construct approximate 

solutions for the equation in terms of nodes. EFGM is used to model the governing differential 

equation for deformations and a methodology is proposed for two dimensional deformation 

phenomenon. The model is further extended for conducting parametric study to examine the effect 

of material constants on the deformation behaviour of soil. Plane strain condition is considered in 

the study. 

 

 

2. Description of the problem  
 

In this study a strip footing of width, B=2 m is taken which is subjected to a loading intensity of 

q=0.2 MPa as shown in Fig. 1. Due to symmetry, deformations and stress distribution of only one 

side of footing are evaluated taking centre of the footing as origin. Deformations and stresses up to 

a depth equal to 5B and also up to a horizontal distance equal to 5B are determined using the 

EFGM. This domain is represented by nodes placed in a regular arrangement. The nodes are 

placed at a distance of 0.5B, both in vertical and horizontal direction. Thus there are 121 nodes, 

out of which 31 nodes are placed on the boundary surfaces. These sets of scattered nodes are 

called field nodes, and they do not form a mesh. Part of upper surface represents the traction 

boundary and total number of nodes on traction boundary is 2. 

 

 

 

Fig. 1 Strip footing with loading intensity of q (MPa) and distribution of nodes 

366



 

 

 

 

 

 

Analysis of a strip footing on a homogenous soil using element free Galerkin method 

3. Element free Galerkin method  
 

Belytschko et al. (1994) proposed the EFGM in which the moving least squares (MLS) 

approximation, was used in the Galerkin weak-form to establish a set of algebraic equations. The 

MLS approximations are based upon a weight function, a polynomial basis, and a set of 

coefficients (Belytschko 1994, Dolbow and Belytschko 1998, Park and Leap 2000, Wang and Li 

2006). EFGM employs MLS approximants to approximate the function U(X) with U
h
(X) in which 

U(x) is the deformation vector at x, where x is a position vector as x
T

 = (x,y). EFGM do not satisfy 

the Kronecker delta criterion and hence Lagrangian multiplier technique (Dolbow and Belytschko 

1998) is used to enforce the Dirichlet boundary condition (Dolbow and Belytschko 1998, Kumar 

and Dodagoudar 2010). In the EFGM, the problem domain is represented by a set of properly 

distributed nodes.  

 

Moving least squares approximations 
As per the moving least square approximants, the approximation U

h
(x) of U(x) is given 

(Dolbow and Belytschko 1998, Belytschko et al. 1995) as 

)()()()()()(
1
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h 
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             ∀ x ∈ Ω    (1) 

In which 

P
T
(x) = [1 x y] and a

T
(x) = [a0(x), a1(x), a2(x),……, am(x)]            (2) 

Where P(x) is the basis function of spatial coordinates, x
T
=[x, y] for two dimensional problem 

in domain Ω, and m is the number of the basis functions. a(x) is a vector of undetermined 

coefficients and whose values depend on the of position vector x. These coefficients can be 

obtained by minimizing the following weighted discrete L2 norm (Dolbow and Belytschko 1998, 

Belytschko et al. 1995). 
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where W(x−xi ) is the weight function associated with the nodal point xi in the domain Ω and n is a 

local node number whose support includes x or n is the number of nodes in neighbourhood of x for 

which weight function W(x-xi) is non-zero and Ui refers to nodal parameter of U at x = xi.  

Minimizing J with respect to a(x) leads to the following set of linear equations 

UxBxaxA )()()(                            (4) 
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By substituting Eq. (5) in Eq. (1), the MLS approximate for U(x) is 

 
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       )()()()( 1 xBxAxPx T
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According to Belytschko et al. (1996), the shape functions can be written as 

)()()()()()( 1 xBxxBxAxPx i

T

i

T

i   
             (11) 

which leads to the relationship  

 TyxxPxxA 1)()()(             (12) 

Differentiating Eq. (12) with respect to x, the following is obtained 

)()()()()( ,,, xPxxAxxA xxx                     (13a) 

 Txxx xPxxAxxA 010)()()()()( ,,,             (13b) 

 Tyyy xPxxAxxA 100)()()()()( ,,,          (13c) 

The vector ψ(x) is determined using an LU decomposition of the matrix A in Eq. (12) followed 

by back substitution. Eq. (13(a)) can be rearranged as 

)()()()()( ,,, xxAxPxxA xxx          (14) 

The derivative of ψ(x) can be calculated using the same LU decomposition obtained from Eq. 

(12). This leads to a simple relationship for the spatial derivative of the EFGM shape function of 

node i in Eq. (11) and is given as: 

)()()()()( .,, xBxxBxx xi

T

ix
T

xi              (15) 
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Where 

)()(, iixi xPxxW
dx

d
B             (16) 

 

Weight function description  
The weight function is non-zero over a small neighbourhood of xi, called support domains. In 

the reported studies so far, weight function W(x-xi) is always chosen to have the following 

properties (Liu and Gu 2005, Dolbow and Belytschko 1998, Park and Leap 2000):  

W(x-xi) > 0 within the support domain.  

W(x-xi) = 0 outside the support domain. 

W(x-xi) monotonically decreases from the point of interest at x. 

W(x-xi) is sufficient smooth, especially on the boundary of domain Ωs. 

In the present study tensor product weights will be used with the quartic spline function used 

for implementation of the method in two dimensions 

)()()( yxi rWrWxxW           (17) 

Where  

mxix dxxr /             (18) 

myiy dyyr /          (19) 

 Where 

spacmx xdd max             (20) 

spacmy ydd max          (21) 

Where xspac and yspac gives the average spacing between the nodes in x and y direction and dmax 

is a scaling parameter which is typically 2.0-4.0 for static analysis. The distance xspac and yspac is 

determined by searching for enough neighbour nodes for A to be regular.  

The tensor weight functions will be given as (Liu and Gu 2005) 
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Enforcement of essential boundary conditions  
Since in the EFGM the shape functions do not fulfill the Kronecker delta condition (i.e., 

369



 

 

 

 

 

 

Aashiq H. Ganaie and Vishwas A. Sawant 

ijji x  )( ), the enforcement of Dirichlet (or essential) boundary conditions is not 

straightforward, but requires special methods. Among them the most common ones are the 

Lagrange multipliers method, modified variational principles, penalty methods, coupling with 

finite elements (Liu and Gu 2005) etc. In this study, the Lagrange multiplier method is used to 

enforce the essential boundary conditions in the EFGM.  

 

 

4. Equilibrium equations and EFG numerical implementation 
  

As is well-known the equilibrium of a body that occupies the domain Ω bounded by surface Γ 

can be stated mathematically as follows (Liu and Gu 2005, Dolbow and Belytschko 1998) 

0.  b                      (24) 

where σ is the stress tensor, which corresponds to the displacement field u and b is a body force 

vector. The boundary conditions are as follows (Dolbow and Belytschko 1998) 

tn.  on t            (25) 

and  

uu    on u               (26) 

Where t  and ū represent the given traction and displacements on the portion 
t  and 

u  of 

the boundary respectively and n is a unit vector normal to domain Ω.  

The minimum total potential energy is applied and the following Galerkin weak-form can be 

obtained (Brighenti 2005) 

  
  



t

dtubdud TTT 0
2

1
        (27) 

In order to evaluate the integrals in Eq. (27), the global problem domain Ω is discretized into a 

set of the so-called background cells that are not overlapping.  

Making the use of stress-strain relations, strain- displacement relations and 
IIuu   Eq. (27) 

can be written as 

  ,0FKUU T    
tb FFF        (28) 
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




t

t

T

I

t

I dtF                (31) 

IJK  is the nodal stiffness matrix and K is the global stiffness matrix assembled using nodal 

stiffness matrices of all nodes in the entire problem domain and the dimension of K matrix is (2N

2N). 
b

IF is the nodal body force vector and b is the body force vector and 
bF  is the global body 

force vector assembled using the nodal body force vectors for all nodes in the entire problem 

domain and the dimension of 
bF  matrix is (2N1). 

t

IF is the nodal traction force vector and 
tF  is the global traction force vector assembled using the nodal traction force vectors. The length 

of vector 
tF should be (2N1). 

D is an elastic constitutive matrix and for plane strain condition, it is given as  
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Lagrange multiplier method is used for imposing essential boundary conditions and this method 

is briefly explained below.  

The functional related to the essential boundary condition, (u= ū), is written in an integral form 

using the Lagrange multiplier   (Liu and Gu 2005, Dolbow and Belytschko 1998) 






u

duuT )(  

The constrained galerkin weak form can then be re-written as (Liu and Gu 2005) 

0)()()(     
    ut u

duduudtubdudDLuuL TTTTT    (33) 

In order to obtain the discretized formulation, the Lagrange multipliers   in Eq. (33), need to 

be interpolated using their nodal values and shape functions for nodes on the essential boundaries 

(Liu and Gu 2005). 

1222)( 


 nn

T sN             (34) 

Where n is the number of nodes used for this interpolation, 
IN  is the shape function for the 

I
th
 node on the essential boundary, s is the arc-length along the essential boundary,  is the vector 

of the nodal Lagrange multipliers of field nodes on the essential boundary. Using Lagrange 

multiplier the final equation is given as (Liu and Gu 2005, Dolbow and Belytschko 1998). 

 FGKUU
T  0)(  QUG

TT         (35) 

G is the global matrix formed by assembling 
IJG  and Q is the global vector formed by 

assembling 
Iq  (Liu and Gu 2005, Dolbow and Belytschko 1998). 
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

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u

dN J
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And 
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u

duNq
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Because both δU and δ are arbitrary, this equation can be satisfied only if 

0 FGKU  

0QUG
T  

The above equations can be written in matrix form as (Liu and Gu 2005, Dolbow and 

Belytschko 1998) 
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     (38) 

Eq. (38) is the final discretized system equations for the EFG method using the Lagrange 

multiplier method. Solving Eq. (38) gives the results of nodal parameters of the displacements 

(deformations) for this problem, and the displacements at any point including at the field nodes in 

the problem domain can be obtained using Eq. (9). 

 

 

5. Results and discussions 
 

Since in the strip footing, length (L) is very large as compared to width (B) of footing, plane 

strain condition is considered and thus the elastic constitutive matrix (D) for plane strain condition 

is given by Eq. (32). The effect of strip footing is considered up to a depth of 5B in vertical 

direction and up to a length of 5B in horizontal direction. Thus a domain which is considered for 

the analysis is a square in shape and having size 5B× 5B. The nodes are distributed regularly. The 

domain is represented by nodes which are at a spacing of 0.5B from each other in both vertical and 

horizontal direction. The background cells which are used for numerical integration are obtained 

by dividing the domain into 10 divisions in both vertical and horizontal direction and a mesh of 

background cells of size 0.5B× 0.5B is obtained. A program in FORTRAN using meshfree 

numerical technique is written for the determination of deformations and stresses in the domain 

considered above. The following boundary conditions are considered in the analysis: 

1) The horizontal deformations, on the surface (plane) passing through the centre of strip 

footing in vertical direction, are zero. 

2) The vertical deformations, on the surface (plane) passing through the bottom of the 

domain considered for analysis (at a depth of 5B) in horizontal direction, are zero. 

3) The horizontal deformations, on the surface (plane) at a distance of 5B from centre of 

footing and passing in vertical direction, are zero. 
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Fig. 2 Variation of vertical deformation with horizontal distance from centre of footing at various depths 

below the surface 

 
 
5.1 Deformation profiles 
 

The vertical deformations at different horizontal surfaces and horizontal deformations at 

different vertical surfaces are shown in Figs. 2 and 3 respectively. The modulus of deformation (E) 

is taken equal to 50 MPa and Poisson ratio (ν) of 0.3 is considered. In the Fig. 2 vertical 

settlements at depths varying from 0 to 10 m at intervals of 2 m are represented. It is evident from 

Fig. 2 that settlements keep on decreasing with increase in depth and horizontal distance from 

footing. At depth of 10 m (bottom surface) vertical deformations are zero as shown in Fig. 2 and 

thus the boundary condition is satisfied. 

Fig. 3 represents the horizontal deformations at distances ranging from 0 to 10 m, at intervals of 

2 m, from centre of footing. At centre (x=0) and at a distance of 10 m from centre (x=10 m), 

horizontal deformations are zero as shown in Fig. 3 and thus the boundary conditions are satisfied. 

The horizontal deformation initially increases with distance in horizontal direction and reduces 

thereafter. The horizontal deformation reduces with depth for all distances from centre of footing. 

The following analytical formula has been used for the calculation of relative vertical 

displacement (Das 2008, Poulos and Davis 1974) 

   000   xzxz ww  =
 

E

q



 212 
      bbbxbxbxbx ln2lnln         (39) 

The vertical deformations at the surface have been validated for different values of modulus of 

deformation (E) and the results are shown in Fig. 4. From these plots, it looks that vertical 

deformations at the surface agree very well with analytical one initially with horizontal distance 

and after a distance of 5 m from footing, the analytical deformations become more as compared to 

that determined from EFGM. These relative deformations are determined for modulus of 

deformations (E) of 25 MPa, 50 MPa, 75 MPa and 95 MPa. The Poisson ratio (ν) was 0.4 for all 

the cases. 
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Fig. 3 Variation of horizontal deformation with depth at various distances from centre of footing 
 

 

 

Fig. 4 Comparison of relative vertical deformations as determined by EFGM and by analytical solutions 

for different values of E and ν=0.4 
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5.2 Distribution of stresses 
 

Plots have been drawn for vertical and horizontal stresses with depth for various distances from 

centre of footing. Fig. 5 shows the variation of vertical stress with depth for various distances x 

from centre of footing of width B=2 m, subjected to a loading intensity, q=0.2 MPa. From Fig. 5, it 

is observed that vertical stresses developed by the load keeps on decreasing with depth and as 

depth becomes more this decrease in vertical stress becomes smaller and smaller. At depths greater 

than 8 m (4B), they remain constant. Similarly as distance from footing increases in horizontal 

direction, stresses keep on reducing. Same behaviour is shown by horizontal stresses. 

Fig. 6 shows the validation of vertical stresses with the analytical solution available in the 

literature (Das 2008, Poulos and Davis 1974). These plots show that results obtained from both 

these methods agree with marginal deviations. 

 

 

6. Parametric study 
 

After assuring the accuracy of the program, study is extended to examine the effect of modulus 

of elasticity, Poisson ratio and scaling parameter (dmax) on deformation and on stresses. 

 

6.1 Effect of modulus of deformation (E) 
 

Vertical deformation of the top surface and horizontal deformation of vertical plane at 1 m from 

centre are presented in Figs. 7 and 8 for different modulus of deformation E. From Figs. 7 and 8, it 

is observed that deformations decrease with increase in the value of modulus of deformation (E). 

Maximum vertical deflection (E = 25 MPa) is 22.37 mm.  

 

 

Fig. 5 Variation of vertical stress (σv) with depth for different distances from centre of footing for 

E=50MPa and ν =0.4 

0

1

2

3

4

5

6

7

8

9

10

-0.04 0 0.04 0.08 0.12 0.16 0.2 0.24

d
e
p
th

 (
m

) 

vertical stress(MPa) 

x=0

x=2m

x=4m

x=6m

x=8m

x=10m

375



 

 

 

 

 

 

Aashiq H. Ganaie and Vishwas A. Sawant 

 

 

Fig. 6 Comparison of vertical stress (σv) determined using EFGM and by analytical solutions, for different 

distances from centre of footing for E=50 MPa and ν=0.4 
 

 

Fig. 7 Variation of vertical deformation at the surface with horizontal distance from centre of footing, for 

various values of modulus of deformation (E) 
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Fig. 8 Variation of horizontal deformation at distance x=1m from centre of footing with depth below the 

surface of footing, for various values of modulus of deformation (E) 
 

 

With increase in modulus, reduction is of the order of 50.02% (E = 50 MPa), 66.65% (E =75 

MPa) and 73.67% (E = 95 MPa). Maximum horizontal displacement (E = 25 MPa) is 2.08 mm. 

With increase in modulus, reduction is of the order of 50.0% (E = 50 MPa), 66.8% (E =75 MPa) 

and 73.5% (E = 95 MPa). 

On the contrary, horizontal and vertical stress distribution reported negligible effect on the 

distribution of stresses with change in modulus.  

 

6.2 Effect of poisson ratio (ν) 

 

Vertical deformation of the top surface and horizontal deformation of vertical plane at 1 m from 

centre are presented in Figs. 9 and 10 for different values of Poisson ratio (ν). From Fig. 9, it is 

observed that vertical displacement decrease with increase in the value of Poisson ratio (ν). 

Maximum vertical deflection (ν = 0.25) is 13.76 mm. With increase in Poisson ratio, reduction is 

of the order of 4.94% (ν = 0.30), 11.05% (ν = 0.35), 18.75% (ν = 0.40) and 28.12% (ν = 0.45). 

From Fig. 10, it is observed that horizontal displacement increases with increase in the value of 

Poisson ratio (ν). Maximum horizontal deflection (ν = 0.45) is 1.25 mm. With decrease in Poisson 

ratio, reduction is of the order of 16.8% (ν = 0.40), 33.6% (ν = 0.35), 49.6% (ν = 0.30) and 65.6% 

(ν = 0.5).  

Variation of vertical and horizontal stress with depth, on a vertical plane passing through centre 

of footing, for different values of Poisson ratio (ν) are presented in Figs. 11 and 12. From these  
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Fig. 9 Variation of vertical deformation at the surface with horizontal distance from centre of footing, for 

various values of Poisson ratio (ν) 
 

 

Fig. 10 Variation of horizontal deformation with depth at the distance of 1m from centre of footing, for 

various values of Poisson ratio (ν) 
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Fig. 11 Variation of vertical stress with depth, on a vertical plane passing through centre of footing, for 

different values of Poisson ratio (ν) 
 

 

 

Fig. 12 Variation of horizontal stress with depth, on a vertical plane passing through centre of footing, for 

different values of Poisson ratio (ν) 
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Figs., it is observed that with increase in Poisson ratio, there is an increase in both vertical and 

horizontal stress. Similar effects are observed on other vertical planes at different distances from 

centre of footing. With increase in depth, variation in stresses for different values of ν reduces and 

below a depth of 2B vertical stress remains constant for all values of Poisson ratio. Maximum 

value of vertical stress (ν = 0.45) is 275 kPa. With decrease in Poisson ratio, reduction is of the 

order of 23.2% (ν = 0.40), 30.9% (ν = 0.35), 34.5% (ν = 0.30) and 37.0% (ν = 0.25). Maximum 

value of horizontal stress (ν = 0.45) is 213.4 kPa. With decrease in Poisson ratio, reduction is of 

the order of 6.1% (ν = 0.40), 14.1% (ν = 0.35), 16.5% (ν = 0.30) and 20.1% (ν = 0.25). 

 

6.3 Effect of scaling parameter (dmax) 
 

Figs. 13 and 14 show the variation of vertical and horizontal stress with depth, on a vertical 

plane at the centre of footing, for different values of scaling parameter (dmax). It is observed that 

dmax do not have a significant influence on stress distribution especially as depth keeps on 

increasing. At shallow depths, higher values of stress are for smaller values of dmax. Maximum 

value of vertical stress (dmax =2.0) is 222.5 kPa. With increase in scaling parameter, decrease in 

vertical stress is of the order of 3.14% (dmax =2.5), 5.07% (dmax =3.0), 12.4% (dmax =3.5), 19.7% 

(dmax =4.0). Maximum value of horizontal stress (dmax =2.0) is 213.25kPa. With increase in scaling 

parameter, decrease in horizontal stress is of the order of 5.71% (dmax =2.5), 7.64% (dmax =3.0), 

11.61% (dmax =3.5), 14.44% (dmax =4.0). Fig. 15 shows vertical deformation of the top surface for 

different scaling parameters (dmax). It is observed that dmax have no influence on deformations. 

Same is the case with horizontal deformations. 

 

 

 

 

Fig. 13 Variation of vertical stress with depth, on a vertical plane passing through centre of footing, for 

different values of scaling parameter (dmax) 
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Fig. 14 Variation of horizontal stress with depth, on a vertical plane passing through centre of footing, for 

different values of scaling parameter (dmax) 

 

 

Fig. 15 Variation of vertical deformation on the top surface with distance from centre of footing, for    

different values of scaling parameter (dmax) 
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7. Conclusions 

 

From the study following conclusions can be drawn: 

1) Vertical deformation decreases with increase in depth and also with increase in horizontal 

distance from centre of footing whereas horizontal deformation increases initially with 

increase in horizontal distance and then decreases but decreases with depth continuously. 

2) Like deformations, stresses also decrease with increase in depth and with increase in 

horizontal distance from centre of footing. 

3) With increase in modulus of deformation (E), deformations keep on decreasing. The 

decrease in deformation is less for higher values of E. 

4) Modulus of deformation (E) does not have an influence on stress distribution. 

5) Higher is the Poisson ratio, smaller is the vertical deformation and higher is the horizontal 

deformation. 

6) Poisson ratio has a small effect on the stress distribution. At depths close to the surface 

higher is the Poisson ratio, higher will be the stress and as depth increases there is 

practically no effect. 

7) Scaling parameter (dmax) does not have a significant influence on stress distribution. 

However for depths close to the surface, smaller the value of dmax smaller are the stresses 

whereas on the surface results are vice versa. 
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