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Abstract.  The present paper deals with the analysis of water tank with elastic separator wall. Both fluid 
and structure are discretized and modeled by eight node-elements. In the governing equations, pressure for 
the fluid domain and displacement for the separator wall are considered as nodal variables. A method namely, 
direct coupled for the analysis of water tank has been carried out in this study. In direct coupled approach, 
the solution of the fluid-structure system is accomplished by considering these as a single system. The 
hydrodynamic pressure on tank wall is presented for different lengths of tank. The results show that the 
magnitude of hydrodynamic pressure is quite large when the distances between the separator wall and tank 
wall are relatively closer and this is due to higher rotating tendency of fluid and the higher sloshed 
displacement at free surface. 
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1. Introduction 
 

The interaction between an elastic structure and compressible fluid adjacent to it due to 

dynamic loading has become the subject of intensive investigation in recent years. An analytical 

solution of the wave equation to obtain the hydrodynamic pressure on the vertical face of the 

structures during earthquake presented by Chopra (1967) presented. Similar analytical solution for 

upstream face was evaluated by Chwang (1978). However, these analytical cannot account for the 

arbitrary geometry of the structure and this problem can be efficiently tackled with finite element 

technique. Finite element formulations based on displacement variables are usually chosen for the 

structure while the fluid is described by different variables such as displacement, pressure, velocity, 

velocity potential etc. The governing equations of fluid in terms of displacements are carried out 

by many researchers (Olson and Bathe 1983, Chen and Taylor 1990, Bermudez et al. 1995, Maity 

and Bhattacharyya 1997). In such formulation, the fluid elements can easily be coupled to the 

structural elements using standard finite element assembly procedures. But the degrees of freedom 

for fluid domain increase significantly. Bouaanani and Lu (2009) considered the velocity potential 

be the nodal variable for the analysis of reservoir adjacent to dams. Biswal et al. (2006) studied the 

sloshing of liquid on various shape of the container. The velocity potential is considered as 
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independent variable in their finite element modeling. A similar study was conducted by Pal and 

Bhattacharyya (2013)  

Tung (1979) studied the hydrodynamic pressure distribution on a rigid, submerged, cylindrical 

storage tank subjected to horizontal base excitation. The author considered fluid to be 

incompressible. Williams and Moubayed (1990) calculated hydrodynamic pressure on rigid tank 

walls due to horizontal and vertical excitations.  The effects of a bottom-mounted rectangular 

block on the sloshing characteristics of the fluid in rectangular tanks were investigated by 

Chounand Yun (1996) using the linear water wave theory.  The hydrodynamic pressure exerted 

on the tank wall was also calculated and the study showed the influence mounted block size and 

position. Consequent experimental study by Panigrahy et al. (2009) showed that the pressure 

exerted on the walls varies in a similar nature as that of the applied excitation. Barrios et al. (2007) 

studied the nonlinear sloshing response of cylindrical tanks. Hua et al. (2013) simulated fluid 

sloshing and sloshing induced hydrodynamic pressure on tank walls.  Their study shows the 

influences of excitation frequency on hydrodynamic on rigid tank wall. However, all the above 

numerical simulations are carried out considering tank walls to be rigid. The deformations, stresses 

and hydrodynamic pressure will be more realistic if the elastic properties of tank walls and 

wall-fluid interaction are considered appropriately.  

Many simplified approaches are available to deal fluid-structure interaction problem. Some of 

which, fluid-structure interaction is studied indirect approach, indirect iterative approach (Maity 

and Bhattacharyya 2003, Akkose et al. 2008, Onate et al. 2006, Singh et al. 1991, Lotf 2004, 

Antoniadis and Kanarachos 1998, Gogoi and Maity 2005, Pani and Bhattacharya 2003). In this 

method, the hydrodynamic pressure in fluid domain is first determined considering structure as 

rigid. The resulting pressure exerts forces on the adjacent structure. Due to this additional forces 

structure undergoes new displacement. The fluid domain is solved again with the calculated 

displacement to get the response of the elastic structures. The process is continued till a desired 

level of convergence in both pressures and displacements are achieved. However, the main 

disadvantages of this method are that the accuracy this analysis depends on the tolerance value and 

it requires more computational time and large computer storage as this analysis procedure is 

iterative in nature. 

To compensate the inadequacies of this analyses procedure, an efficient direct finite element 

approach is developed. In this direct approach, structure and fluid are coupled and solved as a 

single system. In present study, a pressure-displacement based direct coupling approach is 

developed to obtain responses of water-separator wall system. A computer code in MATLAB 

environment has been developed to obtain hydrodynamic pressure, displacement and stresses on 

separator wall. The study is carried out for different tank dimensions against horizontal ground 

excitations. 

 

 

2. Theoretical formulation  
 

2.1 Theoretical formulation for wall  
 
The equation of motion of a structure subjected to external forces can be written in standard 

finite element form as 

          i i i i i i diM u + C u + K u = F
                     (1)
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Where,  iu , iu and  iu are nodal accelerations, velocities and displacements,  diF  is 

the nodal forces. Mass matrix,  iM  and stiffness  iK may be expressed as follows. 

   w

T T

i w i

V V

M [ N ] [ N ] dV and [ K ] [ B ][ D] [ B] dV     (2) 

Where, [Nw] is shape function matrix, [B] is strain displacement matrix, [D] is strain 

displacement matrix and ρ is density of the wall. However, in present investigation, the tank walls 

have been discretised by two dimensional eight node rectangular elements and walls are assumed 

to behave linearly and are in a state of plane strain. The Rayleigh damping is considered as 

structural damping. Therefore, the damping matrix,  iC can be expressed as 

      C =a M +b K               (3) 

Here, a  and bare called the proportional damping constants. The relationship between a ,

b  and the fraction of critical damping at a frequency  is given by the following equation.   

 
1

2

b
a 



 
   

                 

(4) 

Damping constants a  and bare determined by choosing the fraction of critical damping 1  

and 2  at two different frequencies 1 & 2  
and solving simultaneously equations a  and b . 

Thus  

2 2 1 1

2 2

2 1

1 2 2 1 1 2

2 2

2 1

2(ξ ω -ξ ω )
a =

(ω -ω )

2ω ω (ξ ω -ξ ω )
b =

(ω -ω )

 


 


                (5) 

Usually, 1 is taken as the lowest natural frequency of the structure, and 2 is the highest 

frequency of interest in the loading or response. In the present study, the fraction of critical 

damping for both the frequencies are chosen as the same i.e. 1 ’ = 2 ’ =   . Thus, above equation 

may be expressed as 

 
2 1

1 2

2 1

2ξ
a =

(ω +ω )

2ξ ω ω
b =

(ω +ω )







            (6) 

 

2.2 Theoretical formulation for fluid 
 
For a Newtonian fluid the state of stress is define by an isotropic tensor as 
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'

ij ij ijT p Td= - +
             

(7) 

Where, ijT is total stress, '

ijT is viscous stress tensor and depends only on the rate of 

deformation in such a way that the value becomes zero when the fluid is under rigid body motion 

or rest, p is a scalar whose value is independent  explicitly on the rate of deformation and ijδ is 

kronecker delta. For isotropic linear elastic material, the most general form of '

ijT is   

 ijijij DT  2'                    (8)  

Where, μ and λ are two material constants. μ is known as first coefficient of viscosity or 

viscosity and (λ+2μ/3) is second coefficient of viscosity or bulk viscosity. ijD is rate of deformation 

tensor. 

  
332211)(

2

1
DDDand

x

v

y

v
D

i

j

j

i
ij 









                (9) 

Thus, the total stress tensor becomes  

ijijijij DpT  2
        

 (10)

 
For compressible fluid, bulk viscosity (λ+2μ/3) is zero. Thus, the Eq. (10) becomes 

ij ij ij ij

2μ
T =-pδ - Δδ +2μD

3
               (11a)

 

In case of water like fluid, the viscosity of fluid is neglected, as it is very less in magnitude and 

the Eq. (5) becomes 

ij ijT =-pδ
                

(11b) 

Generalized Navier-Stokes equations of motion are given by 

 B
x

T

x

v
v

t

v

j

ij

j

i
j

i  













)(

          

 (12)

 

Where, Bi is the body force and ρ is density of fluid. Substituting eq. (11-b) in eq. (12) the 

following relations are obtained. 

i

i

j

i

j

i

x

p
B

x

v
v

t

v














 )(            (13) 

If u and v are the velocity components along x and y axes respectively and fx and fy are body 

forces along x and y direction respectively, the equation of motion may be written as  

  
xf

y

u
v

x

u
u

t

u

x

p




















)(

1


              (14)
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





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)(

1


      (15) 

If body forces are neglected, Eqs. (14) and (15) become  

0)(
1





















y

u
v

x

u
u

t

u

x

p


                     (16) 

        0)(
1





















y

v
v

x

v
u

t

v

y

p


        (17) 

The continuity equation of fluid in two dimensions is expressed as 

0)(2 














y

v

x

u
c

t

p
           (18) 

Where, c is the acoustic wave speed in fluid. Now, differentiating Eqs. (16) and (17) with 

respect to x and y respectively, the following relations are obtained. 
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Adding Eqs. (19) and (20), the following expression is arrived. 
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Differentiating Eq. (18) with respect to time, the following expression can be obtained. 
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                      (22) 

Thus, from Eqs. (21) and (22), one can find the following expression 
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Neglecting higher order terms in Eq. (23), the equation becomes 
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In the present study, the water is considered to be linearly compressible with very small amount 

of irrotational movement (Kassiotis et al. 2010, 2011a, b). Hence, the Eq. (24) becomes 
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2 111
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cy
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x
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


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









                         (25) 

The pressure distribution in the fluid domain may be obtained by solving Eq. (25) with the 

following boundary conditions. A typical geometry of tank-water system is shown in Fig. 1. 

 
(i) At surface I 

Considering the effect of surface wave of the fluid, the boundary condition of the free surface is 

taken as 

1 p
p +  = 0

g y




               (26) 

(ii) At surface II 

This surface is considered as rigid surface and thus pressure should satisfy the following 

condition  

 ,0, 0.0
p

x t
n





                           (27) 

 

 

 

Fig. 1 A typical finite element discretization of tank-water system 
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 (iii) At surface III 

At water-tank wall interface, the pressure should satisfy  

i t

f

p
(0, y, t) = ae

n





                           (28) 

Where 
i tae 

 is the horizontal component of the ground acceleration in which, is the 

circular frequency of vibration and 1i   ,n is the outwardly directed normal to the element 

surface along the interface. f is the mass density of the fluid. 

 

2.2.1 Finite element formulation for fluid domain 
By Galerkin approach and assuming pressure to be the nodal unknown variable, the discretised 

form of Eq. (25) may be written as  

2 2 2

2 2 2 2

1 1 1
0r

p p p
N ( ) d

x y c t



  

   
   

   
                    (29) 

Where, Nr is the interpolation function for the fluid and Ω is the region under consideration. 

Using Green's theorem Eq. (29) may be transformed to  
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The first term of the above equation may be written as 
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The whole system of Eq. (30) may be written in a matrix form as 

}{}]{[}]{[ BpGpH                          (32) 

in which 

 


dNN
c

H r

T

r ][][
1

][
2

 






























dN
y

N
y

N
x

N
x

G r

T

rr

T
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321][}{ BBBd
x

p
N

T

r 



B  

According to the boundary conditions for the fluid domain, if linearised surface wave condition 

is adopted (Eq. (26)), the same may be written in finite element form as 

    
1

I IB R p
g

                              (34) 
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in which 

     
I

T

I r rR N N d


                          (35) 

At the surface II (Eq. (27)) 

{ } 0IIB =                                (36) 

At the surface III (Eq. (28)), if {a} is the vector of nodal accelerations of generalized 

coordinates, {BIII} may be expressed as 

aRIIIIII }{B                               (37) 

where 

 


dNTNR r

T

rIII

III

]][[][}{                        (38) 

Here, [T] is the transformation matrix for generalized accelerations of a point on the fluid 

structure interface and [Nd] is the matrix of shape functions of the tank wall.  

Substitution of all terms in Eq. (32) gives 

}{}]{[}]{[}]{[ rFpGpApH                        (39) 

Here, [H], [A], [G] and {Fr} can be expressed as 

   
1

IH H R
g

     

  0A  = [ ]  

 G G     

})]{([}{ aRF IIIr                            (40) 

For any prescribed acceleration at the dam-reservoir interface and reservoir bed interface, Eq. 

(39) is solved to obtain the hydrodynamic pressure in the reservoir. 

 

2.3 Direct coupling for fluid-structure system 
 

In the fluid-structure interaction problems, the structure and the fluid do not vibrate as separate 

systems under external excitations, rather they act together in a coupled way. Therefore, this 

fluid-structure interaction problem has to be dealt in a coupled way. In present study, a strong 

coupling approach is developed to get the coupled water-separator wall response under external 

excitation. The coupling of structure and fluid may be formulated in following way. 

The discrete structural equation with damping may be written as 

0dMu Cu Ku Qp F                             (41) 

The coupling term [Q] in Eq. (41) arises due to the acceleration and pressure specified on the 
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water-separator wall interface boundary (Zienkiewicz and Newton 1969) and can be expressed as 

s s

T T

s s rN npd N nN d p Qp
 
    
 

  
                        (42) 

Where, n  is the direction vector of the normal to the water-separator wall interface. Ns and Nr 

are the shape functions of separator wall and water respectively. Similarly, discretized fluid 

equation may be written as 

0T

rEp Ap Gp Q u F                               (43) 

Now, the system of Eqs. (41) and (43) are coupled in a second-order ordinary differential 

equations, which defines the coupled water-separator wall system completely. The Eqs. (41) and 

(43) may be written as a set 

0 0

0 0

d

T

r

FM u C u K Q u

Q E p A p G p F

             
              

             
              (44) 

For free vibrations analysis, the above equation can be simplified to the following expression 

after omitting all the damping terms 

0
0

0T

M u K Q u

Q E p G p

       
       

       
                     (45) 

Natural frequency of water-separator wall system can be obtained by eigenvalue solution of Eq. 

(45). However, the matrices in Eq. (37) are unsymmetrical and standard eigenvalue solutions 

cannot be used directly. So the above matrices are to be transformed into symmetric matrices. This 

can be accomplished by change of variables as follows. Introducing two variables 
tiueu ~
and

tipep ~
,
Eq. (45) can be expressed as 

uMpQuK ~~~ 2                             (46) 

pGuQpE T ~~~ 22                             (47) 

Further, introducing another variable q such that 

qp 2~                                 (48) 

After manipulation and substitution of above three equations in eq. (45), the final form of this 

equation becomes 

2

0 0 0

0 0 0 0 0

0 0 0 T T

K M Q u

A E p

Q E G q



      
     

      
           

                  (49) 

The above matrices in fluid-structure system are symmetric and are in standard form. Further, 
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the variable can be eliminated by static condensation and the final water-separator wall system 

becomes symmetric and still contains only the basic variables. 

 

2.4 Indirect coupling for fluid-structure system  
 
The coupled effect of fluid-structure system can also be achieved by an iterative scheme. At 

any time instant t, hydrodynamic pressure in water is evaluated by solving Eq. (39) with 

appropriate boundary conditions and considering the structure to be rigid. But, the result is 

inaccurate because in practical, the separator wall is elastic in nature. To determine accurate 

hydrodynamic pressure, forces developed due to hydrodynamic pressures at rigid water-separator 

wall interface are considered as additional forces on the adjacent separator. Hence, at the same 

time instant, the structure is analyzed with these additional forces {Frr}, using Eq. (50).  

d rrMu Cu Ku F F                               (50) 

Here, the external force Fd can be expressed as follows. 

d gF Mu                                 (51) 

The ground acceleration is considered as gu . Due to these additional forces, the separator wall 

undergoes a displacement 
td , as a result boundary condition at the water-separator wall 

interface changes. Therefore, the water domain is solved again with the changed displacement at 

water-separator wall interface. Thus at time t, both the hydrodynamic pressure  
t

p and the 

structural displacement  
td  are iterated simultaneously till a desired level of convergence is 

achieved (Maity and Bhattacharyy 2003). Thus 

   

 

   

 
',  and

i+1 ii+1 it t t t

ii tt

 - p p - d d
       

p d
                    (52) 

Where, i is the no. of iteration. ε´ and ε̋ are small pre-assigned tolerance values. For an efficient 

and accurate analysis of water-separator wall coupled system, the steps to be followed are given in 

the form of flow chart in Fig. 2. 

 

2.5 Computation of velocity and displacement of fluid 
 

The accelerations of the fluid particles can be calculated after computing the hydrodynamic 

pressure in the water tank. The velocity of the fluid particle may be calculated from the known 

values of acceleration at any instant of time using Gill’s time integration scheme (Gill 1951) which 

is a step-by-step integration procedure based on Runge-Kutta method (Ralston and Wilf 1965). 

This procedure is advantageous over other available methods as it (i) needs less storage registers, 

(ii) controls the growth of rounding errors,(iii) is usually stable and (iv) is computationally 

economical. At any instant of time t, velocity will be 

tttt tVVV                                (53) 
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Fig. 2 One of the PLVM of the undamaged structure 
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Velocity vectors in the fluid domain may be plotted based on velocities computed at the Gauss 

points of each individual element and then extrapolating to their nodal points. Similarly, the 

displacement of fluid particles in the fluid domain, U at every time instant can also be computed as 

tttt tUUU                               (54) 

 

 

3. Numerical results 
 

Example 1: Validation of direct coupling  

The accuracy of the proposed strong coupled approach is studied considering a bench marked 

problem. The results are compared with an existing literature (Sami and Lotfi 2007) for the Pine 

flat dam. The material properties of dam and reservoir are considered as follows: modulus of 

elasticity=22.75GPa,Poisson’s ratio=0.2, unit weight of concrete=2480 kg/m
3
, pressure wave 

velocity = 1440 m/s, unit weight of water = 981kg/m
3
,height of dam (Hd) = 121.91 m, width at top 

(td) =  9.75 m, width at base  (Ld) = 95.71,depth of reservoir (Hf)= 116.19 m. Fig. 3 shows the 

geometric details and a typical finite element discretization for the dam-reservoir system. For the 

finite element analysis, the infinite reservoir is truncated at a distance (Lt) 200 m from 

dam-reservoir interface and Somerfeld’s boundary condition is implemented at truncation surface 

as considered by Sami and Lotfi (2007). The first five natural frequencies of the dam-reservoir 

system are listed and compared with those values obtained by Samii and Lotfi (2007) in Table 1. 

The tabulated results show the accuracy of the developed direct coupled approach. 

 

Example 2: Efficiency of direct coupling 

In order to investigate the efficiency of direct coupling, a comparative study with indirect 

coupling is carried out with the following geometric and material properties of water-separator 

wall system. Size of tank = 56 m × 20 m (Lt) × 15 m (H), height of separator wall (Hs) = 12.5 m, 

modulus of elasticity = 200 GPa, Poison’s ratio = 0.3, structural damping = 5 %, depth of fluid (Hf) 

= 10 m, mass density of fluid = 1000 kg/m
3
, mass density of separator wall = 7800 kg/m

3
. Here the 

flexible separator wall and water domain are discretized by 2 × 10 (i.e., Nh = 2 and Nv = 10) and 10 

×8 (i.e., Nh = 10 and Nv = 8) respectively. A typical finite element discretization of water-separator 

wall system is shown in Fig. 1. 

 
Table 1 First five natural frequencies of the Pine flat dam-reservoir system 

Mode number 

Natural Frequency (Hz) 

Present Study Samii and Lotfi [12] 

1 2.5341 2.5267 

2 3.2712 3.2681 

3 4.5626 4.6651 

4 6.2326 6.2126 

5 7.9435 7.9181 
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Fig. 3 Finite element mesh of dam-reservoir system 
 

 

The comparative study is carried out for L= 10 m and the responses of water-separator wall 

system are determined due to the ramp acceleration of unit amplitude. For indirect method, the 

tolerance value is considered as 10
-3

 because for this value the responses of water-separator wall 

system converged sufficiently. The displacement of flexible separator wall and hydrodynamic 

pressure at the point A (Fig. A) determined from different coupling methods are presented in Fig. 4 

and Fig. 5 respectively. The tip displacements from both the methods follow the similar pattern. 

However, the pattern obtained from indirect method is shifted toward right, when it is compared to 

the pattern from direct method. The Fig. 4 also depicts that the displacement values obtained from 

the indirect method is larger than those obtained from direct method. This difference becomes 

larger, when the hydrodynamic pressure at the point A (Fig. 1) is compared (Fig. 5). In case of 

direct coupling, the separator wall and the water vibrate as a single system and the natural 

frequency of it is the coupled natural frequency of separator wall-water system. However, in 

indirect coupling separator wall and water vibrate separately and their natural frequencies are 

higher than the natural frequency obtained from direct coupling approach i.e., coupled natural 

frequency of separator wall-water system. This is the main reason for obtaining different values in 

Figs. 4 and 5. The CPU time for these two methods is listed in Table 2. The computer program 

have been run in a PC of following configuration: Processor:- Intel(R) Core(TM) 2 Duo CPU  

T5870 @ 2.00 GHz, Installed memory (RAM):- 3.00 GHz, System type:- 32 bit operating system. 

The comparison of CPU times in Table 2 shows that the CPU time for direct coupling is quite less 

with that for indirect coupling. Therefore, direct coupling method is considered as most suitable 

method of analysis of fluid-structure interaction problems and it is used in further analysis of 

water-separator wall system in present analysis. 
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Fig. 4 Tip displacement of the separator wall due to ramp acceleration 
 

 

 

 

Fig. 5 Hydrodynamic pressure at point A due to ramp acceleration 
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Table 2 CPU time for analysis of dam-reservoir system 

CPU time (sec) 

Direct coupling Indirect coupling 

115 865 

 

 

Example 3: Responses of tank due earthquake excitation 

Geometric and material properties considered in this case are same as considered in example 2 

except the length of tank. The performance of water-separator wall system  is studied for two 

different tank lengths, i.e., 5 m and 15 m and discretized by 2 × 8 (i.e., Nh = 2 and Nv = 8), 10 × 8 

(i.e., Nh = 10 and Nv = 8) respectively. The study is carried out due to the horizontal component of 

Koyna earthquake (Fig. 6). Displacement at the tip of the separator wall for different tank length is 

compared in Fig. 7. The figure shows the incremental trend with the decrease of the tank length. 

However, this increase is not so prominent. Similar observation is obtained while the major 

principal stresses at the base of the separator for different length of the tank are compared (Fig. 8).  

The hydrodynamic pressure at point A is also presented in Fig. 9. In this case, the hydrodynamic 

pressure for tank length of 5.0 m is almost two times of the hydrodynamic pressure for tank length 

of 10 m. These two observations imply that the behavior of the water in the tank may be altered by 

the lengths of the tank. However, the length of the tank does not have so much effect on the 

performance of separator wall.   

Hydrodynamic pressure along the face of the separator wall for tank of length 5 m and 15 m are 

shown in Fig. 10 and Fig. 11 respectively and the pressure is compared with the corresponding 

pressure for rigid wall. The maximum pressure on the elastic walls is almost equal to maximum 

hydrodynamic pressure corresponding rigid for tank length of 15 m. For tank of length 5 m, 

maximum hydrodynamic pressure on flexible separator wall is lower than that for rigid wall. 

However, the distributions of hydrodynamic pressure for flexible and rigid wall for both the length 

of the tank are of quite different natures.  The maximum hydrodynamic pressure for flexible 

separator wall no longer occurs at the base of the wall as in the rigid case, but shifts upwards to a 

distance near about 2Hf/3 and Hf/2 above the base for tank length of 15 m and 5 m respectively. 

The upward shifting of the peak hydrodynamic pressure implies that the bending moment exerted 

by the hydrodynamic loading is larger than that predicted by the rigid wall analysis.  

Fig. 12 shows the sloshed displacement for different lengths of the water tank. Horizontal axis 

of the figure shows a dimension less parameter (x/L). The sloshed displacement for tank length of 

5 m is comparatively higher than that of tank of 15 m length. For deep water case i.e., Hf =10 m 

and L= 5 m, the tank wall affect the responses of separator wall significantly. For comparatively 

lower tank length, the sloshed displacement of the free surface becomes very large and it enhances 

the hydrodynamic pressure within the water domain. The velocity vectors in the fluid domain are 

plotted in Fig. 12. The vertical axis represents the height of the water and the horizontal axis 

represents the length between elastic separator wall and rigid tank wall. Figs. 13 (a) and 13 (b) 

clearly show that the fluid generates a tendency to rotate. However, this rotating tendency is more 

in case of lower tank length and this rotating tendency increases the hydrodynamic pressure in 

fluid domain.  
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Fig. 6 Horizontal component of Koyna earthquake 
 

 

Fig. 7 Tip displacement of separator wall due to Koyna earthquake 
 

 

Fig. 8 Major Principal stress at the base of the separator wall due to Koyna earthquake 
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Fig. 9 Hydrodynamic pressure at point A due to Koyna earthquake 
 

 

Fig. 10 Hydrodynamic pressure along the separator wall at t= 4.20 sec for L=5 m 

 

 

4. Conclusions  
 

This paper presents a pressure based finite element analysis of water tank with elastic separator 

wall. This pressure formulation of fluid domain has certain advantages in the computational aspect 

compared to the velocity potential and the displacement-based formulations, as the number of 

independent variable per node is only one. A direct formulation is used to couple the fluid and 

elastic separator wall. From some typical numerical problem solved in the present study it is 

observed that the coupling phenomena are found to have great significance in the case of 

fluid-structure interaction analysis. 
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Fig. 11 Hydrodynamic pressure along the separator wall at t = 4.20 sec for L=15 m 

 

 

 

Fig. 12 Sloshed displacement for different length of tank at t= 4.20 sec 

 

 

The hydrodynamic pressure is reduced if the elastic effect of separator is taken into 

consideration. The hydrodynamic pressure is increased for comparatively lower tank length. The 

displacement at the free surface of the tank is comparatively higher for lower tank length. The 

rotating tendency of fluid is more when the distance between the tank wall and elastic separator is 

less. These two critical observations are the main reason to obtain comparatively higher 

hydrodynamic pressure for lower tank length.  
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(a) (b) 

Fig. 13 Velocity vectors at t = 4.20 sec in fluid for (a) L =5 m and (b) L =15 m 
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