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Abstract. In this paper, a refined exponential shear deformation beam theory is developed for bending
analysis of functionally graded beams. The theory account for parabolic variation of transverse shear strain
through the depth of the beam and satisfies the zero traction boundary conditions on the surfaces of the beam
without using shear correction factors. Contrary to the others refined theories elaborated, where the
stretching effect is neglected, in the current investigation this so-called “stretching effect” is taken into
consideration. The material properties of the functionally graded beam are assumed to vary according to
power law distribution of the volume fraction of the constituents. Based on the present shear deformation
beam theory, the equations of motion are derived from Hamilton’s principle. Analytical solutions for static
are obtained. Numerical examples are presented to verify the accuracy of the present theory.
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1. Introduction

Functionally graded materials (FGMSs) are a class of composites that have continuous variation
of material properties from one surface to another, thus eliminating the stress concentration found
in laminated composites.

A typical FGM is made from a mixture of two material phases, for example, a ceramic and a
metal. The FGMs are widely used in mechanical, aerospace, nuclear, and civil engineering.
Consequently, studies devoted to understand the static and dynamic behaviors of FGM beams,
plates have being paid more and more attentions in recent years.

Sankar (2001) investigated an elasticity solution for bending of functionally graded beams (FG
beams) based on Euler-Bernoulli beam theory. Zhong and Yu (2007) provided an analytical
solution for cantilever beams subjected to various types of mechanical loadings using the Airy
stress function. Li (2008) investigated static bending and transverse vibration of FGM Timoshenko
beams, in which by introducing a new function, the governing equations for bending and vibration
of FGM beams were decoupled and the deflection, rotational angle and the resultant force and
moment were expressed only in the terms of this new function. Benatta et al. (2009) proposed an
analytical solution to the bending problem of a symmetric FG beam by including warping of the
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cross-section and shear deformation effect. Sallai et al. (2009) investigated the static responses of
a sigmoid FG thick beam by using different beam theories. Simsek (2010a) studied the free
vibration analysis of an FG beam using different higher order beam theories. In a recent study,
Simgek (2010b) has studied the dynamic deflections and the stresses of an FG simply-supported
beam subjected to a moving mass by using Euler—Bernoulli, Timoshenko and the parabolic shear
deformation beam theory. EI Meiche et al. (2011) proposed a novel hyperbolic shear deformation
theory for buckling and vibration of functionally graded sandwich plate. Benachour et al. (2011)
employed a four-variable refined plate theory to study the free vibrations response of FG plates
with arbitrary gradient. Bachir Bouiadjra et al. (2012) used a four-variable refined plate theory for
the buckling response of FG plates under thermal loads. Bourada et al. (2012) developed a new
four-variable refined plate theory for thermal buckling of FG sandwich plates. Fekrar et al. (2012)
analyzed the buckling response of FG hybrid composite plates using a new four variable refined
plate theory. Bouremana et al. (2013) proposed a novel first shear deformation beam theory based
on neutral surface position for FG beams. Bachir Bouiadjra et al. (2013) investigated the nonlinear
thermal buckling response of FG plates using an efficient sinusoidal shear deformation theory.
Bessaim et al. (2013) examined the bending and free vibration behaviours of sandwich plates with
FG isotropic face sheets by using a new higher-order shear and normal deformation theory. Tounsi
et al. (2013a) presented an analytical investigation on the thermoelastic bending of FG sandwich
plates using a refined trigonometric shear deformation theory. Bouderba et al. (2013) studied the
thermomechanical bending behaviour of FG plates supported by Winkler-Pasternak elastic
foundations. Kettaf et al. (2013) proposed a novel hyperbolic shear displacement model to study
the thermal buckling behaviour of FG sandwich plates. Ould larbi latifa et al. (2013) developed an
efficient shear deformation beam theory based on neutral surface position for bending and free
vibration of functionally graded beams. Zidi et al. (2014) investigated the bending response of FG
plates subjected to a hygro-thermo-mechanical loading by using a four variable refined plate
theory. Ait Amar Meziane et al. (2014) developed an efficient and simple refined theory for
buckling and free vibration response of exponentially graded sandwich plates under various
boundary conditions. Draiche et al. (2014) studied the free vibration of rectangular composite
plates with patch mass using a trigonometric four variable plate theory. Nedri et al. (2014) studied
the free vibration behavior of laminated composite plates resting on elastic foundations by using a
refined hyperbolic shear deformation theory. Khalfi et al. (2014) employed a refined and simple
shear deformation theory for thermal buckling behavior of solar FG plates resting on elastic
foundation. Klouche Djedid et al. (2014) developed an n-order four variable refined theory for
bending and free vibration of FG plates. Recently, Hadji (2014) studied the static and free
vibration of FGM beam using a higher order shear deformation theory. Belabed et al. (2014)
developed an efficient and simple higher order shear and normal deformation theory for FG plates.
Hebali et al. (2014) analyzed the bending and free vibration behaviour of FG plates using a novel
quasi-3D hyperbolic shear deformation theory. The stretching effect was included also in the
analysis of the mechanical responses of thick FG plates (Houari et al. 2013, Bousahla et al. 2014,
Fekrar et al. 2014). Some beam theories are applied also to different type of structures as is
described in Refs (Heireche et al. 2008, Tounsi et al. 2008, Benzair et al. 2008, Tounsi et al. 2009,
Amara et al. 2010, Tounsi et al. 2013b, c, Berrabah et al. 2013, Benguediab et al. 2014). A general
revue for FG structures such as beams plates and shells is presented by Tounsi et al. (2013d).

In the present study, bending and free vibration of simply supported FG beams was investigated
by using a refined exponential shear deformation beam theory with (gz #* 0). The most interesting

feature of this theory is that it accounts for a parabolic variation of the transverse shear strains
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across the thickness and satisfies the zero traction boundary conditions on the top and bottom
surfaces of the beam without using shear correction factors. Then, the present theory together with
Hamilton’s principle, are employed to extract the motion equations of the functionally graded
beams. Analytical solutions for static and free vibration are obtained. Numerical examples are
presented to verify the accuracy of the present theory.

2. Problem formulation

Consider a functionally graded beam with length L and rectangular cross section bxh, with
b being the width and h being the height as shown in Fig. 1. The beam is made of isotropic
material with material properties varying smoothly in the thickness direction.

2.1 Material properties

The properties of FGM vary continuously due to the gradually changing volume fraction of the
constituent materials (ceramic and metal), usually in the thickness direction only. The power-law
function is commonly used to describe these variations of materials properties. The expression
given below represents the profile for the volume fraction.

z 1)
V.= Z4+= la
(23] (12)

k is a parameter that dictates material variation profile through the thickness. The value of k
equal to zero represents a fully ceramic beam, whereas infinite k indicates a fully metallic beam,
and for different values of k one can obtain different volume fractions of metal.

The material properties of FG beams are assumed to vary continuously through the depth of the
beam by the rule of mixture (Marur 1999) as

P(z)=(R-R)V.+R, (1b)

where P denotes a generic material property like modulus, P, and P, denotes the property of

the top and bottom faces of the beam respectively, Here, it is assumed that modules E,G and v
vary according to the Eq. (1).

Ceramic

b
| Metal .L b
' L

Fig. 1 Geometry and coordinate of a FG beam
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2.2 Kinematics and constitutive equations

The displacement field of the proposed theory takes the simpler form as follows

_ M ()M
u(x,2) = Uy, )~z 0~ £(2) )

u(x,2) = W, (X) + W, +g(2)p, (%)
Clearly, the displacement field in Eq. (2) contains only four unknowns(u,wb,ws,goz). The
strains associated with the displacements in Eq. (2) are

Oug 8 Wy,

= T2 —f() (3a)
£, =9 (2) 9, (3b)

6<pz
9(2)[ P 6xj (3c)

Where f(z)=z—-2ze2"? and g(z)=1- f'(z). It can be seen from Egs. (3(c)) that the
transverse shears strain y,, is equal to zero at the top (z=h/2)and bottom (z=-h/2)

surfaces of the beam, thus satisfying the zero transverse shear stress conditions.
The state of stress in the beam is given by the generalized Hooke’s law as follows

Oy = Qll(z)gx + Q13(Z)€z (43)
sz = Q55(2)7XZ (4b)
o, = le(z)gx + Q33(Z)‘9z (4c)

The Q; expressions in terms of engineering constants are

E(z) E(z)

,Qua(2)=vQu(2), Qss(2)= (+U)

Q11(2) = Qq3(2) = (4d)

2.3 Equations of mation

Hamilton’s principle is used herein to derive the equations of motion. The principle can be
stated in analytical form as (Thai and Vo 2012)

t
5j(u +V —K)dt=0 (5)

b
where t isthe time; t, and t, are the initial and end time, respectively; SU is the virtual
variation of the strain energy; SV is the virtual variation of the potential energy; and 6 K is the

virtual variation of the kinetic energy. The variation of the strain energy of the beam can be stated
as
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L
SU = j (0,56, +0,08, + 7,0 y,, )dzdx
0_

N‘:.'—.N\D'

(6)

L
auo °w, O°W, ow, Op.
-M, 0 -Po S+ R 8o, +Q.. 0 S 422 | |dX
ﬂ X Ox? x| Qe (ax aij

where N, M, P and Q are the stress resultants defined by
h h h

(N,M,, X)_j(lz f)odz, Q= jgrxzdz and R, —jag @)

2 2 2
The variation of the potential energy by the applied transverse load g can be written as

L

5V =~ ad(wp, +w +go, ) 8)
0

The variation of the kinetic energy can be expressed as

L
oK = J p(2) {u&u +w§w}dzdx
0_

L ) ) ) ; ,
0 oxot Oxot )

% o*w, o'w, 0w o'w,
- [a o aatzgu[’j ! [a ZafzaNb] ! [a a0 % o ZatZ&Nb

_ o'w 62wb GRA %o, 0%,
K[a Zatza/vj Li[[ R ]5% [(ameN)at ]]+L(8t §¢Z]}dx

where dot-superscript convention indicates the differentiation with respect to the time variable t;
p(z) is the mass density; and (1,, 1, J,, 1,, J,, K, L, L,) are the mass inertias defined
as

N‘:-'—.N\D'

(s 1t 91,15, 35, Ky, Ly Ly )= [[L2, £,2%,2F, 12,9, 0% )p(2)dz (10)

S—n | T

2
Substituting the expressions for U, 6V and 6T from Egs. (6), (8) and (9) into Eq. (5)
and integrating by parts versus both space and time variables, and collecting the coefficients of

ou,, owW,, ow, and o ¢,, the following equations of motion of the functionally graded
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beam are obtained
ON d%u d3w d3w
My —2 = 0 _ b _ S 11a
" ox % dt? tdxd? tdxd? (113)
0*M? o%u o*w, o*w, 0w, o*w, R
My e A=l e peae ( O e A O (H10)
o°P, 0Q d%u o*w, o’w,  d°w, o*w, o°
e T T e et e e ) e aar at(gz (1)
2 2 2
Sp, —R, + QXZ+gq L{a Wo 4 aat";’S}LZ 68:22 (11d)

Egs. (11) can be expressed in terms of displacements (u,, W, ,W,,®,) by using Egs. (2), (3), (4)

and (7) as follows:

o*w, o d?u d3w d3w,
A11 B11 b 511 X3 axz =1, dt?‘o - 1dxd13 -J; dthSZ (12a)
3u, ", sa“ws o’ goz ~ 83u0 o'w, *w, A, 4w 52
Buge P DA GE e b e TN e T ) - 0, —+ L fz
ox ‘ot ot
(12b)
s O0Uy g 0w, 'w, %W, ( )a 0, 3*u, ' w,
Bi— % -Dy o -Hy—; + A P +|Yi3 + A +0=1J 2 2 adal
o*w,  ow, o*w, %
IO( o atZSJ_ 2o o (12c)
au, py, 20 0w, b i+ ) 2wb Jow ) | O, (12d)
131 Fes +A55 —Zyup, +99=L 6t2 +h a

_X13 ox

., etc., are the beam stiffness, defined by

h h
(13a)

Qudz, By, = j Q207 B, = anfdz X3 = j Q0 dz

2

where A, D

h

'—.N\:‘

Ay =

2

N =

2
h h

h
= |Quz°dz, Dj, = J-an fdz, Y, = J.lez gdz H;, = J-Qllf dz (13b)

2

'—.N\:

_E 2

|
N
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h

2
Y5 = IQB.f.g dz, Zy, =
h

N | T

N

2

3. Analytical solution

. 2
le[g ]zdz' A = IQsSQZdZ
_h

105

h
(13c)

2

The equations of motion admit the Navier solutions for simply supported beams. The variables
Up, W, W,,e,,can be written by assuming the following variations

U, U, cos(Ax)e™

W, | & | Wy, sin(Ax)e™

w, | Z; w,, sin (Ax e

?, @, in (Ax)e'*
where U, W, , W,

(14)

and ¢, —are arbitrary parameters to be determined, @ is the

eigenfrequency associated with mth eigenmode, and A =ms/L. The transverse load q is

also expanded in Fourier series as
q(x) = 2.Qmps i N(x)
m=1

where Q,, is the load amplitude calculated from

20 .
Q, = E!q(x)sm(}t x)dx

(15)

(16)

The coefficients Q,, are given below for some typical loads. For the case of uniform

distributed load, we have
4Q,

mm

Qm:

, (m=135..)

17)

Substituting the expressions of u,, w,, W,, ¢, from Egs. (14) and (15) into the equations
of motion Eq. (12), the analytical solutions can be obtained from the following equations

dq1 812 13 Ay Myp My My Myy Upn 0

412 822 83 4| o|Miz Mz Moz My Wom | _ | Qm (18)
dj3 dpz dzz agy Mz Mp3 Mag May ||| Wy Qm

dig 8p4 A34 8yq Mys Moy Myy Myy |){ Ozm 9Qm

where
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2 3 3 4 4

aj =Aph", a1, =—Bd% a3 =-B]1A% a5 = —Xy3h,ap, = Dy y)7" a3 = DiA, (19)
a

824 = Y130% 833 = Hih* + A3sh? 250 = Yigh? + AGsh? a4y = ABsh” + Zgg

2
m,=1l,m, ==L Am,=J3Am,=0m, =1, +1,4",m,=1,+J,4,

2 (19b)
My =Lmyy =1, + KA my, =L,m,, =L,

4., Results and discussion

In this section, various numerical examples are presented and discussed to verify the accuracy
of present theories in predicting the bending and free vibration responses of simply supported FG
beams. The FG beam is taken to be made of aluminum and alumina with the following material
properties:

Ceramic (P¢ : Alumina, Al203): E, =380 GPa;v=0.3; p, =390 kg/m3.
Metal (Py; : Aluminium, Al): E,, =70 GPa;v=0.3; p, =2702 kg/m3.

And their properties change through the thickness of the beam according to power-law. The
bottom surfaces of the FG beams are aluminum rich, whereas the top surfaces of the FG beams are
alumina rich.

For convenience, the following dimensionless form is used

_ 3 _ 3 _ —
w =100 Emh4 W(EJ u=100 Emh4 u(O,—E], Ox =L0X(£,hj , Tx =L1XZ(O,O),
gL 2 qoL 2 qoL 2 2 qoL

52(‘)'-2 Pm
h E

m

4.1 Results for bending analysis

Table 1 contains nondimensional deflection and stresses of FG beams under uniform load ¢,
for different values of power law index k and span-to-depth ratio L/h . The obtained results are
compared with various shear deformation beam theories (i.e., SSDBT, PSDBT).

It can be observed that our results with (s, #0) are in an excellent agreement to those
predicted using the various shear deformation beam theories (i.e., SSDBT, PSDBT) with (g, =0)
for all values of power law index p and span-to-depth ratio L/h.

Figs. 2-4 show the variations of axial displacement u, axial stress oTX, and transverse shear

stress a respectively, through the depth of a very deep beam (L = 2h) under uniform load. In

general, the present theory and the shear deformation beam model of Reddy (PSDBT) give almost
identical results.
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Table 1 Nondimensional deflections and stresses of FG beams under uniform load

k Method L/h=5 L/h=20
W a G, z, W g G, z,
Li et al. (2010) 3.1657 0.9402 3.8020 0.7500 2.8962 0.2306 15.0130 0.7500
SSDBT 3.1649 0.9409 3.8052 0.7546 2.8962 0.2306 15.0137 0.7672
0 PSDBT 3.1654 0.9397 3.8019 0.7330 2.8962 0.2306 15.0129 0.7437
Present (&, # 0) 3.1673 0.9233 3.9129 0.7883 2.8807 0.2290 15.4891 0.7890
Li et al. (2010) 4.8292 1.6603 4.9925 0.7676 4.4645 0.4087 19.7005 0.7676
SSDBT" 4.8278 1.6613 4.9969 0.7717 4.4644 0.4087 19.7014 0.7840
05 PSDBT’ 4.8285 1.6595 49923 0.7501 4.4644 0.4087 19.7003 0.7606
Present (&, # 0 ) 4.8045 1.6091 5.1538 0.8053 4.4160 0.3998 20.3969 0.8057
Li et al. (2010) 6.2599 2.3045 5.8837 0.7500 5.8049 0.5686 23.2054 0.7500
SSDBT" 6.2586 2.3058 5.8891 0.7546 5.8049 0.5686 23.2065 0.7672
1 PSDBT" 6.2594 2.3036 5.8835 0.7330 5.8049 0.5685 23.2051 0.7437
Present (&, * O) 6.1805 2.2115 6.0709 0.7883 5.6965 0.5498 24.0095 0.7890
Li et al. (2010) 8.0602 3.1134 6.8812 0.6787 7.4415 0.7691 27.0989 0.6787
SSDBT" 8.0683 3.1153 6.8899 0.6931 7.4421 0.7692 27.1008 0.7058
2 PSDBT" 8.0677 3.1127 6.8824 0.6704 7.4421 0.7691 27.0989 0.6812
Present (&, # 0 ) 7.9106 2.9629 7.0925 0.7274 7.2458 0.7366 27.9844 0.7287
Li et al. (2010) 9.7802 3.7089 8.1030 0.5790 8.8151 0.9133 31.8112 0.5790
SSDBT” 9.8367 3.7140 8.1219 0.6153 8.8188 0.9134 31.8156 0.6282
5 PSDBT" 9.8281 3.7097 8.1104 0.5904 8.8182 0.9134 31.8127 0.6013
Present (&, # 0) 9.6933 3.5429 8.3581 0.6513 8.6182 0.8775 32.8183 0.6540
Li et al. (2010) 10.8979 3.8860 9.7063 0.6436 9.6879 0.9536 38.1372 0.6436
SSDBT” 10.9419 3.8913 9.7236 0.6706 9.6908 0.9537 38.1411 0.6847
10 pPsSDBT’ 10.9381 3.8859 9.7119 0.6465 9.6905 0.9536 38.1382 0.6586
Present (&, # 0) 10.8680 3.7462 9.9878 0.7064 9.5513 0.9262 39.2717 0.7091

* Results form Ref (Huu-Tai Thai 2012)
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Fig. 2 The variation of the axial displacement u through-the-thickness of a FG beam (L = 2h)
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Fig. 3 The variation of the axial stress Ox through-the-thickness of a FG beam (L = 2h)
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Fig. 4 The variation of the transverse shear stress Tx through-the-thickness of a FG beam (L = 2h )
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Fig. 5 Variation of the transverse displacement W versus non-dimensional length of a FG beam (L =5h)

Fig. 5 illustrates the variation of the non-dimensional transversal displacement W Versus
non-dimensional length for different power law index K. It can be seen also that the present beam
theory gives almost identical results to Reddy (PSDBT). In addition, the results show that the

increase of the power law index Kk leads to an increase of transversal displacement w .
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4.2 Results for free vibration analysis

Table 2 show the nondimensional fundamental frequencies ® of FG beams for different
values of power law index k and span-to-depth ratioL/h. The calculated frequencies are
compared with those given by Simsek (2010a) with (sz = 0). An excellent agreement between the
present solutions and results of Simsek (2010a) are found. _

Table 3 shows the variations of first three nondimensional frequencies o of FG beams using
the present theory and the results given by PSDBT (Simsek 2010a) and CBT for different values of
power law index Kk and span-to-depth ratioL/h. The present frequencies are in good agreement
with the results of Simsek (2010a). It should be remembered that the frequencies predicted by the
present theory are smaller than those predicted by the classical beam theory. and the difference
between the frequencies of CBT and the shear deformable beam theories decreases as the value of
L/h increases.

Table 2 Variation of fundamental frequency Z) with the power-law index for FG beam

k
L/h Theory
0 0.5 1 2 5 10
PSDBT* 5.1527 4.4111 3.9904 3.6264 3.4012 3.2816
5
Present (&, # 0) 5.1788 4.4441 4.0354 3.6798 3.4425 3.3103
PSDBT" 5.4603 4.6516 4.2050 3.8361 3.6485 3.5389
20
Present (&, # 0) 5.4770 46781 4.2463 3.8890 3.6918 3.5660
#Results form Ref (M Simsek,,201a)
55
5,0 4
A Present theory
51 8% PSDBT (2010) (¢,=0)

el

4,0 -

3,5

3’0 T T T T T T
0 1 2 3 4 5 6 7 8 9 10

Power law index, k

Fig. 6 Variation of the nondimensional fundamental frequency o of FG beam with power law index K

and span-to-depth ratio L/h
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Table 3 First three nondimensional frequencies E) of FG beams

k
L/h  Mode Theory
0 0.5 1 2 5 10
cBT? 5.3953 45931 4.1484 3.7793 3.5949 3.4921
1 PSDBT* 5.1527 4.4107 3.9904 3.6264 3.4012 3.2816

Present (&, #0) 51788 44441 40354 36798  3.4425  3.3103

5 CBT* 20.6187 175415 157982  14.3260 135876  13.2376
2 PSDBT* 17.8812 154588  14.0100  12.6405  11.5431  11.0240
Present (¢, #0) 180493 156362 142133 128536 116921  11.1470

CBT" 43.3483 36.8308 33.0278 29.7458 28.0850 27.4752
3 PSDBT* 34.2097 29.8382 27.0979 24.3152 21.7158 20.5561
Present (&, # 0) 34.6743 30.2943 27.5781 24.7783 22.0198 20.8356

cBT" 54777 4.6641 4.2163 3.8472 3.6628 3.5547
1 PSDBT* 5.4603 4.6511 4.2051 3.8361 3.6485 3.5390
Present (&, # 0) 5.4770 4.6781 4.2463 3.8890 3.6918 3.5660

cBT? 21.8438 185987  16.8100 153334 145959  14.1676
20 2 PSDBT* 21.5732 18.3962 16.6344 15.1619 14.3746 13.9263

Present (&, # 0) 21.6488 18.5102 16.8029 15.3739 14.5462 14.0362

CBT* 48.8999 41.6328 37.6173 34.2954 32.6357 31.6883
3 PSDBT" 47.5930 40.6526 36.7679 33.4689 31.5780 30.5369
Present (&, # 0) 47.7924 40.9292 37.1587 33.9478 31.9577 30.7896

Fig. 6 shows the non-dimensional fundamental natural frequency @ versus the power law
index k for different values of span-to-depth ratio L/h using both the present theory and
theory PSDBT (Simsek, 2010a). An excellent agreement between the present theory and the
PSDBT is showed from Fig. 6. It is observed that an increase in the value of the power law index
leads to a reduction of frequency. The highest frequency values are obtained for full ceramic
beams (k=0) while the lowest frequency values are obtained for full metal beams (k — ).
This is due to the fact that an increase in the value of the power law index results in a decrease in
the value of elasticity modulus. In other words, the beam becomes flexible as the power law index
increases, thus decreasing the frequency values.
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5. Conclusions

A refined exponential shear deformation theory is proposed for bending analysis of functionally
graded beams. The theory accounts for the stretching and shear deformation effects without
requiring a shear correction factor. It is based on the assumption that the transverse displacements
consist of bending, shear and thickness stretching parts. Based on the present refined exponential
beam theory, the equations of motion are derived from Hamilton’s principle. Numerical examples
show that the proposed theory gives solutions which are almost identical with those obtained using
other shear deformation theories.
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