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Abstract.    In this paper, a refined exponential shear deformation beam theory is developed for bending 
analysis of functionally graded beams. The theory account for parabolic variation of transverse shear strain 
through the depth of the beam and satisfies the zero traction boundary conditions on the surfaces of the beam 
without using shear correction factors. Contrary to the others refined theories elaborated, where the 
stretching effect is neglected, in the current investigation this so-called “stretching effect” is taken into 
consideration. The material properties of the functionally graded beam are assumed to vary according to 
power law distribution of the volume fraction of the constituents. Based on the present shear deformation 
beam theory, the equations of motion are derived from Hamilton’s principle. Analytical solutions for static 
are obtained. Numerical examples are presented to verify the accuracy of the present theory. 
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1. Introduction 
 

Functionally graded materials (FGMs) are a class of composites that have continuous variation 
of material properties from one surface to another, thus eliminating the stress concentration found 
in laminated composites. 

A typical FGM is made from a mixture of two material phases, for example, a ceramic and a 
metal. The FGMs are widely used in mechanical, aerospace, nuclear, and civil engineering. 
Consequently, studies devoted to understand the static and dynamic behaviors of FGM beams, 
plates have being paid more and more attentions in recent years.  

Sankar (2001) investigated an elasticity solution for bending of functionally graded beams (FG 
beams) based on Euler-Bernoulli beam theory. Zhong and Yu (2007) provided an analytical 
solution for cantilever beams subjected to various types of mechanical loadings using the Airy 
stress function. Li (2008) investigated static bending and transverse vibration of FGM Timoshenko 
beams, in which by introducing a new function, the governing equations for bending and vibration 
of FGM beams were decoupled and the deflection, rotational angle and the resultant force and 
moment were expressed only in the terms of this new function. Benatta et al. (2009) proposed an 
analytical solution to the bending problem of a symmetric FG beam by including warping of the 
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cross-section and shear deformation effect. Sallai et al. (2009) investigated the static responses of 

a sigmoid FG thick beam by using different beam theories. Şimşek (2010a) studied the free 

vibration analysis of an FG beam using different higher order beam theories. In a recent study, 

Şimşek (2010b) has studied the dynamic deflections and the stresses of an FG simply-supported 

beam subjected to a moving mass by using Euler–Bernoulli, Timoshenko and the parabolic shear 

deformation beam theory. El Meiche et al. (2011) proposed a novel hyperbolic shear deformation 

theory for buckling and vibration of functionally graded sandwich plate. Benachour et al. (2011) 

employed a four-variable refined plate theory to study the free vibrations response of FG plates 

with arbitrary gradient. Bachir Bouiadjra et al. (2012) used a four-variable refined plate theory for 

the buckling response of FG plates under thermal loads. Bourada et al. (2012) developed a new 

four-variable refined plate theory for thermal buckling of FG sandwich plates. Fekrar et al. (2012) 

analyzed the buckling response of FG hybrid composite plates using a new four variable refined 

plate theory. Bouremana et al. (2013) proposed a novel first shear deformation beam theory based 

on neutral surface position for FG beams. Bachir Bouiadjra et al. (2013) investigated the nonlinear 

thermal buckling response of FG plates using an efficient sinusoidal shear deformation theory. 

Bessaim et al. (2013) examined the bending and free vibration behaviours of sandwich plates with 

FG isotropic face sheets by using a new higher-order shear and normal deformation theory. Tounsi 

et al. (2013a) presented an analytical investigation on the thermoelastic bending of FG sandwich 

plates using a refined trigonometric shear deformation theory. Bouderba et al. (2013) studied the 

thermomechanical bending behaviour of FG plates supported by Winkler-Pasternak elastic 

foundations. Kettaf et al. (2013) proposed a novel hyperbolic shear displacement model to study 

the thermal buckling behaviour of FG sandwich plates. Ould larbi latifa et al. (2013) developed an 

efficient shear deformation beam theory based on neutral surface position for bending and free 

vibration of functionally graded beams. Zidi et al. (2014) investigated the bending response of FG 

plates subjected to a hygro-thermo-mechanical loading by using a four variable refined plate 

theory. Ait Amar Meziane et al. (2014) developed an efficient and simple refined theory for 

buckling and free vibration response of exponentially graded sandwich plates under various 

boundary conditions. Draiche et al. (2014) studied the free vibration of rectangular composite 

plates with patch mass using a trigonometric four variable plate theory. Nedri et al. (2014) studied 

the free vibration behavior of laminated composite plates resting on elastic foundations by using a 

refined hyperbolic shear deformation theory. Khalfi et al. (2014) employed a refined and simple 

shear deformation theory for thermal buckling behavior of solar FG plates resting on elastic 

foundation. Klouche Djedid et al. (2014) developed an n-order four variable refined theory for 

bending and free vibration of FG plates. Recently, Hadji (2014) studied the static and free 

vibration of FGM beam using a higher order shear deformation theory. Belabed et al. (2014) 

developed an efficient and simple higher order shear and normal deformation theory for FG plates. 

Hebali et al. (2014) analyzed the bending and free vibration behaviour of FG plates using a novel 

quasi-3D hyperbolic shear deformation theory. The stretching effect was included also in the 

analysis of the mechanical responses of thick FG plates (Houari et al. 2013, Bousahla et al. 2014, 

Fekrar et al. 2014). Some beam theories are applied also to different type of structures as is 

described in Refs (Heireche et al. 2008, Tounsi et al. 2008, Benzair et al. 2008, Tounsi et al. 2009, 

Amara et al. 2010, Tounsi et al. 2013b, c, Berrabah et al. 2013, Benguediab et al. 2014). A general 

revue for FG structures such as beams plates and shells is presented by Tounsi et al. (2013d).   

In the present study, bending and free vibration of simply supported FG beams was investigated 

by using a refined exponential shear deformation beam theory with  0z . The most interesting 

feature of this theory is that it accounts for a parabolic variation of the transverse shear strains 
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across the thickness and satisfies the zero traction boundary conditions on the top and bottom 

surfaces of the beam without using shear correction factors. Then, the present theory together with 

Hamilton’s principle, are employed to extract the motion equations of the functionally graded 

beams. Analytical solutions for static and free vibration are obtained. Numerical examples are 

presented to verify the accuracy of the present theory. 

 

 

2. Problem formulation 
 

Consider a functionally graded beam with length L  and rectangular cross section hb , with 

b  being the width and h  being the height as shown in Fig. 1. The beam is made of isotropic 

material with material properties varying smoothly in the thickness direction. 

 

2.1 Material properties 
 

The properties of FGM vary continuously due to the gradually changing volume fraction of the 

constituent materials (ceramic and metal), usually in the thickness direction only. The power-law 

function is commonly used to describe these variations of materials properties. The expression 

given below represents the profile for the volume fraction. 

k

C
h

z
V 










2

1
                               (1a) 

k  is a parameter that dictates material variation profile through the thickness. The value of k  

equal to zero represents a fully ceramic beam, whereas infinite k  indicates a fully metallic beam, 

and for different values of k  one can obtain different volume fractions of metal.  

The material properties of FG beams are assumed to vary continuously through the depth of the 

beam by the rule of mixture (Marur 1999) as 

  bbt PPPzP  CV )(                         (1b) 

where P  denotes a generic material property like modulus, tP  and bP  denotes the property of 

the top and bottom faces of the beam respectively, Here, it is assumed that modules E , G  and   

vary according to the Eq. (1).  

 

 

Fig. 1 Geometry and coordinate of a FG beam 
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2.2 Kinematics and constitutive equations 
 
The displacement field of the proposed theory takes the simpler form as follows  

                      
 

  )()(),(

),(),( 0

xzgwxwzxu

x

w
zf

x

w
ztxuzxu

zsb

sb













                   (2) 

Clearly, the displacement field in Eq. (2) contains only four unknowns  zsb wwu ,,, . The 

strains associated with the displacements in Eq. (2) are 
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Where  2/2)( hzzezzf   and )('1)( zfzg  . It can be seen from Eqs. (3(c)) that the 

transverse shears strain xz  is equal to zero at the top  2/hz  and bottom  2/hz   

surfaces of the beam, thus satisfying the zero transverse shear stress conditions. 

The state of stress in the beam is given by the generalized Hooke’s law as follows 

    zxx zQzQ  1311                        (4a) 

  xzxz zQ  55                           (4b) 

    zxz zQzQ  3313                       (4c) 

The ijQ  expressions in terms of engineering constants are 
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2.3 Equations of motion 
 
Hamilton’s principle is used herein to derive the equations of motion. The principle can be 

stated in analytical form as (Thai and Vo 2012) 

        0

2

1


t

t

dtKVU                        (5) 

where t  is the time; 
1t  and 2t  are the initial and end time, respectively; U   is the virtual 

variation of the strain energy; V   is the virtual variation of the potential energy; and K   is the 

virtual variation of the kinetic energy. The variation of the strain energy of the beam can be stated 

as 
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where N , M , P  and Q  are the stress resultants defined by 
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The variation of the potential energy by the applied transverse load q  can be written as    

  
L

0

zsb dxgw w qV                     (8) 

The variation of the kinetic energy can be expressed as 
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where dot-superscript convention indicates the differentiation with respect to the time variable t ; 

)(z  is the mass density; and ( 0I , 1I , 
1J , 

2I , 
2J , 

2K ,
1L ,

2L ) are the mass inertias defined 

as 
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Substituting the expressions for U  , V   and T   from Eqs. (6), (8) and (9) into Eq. (5) 

and integrating by parts versus both space and time variables, and collecting the coefficients of 

0 u , bw  , sw   and 
z  , the following equations of motion of the functionally graded 
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beam are obtained 
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Eqs. (11) can be expressed in terms of displacements ( zsb wwu ,,,0 ) by using Eqs. (2), (3), (4) 

and (7) as follows:  
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where 
11A , 

11D , etc., are the beam stiffness, defined by 
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3. Analytical solution 

 

The equations of motion admit the Navier solutions for simply supported beams. The variables 
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where mU , bmW ,  smW  and zm  are arbitrary parameters to be determined,   is the 

eigenfrequency associated with m th eigenmode, and Lm /  . The transverse load q  is 

also expanded in Fourier series as 
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where mQ  is the load amplitude calculated from 
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The coefficients mQ  are given below for some typical loads. For the case of uniform 

distributed load, we have 
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Substituting the expressions of 0u , bw , sw , 
z  from Eqs. (14) and (15) into the equations 

of motion Eq. (12), the analytical solutions can be obtained from the following equations  
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where  
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4. Results and discussion 
 
In this section, various numerical examples are presented and discussed to verify the accuracy 

of present theories in predicting the bending and free vibration responses of simply supported FG 

beams. The FG beam is taken to be made of aluminum and alumina with the following material 

properties: 

 

Ceramic ( CP : Alumina, Al2O3): 380Ec   GPa; 3.0 ; 3960c   kg/m3. 

Metal ( MP : Aluminium, Al): 70Em   GPa; 3.0 ; 2702m   kg/m3. 

 

And their properties change through the thickness of the beam according to power-law. The 

bottom surfaces of the FG beams are aluminum rich, whereas the top surfaces of the FG beams are 

alumina rich.  

For convenience, the following dimensionless form is used 
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4.1 Results for bending analysis 
 

Table 1 contains nondimensional deflection and stresses of FG beams under uniform load 0q  

for different values of power law index k  and span-to-depth ratio hL / . The obtained results are 

compared with various shear deformation beam theories (i.e., SSDBT, PSDBT). 

It can be observed that our results with  0z  are in an excellent agreement to those 

predicted using the various shear deformation beam theories (i.e., SSDBT, PSDBT) with  0z  

for all values of power law index p and span-to-depth ratio L/h. 

Figs. 2-4 show the variations of axial displacement u , axial stress x , and transverse shear 

stress xz , respectively, through the depth of a very deep beam )2( hL  under uniform load. In 

general, the present theory and the shear deformation beam model of Reddy (PSDBT) give almost 

identical results. 
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Table 1 Nondimensional deflections and stresses of FG beams under uniform load 

k  Method 5hL  20hL  

w  u  x  xz  w  u  x  xz  

 

 

0 

Li et al. (2010) 3.1657 0.9402 3.8020 0.7500 2.8962 0.2306 15.0130 0.7500 

SSDBT 3.1649 0.9409 3.8052 0.7546 2.8962 0.2306 15.0137 0.7672 

PSDBT 3.1654 0.9397 3.8019 0.7330 2.8962 0.2306 15.0129 0.7437 

Present ( 0z ) 3.1673 0.9233 3.9129 0.7883 2.8807 0.2290 15.4891 0.7890 

 

 

0.5 

Li et al. (2010) 4.8292 1.6603 4.9925 0.7676 4.4645 0.4087 19.7005 0.7676 

SSDBT* 4.8278 1.6613 4.9969 0.7717 4.4644 0.4087 19.7014 0.7840 

PSDBT* 4.8285 1.6595 4.9923 0.7501 4.4644 0.4087 19.7003 0.7606 

Present ( 0z ) 4.8045 1.6091 5.1538 0.8053 4.4160 0.3998 20.3969 0.8057 

 

 

1 

Li et al. (2010) 6.2599 2.3045 5.8837 0.7500 5.8049 0.5686 23.2054 0.7500 

SSDBT* 6.2586 2.3058 5.8891 0.7546 5.8049 0.5686 23.2065 0.7672 

PSDBT* 6.2594 2.3036 5.8835 0.7330 5.8049 0.5685 23.2051 0.7437 

Present ( 0z ) 6.1805 2.2115 6.0709 0.7883 5.6965 0.5498 24.0095 0.7890 

 

 

2 

Li et al. (2010) 8.0602 3.1134 6.8812 0.6787 7.4415 0.7691 27.0989 0.6787 

SSDBT* 8.0683 3.1153 6.8899 0.6931 7.4421 0.7692 27.1008 0.7058 

PSDBT* 8.0677 3.1127 6.8824 0.6704 7.4421 0.7691 27.0989 0.6812 

Present ( 0z ) 7.9106 2.9629 7.0925 0.7274 7.2458 0.7366 27.9844 0.7287 

 

 

5 

Li et al. (2010) 9.7802 3.7089 8.1030 0.5790 8.8151 0.9133 31.8112 0.5790 

SSDBT* 9.8367 3.7140 8.1219 0.6153 8.8188 0.9134 31.8156 0.6282 

PSDBT* 9.8281 3.7097 8.1104 0.5904 8.8182 0.9134 31.8127 0.6013 

Present ( 0z ) 9.6933 3.5429 8.3581 0.6513 8.6182 0.8775 32.8183 0.6540 

 

 

10 

Li et al. (2010) 10.8979 3.8860 9.7063 0.6436 9.6879 0.9536 38.1372 0.6436 

SSDBT* 10.9419 3.8913 9.7236 0.6706 9.6908 0.9537 38.1411 0.6847 

PSDBT* 10.9381 3.8859 9.7119 0.6465 9.6905 0.9536 38.1382 0.6586 

Present ( 0z ) 10.8680 3.7462 9.9878 0.7064 9.5513 0.9262 39.2717 0.7091 

* Results form Ref (Huu-Tai Thai 2012) 
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Fig. 2 The variation of the axial displacement u  through-the-thickness of a FG beam ( hL 2 ) 

 
 
 

 

Fig. 3 The variation of the axial stress x  through-the-thickness of a FG beam ( hL 2 ) 
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Fig. 4 The variation of the transverse shear stress xz  through-the-thickness of a FG beam ( hL 2 ) 
 

 

Fig. 5 Variation of the transverse displacement w  versus non-dimensional length of a FG beam ( h5L  ) 

 

Fig. 5 illustrates the variation of the non-dimensional transversal displacement w  versus 

non-dimensional length for different power law index k . It can be seen also that the present beam 

theory gives almost identical results to Reddy (PSDBT). In addition, the results show that the 

increase of the power law index k  leads to an increase of transversal displacement w . 
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4.2 Results for free vibration analysis 
 

Table 2 show the nondimensional fundamental frequencies   of FG beams for different 

values of power law index k  and span-to-depth ratio h/L . The calculated frequencies are 

compared with those given by Simsek (2010a) with  0z . An excellent agreement between the 

present solutions and results of Simsek (2010a) are found. 

Table 3 shows the variations of first three nondimensional frequencies   of FG beams using 

the present theory and the results given by PSDBT (Simsek 2010a) and CBT for different values of 

power law index k  and span-to-depth ratio h/L . The present frequencies are in good agreement 

with the results of Simsek (2010a). It should be remembered that the frequencies predicted by the 

present theory are smaller than those predicted by the classical beam theory. and the difference 

between the frequencies of CBT and the shear deformable beam theories decreases as the value of 

h/L  increases. 

 

Table 2 Variation of fundamental frequency   with the power-law index for FG beam 

h/L  Theory 
k  

0 0.5 1 2 5 10 

5 
PSDBT# 5.1527 4.4111 3.9904 3.6264 3.4012 3.2816 

Present ( 0z ) 5.1788 4.4441 4.0354 3.6798 3.4425 3.3103 

20 
PSDBT# 5.4603 4.6516 4.2050 3.8361 3.6485 3.5389 

Present ( 0z ) 5.4770 4.6781 4.2463 3.8890 3.6918 3.5660 

# 
Results form Ref (M Simsek,,201a) 

 
 

 

 

 

 

 

 

 

 

 

Fig. 6 Variation of the nondimensional fundamental frequency   of FG beam with power law index k  

and span-to-depth ratio hL /  

0 1 2 3 4 5 6 7 8 9 10

3,0

3,5

4,0

4,5

5,0

5,5

20

10

L/h=5

Power law index, k

 Present theory

 PSDBT (2010) (
z
=0)



110



 

 

 

 

 

 

Static bending and free vibration of FGM beam using an exponential shear deformation theory 

 

Table 3 First three nondimensional frequencies   of FG beams 

h/L  Mode Theory 
k  

0 0.5 1 2 5 10 

 

 

 

5 

 

1 

CBT# 5.3953 4.5931 4.1484 3.7793 3.5949 3.4921 

PSDBT# 5.1527 4.4107 3.9904 3.6264 3.4012 3.2816 

Present ( 0z ) 5.1788 4.4441 4.0354 3.6798 3.4425 3.3103 

 

2 

CBT# 20.6187 17.5415 15.7982 14.3260 13.5876 13.2376 

PSDBT# 17.8812 15.4588 14.0100 12.6405 11.5431 11.0240 

Present ( 0z ) 18.0493 15.6362 14.2133 12.8536 11.6921 11.1470 

 

3 

CBT# 43.3483 36.8308 33.0278 29.7458 28.0850 27.4752 

PSDBT# 34.2097 29.8382 27.0979 24.3152 21.7158 20.5561 

Present ( 0z ) 34.6743 30.2943 27.5781 24.7783 22.0198 20.8356 

 

 

 

 

20 

 

1 

CBT# 5.4777 4.6641 4.2163 3.8472 3.6628 3.5547 

PSDBT# 5.4603 4.6511 4.2051 3.8361 3.6485 3.5390 

Present ( 0z ) 5.4770 4.6781 4.2463 3.8890 3.6918 3.5660 

 

2 

CBT# 21.8438 18.5987 16.8100 15.3334 14.5959 14.1676 

PSDBT# 21.5732 18.3962 16.6344 15.1619 14.3746 13.9263 

Present ( 0z ) 21.6488 18.5102 16.8029 15.3739 14.5462 14.0362 

 

3 

CBT# 48.8999 41.6328 37.6173 34.2954 32.6357 31.6883 

PSDBT# 47.5930 40.6526 36.7679 33.4689 31.5780 30.5369 

Present ( 0z ) 47.7924 40.9292 37.1587 33.9478 31.9577 30.7896 

 
 
 

Fig. 6 shows the non-dimensional fundamental natural frequency   versus the power law 

index k  for different values of span-to-depth ratio hL /  using both the present theory and 

theory PSDBT (Simsek, 2010a). An excellent agreement between the present theory and the 

PSDBT is showed from Fig. 6. It is observed that an increase in the value of the power law index 

leads to a reduction of frequency. The highest frequency values are obtained for full ceramic 

beams )0( k  while the lowest frequency values are obtained for full metal beams )( k . 

This is due to the fact that an increase in the value of the power law index results in a decrease in 

the value of elasticity modulus. In other words, the beam becomes flexible as the power law index 

increases, thus decreasing the frequency values.  
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5. Conclusions 
 

A refined exponential shear deformation theory is proposed for bending analysis of functionally 

graded beams. The theory accounts for the stretching and shear deformation effects without 

requiring a shear correction factor. It is based on the assumption that the transverse displacements 

consist of bending, shear and thickness stretching parts. Based on the present refined exponential 

beam theory, the equations of motion are derived from Hamilton’s principle. Numerical examples 

show that the proposed theory gives solutions which are almost identical with those obtained using 

other shear deformation theories. 
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