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Abstract.   Coupled finite element analysis is carried out to study the effect of degree of saturation on the 
vertical displacements and pore water pressures simultaneously by developing a FORTRAN90 code. The 
finite element formulation adopted in the present study is based upon Biot’s consolidation theory to include 
partially saturated soils. Numerical methods are applied to a two-dimensional plane strain strip footing 
(flexible) problem and the effect of variable degree of saturation on the response of excess pore water 
pressure dissipation and settlement of the footing is studied. The immediate settlement in the case of partly 
saturated soils is larger than that of a fully saturated soil, the reason being the presence of pore air in partially 
saturated soils. On the other hand, the excess pore water pressure for partially saturated soil are smaller than 
those for fully saturated soil. 
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1. Introduction 
 

Conventional principles of geomechanics treat soils as a two-phased medium, namely: (i) fully 
saturated soil consisting of soil solids and water (ii) completely dry soil consisting of soil solids 
and air. Partially saturated soils constitute a three-phase medium (namely soil solids, water and air), 
which at higher degrees of saturation have comparable pore water pressure and the pore air 
pressure. The classical theories of soil mechanics have been developed by considering soil as a 
two-phase medium which might not be applicable to all soils. The presence of capillary fringe is 
an example of unsaturated zones that are located above the ground water table. Tamped fills are 
rendered unsaturated by the definition of compacted soils.  

Several researchers have focussed on developing new theories and constitutive models to study 
and understand the behaviour of partially saturated soils. A simplified coupled formulation based 
on Biot’s general theory of three-dimensional consolidation, the virtual work principle and the 
continuity equation for the fluid phase has been presented (Biot 1941). Dakshanamurthy et al. 
(1984) extended Biot’s theory and presented a coupled transient flow model. However, because of 
the difficulty in incorporating the proposed principles for unsaturated soil mechanics, 
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implementation of the same into engineering practice has proven to be a challenge. 
Generalized effective stress expressions were proposed in order to include partially saturated 

soils into the conventional soil mechanics framework, the best known being that proposed by 
Bishop et al. (1960). Sandhu and Wilson (1969) were the first to implement finite element 
formulation of Biot’s three-dimensional consolidation theory. Since then, extensive research began 
by formulating the governing finite element equations for elastic materials. The study contributing 
to this field included the works of Christian and Boehmer (1970), Hwang et al. (1971), Borja 
(1986). Extension of the research to account for non-linearity into the formulation has been 
discussed by Small et al. (1976), Borja (1989), Schrefler and Zhan (1993). In all of these linear 
and non-linear expressions, a set of coupled differential equations form the governing finite 
element relationships. 

Ng and Small (2000) extended Biot’s consolidation theory and illustrated its application to 
geotechnical problems. Sheng et al. (2003) proposed an adaptive-time stepping scheme and used 
an explicit stress integration scheme by treating suction as a strain component. Georgiadis et al. 
(2005) assumed a four-dimensional stress space with two yield curves and proposed a 
three-dimensional constitutive model with twenty-two parameters. Laloui and Nuth (2009) 
explained the use of generalized effective stress equations and showed that suction is not to be 
treated as a hardening variable but rather as a shape parameter for the yield surface expressed in 
the matric suction versus mean effective stress space. Coupled numerical modelling of excavations 
has been studied by Nogueira et al. (2009) and simulated the results under plane strain conditions.  
Sheng (2011) considered the performance of shear strength equations and coupled the hydraulic 
component with the mechanical component. Li et al. (2011) proposed a state-parameter based 
generalized plasticity model for unsaturated soils. Maheswari and Kumar (2011) reported 
probabilistic analysis of strip footing on layered soils. Kumari and Sawant (2013) suggested the 
soil behaviour must be analysed by incorporating the effects of the transient flow of the pore-fluid 
through the voids, and highlighted requirement of two-phase continuum formulation for saturated 
porous media. 

From the above cited review of relevant literature, it is clear that not much of work has been 
reported on analysis of footing resting on partially saturated soil. Present study is aimed to carry 
out to develop a coupled formulation based on Biot's theory for the analysis of a footing resting on 
partially saturated soil. Variations in excess pore pressure and vertical settlement with time have 
been observed. Results for partially saturated case are compared with the case of fully saturated 
soil to understand the effect of degree of saturation. 

 
 

2. Biot’s theory of three-dimensional consolidation 
 
Biot (1941) defined soil consolidation as gradual adaptation of the soil to the load variation. Of 

the many assumptions made in this theory, the linear behaviour of stress-strain curve and the 
reversibility of the stress-strain relations under final equilibrium are considered to be crude for 
many practical scenarios. The fluid flow through the pores of the soil skeleton is assumed to be 
governed by Darcy’s law. The governing equations for consolidation of a saturated porous medium 
may be written in the following form: 

Mechanical equilibrium 
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where i and j denote the directions in Cartesian space, T
ij and ij  are the total and effective stress 

tensors, iF are components of body force, p is the pore water pressure, ij is the Kronecker delta, 

ijklD is the elastic constitutive matrix (for linear stress-strain relationship), kl is the strain tensor, 

,k lq is the derivative of components of displacement in kth direction with respect to lth direction, iv

denotes the components of the superficial velocity, v is the volumetric strain rate, ijk are the 

Darcy's coefficients of permeability, and w is the unit weight of water. 

The total stress ( T ) in the soil skeleton is defined as the effective stress ( ) over the entire 
cross-sectional area, thus the relationship between the total stress and effective stress would be as 
given by Eq. (1(b)). The negative sign is introduced in accordance with the general sign 
convention to take tensile components of stress as positive. 

 
 

3. Coupled formulation 
 
The behaviour of unsaturated soil is governed by using two independent stress state variables 

(Fredlund et al. 1977). In the present study, the two stress state variables used to define the 
behaviour of partially saturated soils are the effective stress and the pore water pressure. Bishop 
and Henkel (1962) have stated that the principle of effective stress concept cannot be extended to 
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soils having partial degree of saturation. Also, at higher degrees of saturation (above about 80%) 
the pressure exerted by the water and the air phase of the partially saturated soils are comparable. 
Therefore the effective stress equation as stated by above Eq. (1(b)) is supposed to be applicable in 
this case. 

A comprehensive model would include several aspects of the soil and would require a lot of 
soil parameters as input data, which would be cumbersome as extensive laboratory 
experimentations are to be conducted. In order to make the theory more viable, it is necessary to 
ignore certain processes and to make a justifiable approximations. Thermal stresses, affecting pore 
fluid changes, due to change in temperatures is ignored in the following research. The 
liquid-moisture phase can be effectively modelled by applying suitable boundary conditions. The 
simplest of coupled formulations which encapsulate the main aspects of partially saturated soil 
behaviour is based on mass conservation of water and mechanical equilibrium of the total soil 
volume. The development of such a hydro-mechanical model can also provide a good platform to 
tackle more general problems. 

 
3.1 Mechanical equilibrium 
 
The Eq. (1(a)) can be expressed in the following manner 

0bF              (2) 

where  is the differential operator and Fb denotes the body force vector. Applying the 
Green–Gauss theorem and Galerkin weighted residual method to Eq. (2) leads to 

0T T T
bV S V

B dV N TdS N F dV                  (3) 

where V is the volume of interest, S is the surface area over which tractions are applied, T is the 
external surface traction vector, and B and N are strain–displacement and displacement shape 
function matrices defined as 

; ;e eq Nq Bq B N          (4) 

where q is the unknown displacements, qe denoted the nodal displacements, N is the shape 
function matrix,  is the strain vector, B is the strain-displacement matrix which is the obtained by 
using the differential operator on the shape function matrix.  

P e P Pp N p and B N         (5) 

where pe is the nodal pore pressure vector and Np is the pore pressure shape function matrix. 
Therefore, on substitution final form of the equilibrium equation is as follows 

T
e e uKq L p F             (6) 

with, 
 

T

V
K B DBdV  , is the stiffness matrix 

T T
ij PL B N dV  , is the coupling matrix 
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T T
u bS V

F N TdS N F dV   , is the external force vector 

 
3.2 Continuity equation 
 
To develop the equation, an infinitesimal element of an unsaturated soil is considered such that 

its sides are parallel to Cartesian co-ordinate axes. The continuity equation of the element in terms 
of water flow can be written by considering the rate of change of the volumetric moisture content. 

mv
t


 


                (7) 

where v is the superficial velocities of pore water in vectorial notation,  is the differential 
operator vector for Cartesian directions, m represents the volumetric moisture content. Volumetric 

moisture content is defined as the ratio of volume of water to the volume of soil. It can be 
rearranged as the product of porosity and the degree of saturation. Assuming the soil grains to be 
incompressible and the small-strain theory to be applicable, the rate of change of porosity is equal 
to the rate of change of volumetric strain. The above Eq. (7) results in the following equation 
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The variation of the degree of saturation with pore-water pressure can be used to account the 
compressibility of the pore air fluid. The relationship for degree of saturation versus negative pore 
water pressure has been studied in the past by applying calculated amount of back pressure to 
saturate the test samples in a triaxial cell. Lowe and Johnson (1960) proposed a theoretical 
relationship to describe the variation in Sr with positive pore water pressure. 
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Discretizing pore water pressure in space and applying the Green–Gauss theorem and Galerkin 
weighted residual method along with Biot’s theory, to Eq. (8) leads to 

PLq Sp Hp F              (10) 

where 

1T Tr
P P P P
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 
   

 PF is the force vector that deals with the initial pore-water pressure at the nodes and the 

superior dot denotes the derivative with time. 
Applying a suitable time-marching scheme to Eq. (10) 

 1 1( ) (1 )i i i i
e e PLq S tH p tF Lq S tH p              (11) 

Combining Eqs. (6) and (11), a system of coupled equation can be written as  
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A non-dimensional time factor, T is devised to express the excess pore-water pressure 
dissipation. This is also known as the adjusted time factor.  

2
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In which, the modified coefficient of consolidation, c is given by 

2

w

Gk
c


                (14) 

where G is the elastic shear modulus, k is the coefficient of permeability, w is the bulk unit 

weight of the water, and t denotes time. 
A FORTRAN90 code is developed for the above derived Eq. (12) is validated for the data from 

Schiffman et al. (1969). The data obtained from Schiffman et al. (1969) is for a non-dimensional 
time factor, T=0.1 and  =0.0 is plotted (Fig. 1) against the data obtained from the FORTRAN90 
code. The mesh comprised of 225 elements and the domain extended for 7.5 m by 7.5 m (Fig. 2). 

The discrepancy between the two results may be due to the reasoning that the close-form 
solution obtained (Schiffman et al. 1969) was based on the assumption of a half infinite space 
which has to be curtailed during generating a finite element mesh. Further, the finite element mesh 
had close proximity at the bottom and/or the lateral boundaries. 
 

 

Fig. 1 Validation of the FORTRAN90 code with the data from Schiffman et al. (1969) 
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Fig. 2 Coupled Finite Element Mesh for the data from Schiffman et al. (1969) 

 
 

4. Results 
 
The finite element mesh comprises of 120 coupled finite eight noded quadrilateral elements, 

with fine spacing near the loaded area (Figs. 3 and 4). The analysis is carried out in 60 time steps 
of uniform increment. The iterations on the variation of degree of saturation is carried out by 
iterative scheme. It is assumed that the footing is flexible and entire load intensity is applied 
instantaneously. A forward time marching scheme has been used. The number of iterations for 
each time step is based upon the difference between the current degree of saturation and the initial 
degree of saturation. All the results converge in utmost 5 iterations. 

In order to represent the results, a non-dimensional time factor as given by Eq. (13) is chosen. 
By varying initial degree of saturation, the dissipation of normalized excess pore water pressure 
(p/Qz) with respect to the non-dimensional time (T) at a point B (located centrally at / 0.3z a  ) is 
shown in Fig. 5. Similarly the normalized vertical displacements at the centre (point A) of the 
footing (with respect to the half-width of the footing) is plotted in Fig. 6. The immediate 
displacements occurring at full saturation are lesser than that of the immediate displacements 
occurring at a lesser degree of saturation, the reason being that at full saturation the load is 
transferred to the soil particles and the water present in the pores of the soil. In the unsaturated 
case, the immediate settlement is higher because of the presence of air along with the water and 
soil solids. On the other hand, excess pore water pressure for partially saturated soil are smaller 
than those for fully saturated soil. 
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Fig. 3 Problem Statement 
 
 
 

Fig. 4 Finite Element Mesh for the Problem comprising of Coupled Finite Elements 
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Fig. 5 The dissipation of Normalized Excess Pore-water Pressure ( / zp Q ) with respect to the 
Non-Dimensional Time Factor (T) at a point B ( / 0.3z a  ) 

 
 

 

Fig. 6 Normalized vertical displacements at the point A 
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Fig. 7 Variation of Degree of Consolidation for unsaturated soil 
 
 
Gibson et al. (1970) have proposed a relationship for the degree of consolidation, U as a 

function of vertical displacements (settlements) to study the effect on the degree of consolidation 
when the soil is in a state of partial saturation. 

t i

ult i

v v
U

v v





           (15) 

where vt denotes the vertical displacement at any time, vi is the immediate settlement and vult is the 
ultimate settlement. 

 The time span of the analysis has been increased in order to evaluate the effect of partial 
saturation on the degree of consolidation, U. Fig. 7 shows the variation of the degree of 
consolidation with normalized time factor for the case when the soil has an 85% initial degree of 
saturation. 

 
4.1 Variation of poisson ratio 
 
The value of Poisson ratio is varied and the vertical displacement at the center of the footing is 

plotted in Fig. 8. It is seen that as the Poisson ratio is increased from 0.0 to 0.3, the effect of 
immediate settlement on the application of load is quite significant. There is a change of 31.7% in 
the numerical value for the settlements at the center of the footing at the extreme values. As lateral 
strain increases with increase in Poisson ratio, which may cause to reduce deformations in the 
vertical direction. The effect of Poisson ratio on the degree of consolidation can be seen from Fig. 
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9. The values indicated in the graph are for point A (Fig. 4). As the coefficient of volume 
compressibility mv, decreases with increase in Poisson ratio, the degree of consolidation U, also 
reduces with increase in Poisson ratio and same is reflected in Fig. 9. 

 
 

 
Fig. 8 Variation of Settlement at the Centre of Footing with Poisson ratio 

 
 

 

Fig. 9 Variation of Degree of Consolidation with different Poisson ratio 
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Fig. 10 Variation of Normalized Excess Pore Pressure for Three Values of k 
 
 
4.2 Variation of coefficient of permeability 
 
By varying the values of the coefficient of permeability, the dissipation of excess pore water 

pressure at point B ( / 0.3z a  , Fig. 4) is evaluated and the effect can be seen from Figs. 6-10. It 
can be noted that as the value of the coefficient of permeability reduces the dissipation of pore 
water pressure takes further time. The units of the coefficient of permeability being in m/yr. With 
increase in permeability, the dissipation of pore water pressure is faster at initial stage due to larger 
void area available for drainage. 

 
 

5. Conclusions 
 

The work presented in this paper presents the procedure to extend the Biot’s three dimensional 
consolidation theory to describe the partially saturated soil behaviour. Coupled finite element 
formulation has been implemented by developing a FORTRAN90 code to study the effects of 
partial degree of saturation on the settlement and the pore-water dissipation behaviour of soils 
subjected to a strip loading. The program is validated against existing literature and it gives a 
satisfactory outcome. The immediate settlements in the case of partly saturated soils is larger than 
that of a fully saturated soil, the reason being the presence of pore air in partially saturated soils. 
On the other hand, excess pore water pressure for partially saturated soil are smaller than those for 
fully saturated soil. The degree of consolidation, U reduces with increase in Poisson ratio, as the 
coefficient of volume compressibility mv, decreases with increase in Poisson ratio. The dissipation 
of excess pore water pressure is quicker for the soils with higher coefficient of permeability due to 
the presence of larger void area for drainage. 
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