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Abstract.    In this paper we present a new model for computing the nonlinear response of reinforced 
concrete frame systems subjected to extreme thermomechanical loads. The first main feature of the model is 
its ability to account for both bending and shear failure of the reinforced concrete composites within 
frame-like model. The second prominent feature concerns the model capability to represent the total 
degradation of the material properties due to high temperature and the thermal deformations. Several 
numerical simulations are given to confirm these capabilities and illustrate a very satisfying model 
performance. 
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1. Introduction 
 

The mechanical response of reinforced concrete frame structure at elevated temperature were 
studied by many researchers and a number of interesting methods were introduced in Capua and 
Mari (2007), Kodur and Dwaikat (2008), Dwaikat and Kodur (2008), Xavier (2009), ACI-216 
(1997). Most of these previous studies considered only the bending response and ignored the shear 
behavior, which is also a typical damage model of the reinforced concrete structure. Moreover, 
practically none of the works available in the literatures considers the effect of shear force and 
axial force on the bending resistance of reinforced concrete element, although the stress-strain 
relation typical of the cross-section where shear force and axial force exist are much different to 
the stress/strain condition in the pure bending cross-section. Another deficiency of previously 
proposed methods is that they take into account only the degradation of the mechanical resistance 
due to material strength reduction at high temperature, while the ‘thermal’ response of the frame is 
usually neglected. However, at high temperature, thermal behavior might contribute a significant 
amount to the total behavior of the section. The last important model feature to be improved with 
respect to the previous works is to cast the stress-resultant model that can represent such a 
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thermomechanical behavior of a reinforced concrete elements (either beam or column), which can 
provide an efficient computational basis in identifying the overall response of the frame structure. 

The outline and main contributions of this paper are as follows. In the first part of this article, 
we studied the degradation of mechanical resistance of the reinforced concrete cross-section under 
bending moment, shear force and axial loading due to temperature increase. These degradations 
was studied based on the ‘layer’ method in the framework of Modified Compression Theory 
proposed by Vecchio and Collins (1988), Vecchio and Emara (1992), Bentz et al. (2006) but was 
extended to include the temperature dependence of material properties and the stress-strain 
condition due to thermal loading. In such a method, the cross-section is divided into layers, which 
are small enough to assume uniform stress and strain condition and constant temperature through 
the layer thickness. In that way, the reduction of material properties due to temperature at each 
layer is considered and accumulated into the degradation of overall resistance of the cross-section. 
The thermal strain due to temperature gradient at each layer is also taken into account to estimate 
the total deformation of the cross-section and to compute the total stress in each layer. The latter 
contributes in total response of the section, especially for high temperature typical of fire loading. 

In the second part of the paper, we introduce the finite element method to provide an efficient 
computational framework using the stress-resultant constitutive model of reinforced concrete beam 
element. The latter is then used for limit load computations of the reinforced concrete frame 
structures subjected to combined mechanical loading and fire. 

 
 

2. Stress-resultant model of a reinforced concrete beam element subjected to 
mechanical and thermal loads 

 
In this section, we present how the modified compression theory is adapted to derive the 

stress-resultant model descibing the behavior of a beam cross-section submitted to mechanical and 
thermal loading. In particular, we present the evolution of the mechanical parameters entering the 
stress-resultant model in terms of the temperature. 

 
 
2.1 Stress and strain condition at a position in reinforced concrete beam element under 

mechanical and temperature loading 
 
 

Fig. 1 Mechanical loading and fire acting on reinforced concrete element 
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Consider a reinforce concrete beam element subjected to mechanical loading and thermal 
loading (see Fig. 1).  
 
 
Table 1 List of symbols for thermomechanical model 

Symbol Meaning 

θ Angle of principal direction (for both deformation and stress condition) 

σx Normal stress in x direction (longitudinal direction) 

σy Normal stress in y direction (tranverse direction) 

τ Shear stress 

σ1 1st (maximum) principal stress 

σ2 2nd (minimum) principal stress 

εxm Mechanical normal strain in x direction (longitudinal direction) 

εym Mechanical normal strain in y direction (tranverse direction) 

γ Shear strain 

ε1 1st (maximum) principal strain 

ε2 2nd  (minimum) principal strain 

σxt Thermal stress in x direction (longitudinal direction) 

εxth Thermal strain in x direction (longitudinal direction) 

 
 
 

Fig. 2 Thermal stress and thermal strain condition
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In this element, beside the mechanical deformation, a thermal strain is also acting. The total 
strain is then the sum of mechanical strain and thermal strain 

thm           (1) 

Fig. 2 represents the thermal stress and strain condition at a given point in the element. 
The thermal strain of concrete depends on the temperature and the kind of aggregates 

EN-1992-1-2 (2004), such that we have for calcareous aggregates 
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(3) 

The thermal strain of steel also depends on the temperature (EN-1992-1-2 2004) 
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Note that we have assumed that the normal part of the thermal strain and thermal stress in the 
transverse direction of the element is equal to zero (εyth=0 and σyth=0, see Fig. 2). A similar 
assumption also applies to mechanical stress and strain; in particular, the normal part of 
mechanical stress and mechanical strain are also ignored ( 0y , 0y ). This assumption is 
sometimes referred to as ‘no interactive compression between longitudinal layers of the element’ 
or ‘the depth of the cross-section is constant after loading’, which is a well-known and widely 
accepted hypothesis for beam analysis. Due to this assumption, only the longitudinal strain (εx) and 
the shear strain (γ) are considered as non-zero strain components of the beam element (see Fig. 3). 

The total stress and strain condition at a point in reinforced concrete beam element can be 
represented by the Mohr circle (see Fig. 4). 

The angle giving the orientation of the principal directions can then be defined according to 
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The minimum value of principal strain is 
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Fig. 3 Total stress and strain condition at a position in beam element (εy=0 and σy=0) 
 
 

 

Fig. 4 Mohr circle representation for strain and stress condition at a point in beam element 
 
 

 

115



 
 
 
 
 
 

Minh Ng, Adnan Ibrahimbegovic and Delphine Brancherie 

 

We note that in this case, the maximum strain is always positive and the minimum strain is 
always negative.  

Once the strain components are known, we can compute the corresponding stress components 
by using the constitutive equation between principal stress and principal strain, assuming that the 
principal directions for strain and stress are the same. The latter is always the case for isotropic 
elastic response, and also for proper incremental damage parameterization (see Ibrahimbegovic 
and Frey (1993)). The constitutive equation between principal stress and principal strain of 
concrete and rebar is dependent on the temperature; it can be approximated by a number of 
mathematical equations (e.g., see Bentz et al. (2006), EN-1992-1-2 (2004), ACI-318 (2008), 
ASTM-E119 (2000), Le (2011), Vecchio and Collins (1988), or Nielsen, Pearce and Bicanic 
(2004)). In the following, some typical relationships are introduced: 

 
Concrete 

 
The mechanical stress-strain constitutive equation for concrete in compression can be 

computed by the following equation ASCE-1992 (1992) (see Fig. 5) 
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where     62
max 1004.06025.0  TTT  

 
 

 

Fig. 5 Relation between compressive stress (MP) and strain of concrete due to tempeture ASCE-1992 
(1992) 
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The compressive strength of concrete is dependent on temperature EN-1992-1-2 (2004) 
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where '
cf  is the compressive strength of concrete at room temperature (200C) 

The negative principal stress of concrete can also be computed from the negative principal 
strain by the equations of Vecchio and Collins (1988), which are widely used in American building 
codes ACI-318 (2008), AASHTO-LRFD (2012). In which, the minimum principal stress is 
computed by the equation 
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The principal stress-strain relation of concrete in tension can be computed by following the 
suggestion of Vecchio and Collins (1988) 
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The Young modulus of concrete (Ec(T)) also depends on the temperature Nielsen et al. (2004) 
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where Ec is the Young modulus of concrete at room temperature. 
The crack limit of concrete in tension fcr(T) also depends on the temperature EN-1992-1-2 

(2004) 
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where crf  is the tension limit of concrete at room temperature and, if there is no experiment 

value, can be computed from the compressive strength of concrete ACI-318 (2008):
'62.0 ccr ff 

 
 

Steel rebar 

 

For reinforcement bar, a bi-linear mathematical model is usually used for both compression and 
tension condition (see Fig. 6) 
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The yield stress fy(T) of rebar is a function of the temperature (EN-1992-1-2 2004) 
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Fig. 6 Stress- strain relationship of rebar in different temperature 
 

118



 
 
 
 
 
 

Thermomechanics failure of RC composites: computational approach with enhanced beam model 

 

By using the constitutive equation for concrete and steel rebar described above, we can obtain 
the principal stresses due to the principal strain, at a given considered position. Assuming isotropic 
elastic response implying that the principal stresses and the principal strains coincide, we can 
estimate the longitudinal normal stress (σx) and the shear stress (τ) by using the Mohr circle for 
stress condition (see Fig. 4) 

The shear stress 

    2sin2
21        (17) 

The longitudinal stress 

  2tanx        (18) 

 

 

Shear  Force             Parabol shear  strain distribution  

Fig. 7 Response of reinforced concrete element under mechanical and thermal loads 
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Response of a reinforced concrete element under external loading and fire loading. 
The mechanical response at the cross-section level is defined with respect to the generalized 

deformations (in the given section) represented by the curvature κ, the longitudinal strain εx at the 
middle of the section and the sectional shear deformation γ. We can further apply the ‘layer’ 
method Vecchio and Collins (1988), Hsu and Lin (2006), Kodur and Dwaikat (2008), where the 
cross-section is divided into a number of layers across the beam depth. Each layer is assumed to be 
thin enough to allow for uniform distributions of stress, strain and temperature (see Fig. 7). 

We denote the layer width and height as bci and hci, the longitudinal stress as σcxi and the 
distance from the middle of the layer to the top of the cross-section of concrete layer ‘ith’ as yci; 
furthermore, we denote the steel bar area sxja , the longitudinal stress σsxj and the distance from the 

middle of the rebar element to the top of the cross section of the rebar element ‘jth’ as ysj, we can 
establish the following set of equilibrium equations 
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where y  is the distance from the neutral axis (where 0x ) to the top of the cross-section. 

This system allows us to compute the response of the cross-section, and in particular curvature, 
longitudinal strain and shear deformation, at a given force and temperature loads; the following 
procedure is used (see Fig. 8): 

 
 
2.3 Effect of temperature loading, axial force and shear load on mechanical 

moment-curvature response of reinforced concrete beam element 

 

By applying the procedure illustrated in Fig. 8, we can establish the moment-curvature relation 
for a reinforced concrete beam element, by fixing the temperature loading, the shear loading, the 
axial force and tracking the increase of the internal moment (M) proportional to the increase of the 
curvature (κ).  

Fig. 11 shows the degradation of the moment-curvature response of a rectangular reinforced 
concrete beam exposed to ASTM 119 fire acting on the bottom (see Fig. 9) in case external axial 
force and shear force equal to zero (pure bending test) (Nu = 0, Vu =0). The temperature profile of 
the RC beam subjected to fire loading increases due to time (see Fig. 10), set according to 
ASTM-E119 (2000). With increase of temperature, the strength of materials, both concrete and 
rebar, will decrease and lead to the degradation of moment-curvature resistance of the element.  
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Compute longitudinal strain distribution ( test
xi ) from assuming curvature

test  

and position of neutral axis (
testy ) with plane section hypothesis (Fig. 7) 

Estimate the stress condition (  ,, 21 ii ) of each layer from the strain 
condition (  ,, 21 ii ) by the principal stress-strain contitutive equation (8 to 

16). Compute the longitudinal stress ( test
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END

Compute temperature distribution along the cross-section: Tci; Tsj

Specific section mechanical loading: Mu, Nu, Vu

Assume parabolic shear strain distribution: max (Fig. 7) 

Estimate the strain condition (  ,, 21 ii ) at layer ‘ith’ from test
xi , 
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i  and 

with the assumption that 0y (depth of the layer remains the same after 
loading) 

Check: V = Vu   
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Fig. 8 Procedure to determine the mechanical response of RC beam element 
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Fig. 12 Dependence of moment-curvature on axial compression 
 

Fig. 13 Dependence of moment-curvature response on shear loading 
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Fig. 12 illustrates the evolution of bending resistance of the frame with an increase of the axial 
compression.  

Fig. 13 expresses the reduction of the bending resistance when shear load increases at four 
instants: t =0h, t=1h, t=2h and t=3h. 

In Figs. 11 to 13, we have indicated that the moment-curvature diagram can approximately be 
represented in a multi-linear form (see Ibrahimbegovic and Frey (1993)) with the ‘crack’ moment 
Mc, the ‘yield moment’ My, the ‘ultimate’ moment Mu and the corresponding values of curvature: 

c , y , u . The ‘crack’ moment is obtained at the state where the tensile fiber of concrete starts 

to crack. The ‘yield’ moment is the moment acting on the cross section to make the tensile rebar 
starts to yield. The peak resistance of the beam is reached when both the tensile rebar yields and 
the concrete the compressive fiber collapses to make the ‘ultimate’ bearing state of the beam. From 
this state on, the ‘bending hinge’ occurs at the cross-section and the bending resistance of the 
cross-section starts to decrease with further curvature increase (see Fig. 14). 

 
 

Fig. 14 Multi-linear moment-curvature model of the reinforced concrete beam in bending 

 
 
2.4 Mechanical shear load – shear strain response of a reinforced concrete element 

subjected to pure shear loading under elevated temperature 

 
There can be several positions in frame structures where moment and axial force are small 

enough in comparison to shear force (for example, at the place on the top of the pin support), at 
such a position, the failure of the frame is due to shear force rather than bending moment. The 
shear strength of reinforced concrete element is normally assumed to be the total of the concrete 
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component and stirrups component; it can be computed by the proposed general algorithm shown 
in Fig. 8 or by applying the compression field theory. In this theory, the shear resistance of the 
beam is considered by assuming that the longitudinal strain of the cross-section is equal to zero. 
This model implies that the angle of the principal stress and strain is equal to 450C 

0452tan
0

2
2tan 


 




x

    (20) 

The maximum and the minimum strains are opposite in sign and equal in magnitude 
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




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 2
2

2

2 2

0

2

0 xx       (22) 

The principal stress can be computed from the principal strain for concrete and steel bar by 
applying Eqs. (8) to (16). The shear stress can therefore be computed from the shear strain and the 
temperature at each concrete layer and/or rebar element 

   iiiiii TfTf ,,11             (23) 

The equilibrium equation for shear force 

 
svsvcici

N

i
ciscu A

s

dcotan
hbVVV

c

  
1

    (24) 

Where d is the ‘effective’ depth of reinforced concrete cross section subjected to shear load, s is 

the stirrups’ spacing, Asv is the area of stirrup and sv  is the stress in the stirrups corresponding 

to the considered shear strain. For pure shear test ( 045 ), the result (24) becomes  

svsvcici

N

i
ciscu A

s

d
hbVVV

c

  
1

     (25) 

From the (23) to (25), we can estimate the corresponding shear force (Vu) of a given shear 
deformation (γ), which allows us to draw the shear force – shear strain diagram in a given 
cross-section.  

Fig. 15 shows the reduction of shear resistance of the RC element given in Fig. 15 when 
subjected to ASTM 119 fire. 

With a similar approximation already used for the moment-curvature curve, we also introduce a 
multi-linear response for the shear resistance of a reinforced concrete element (see Fig. 15 for 
illustration). In the next section, we show how to apply these stress-resultant models in the finite 
element analysis of reinforced concrete frame structure subjected to combined mechanical and 
thermal loads, by using the Timoshenko beam element. 
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Fig. 15 Stress components of reinforced concrete subjected to pure shear loading 
 
 

 

Fig. 16 Mechanical shear force- shear deformation diagram 
 
 

3. Finite element analysis of reinforced concrete frame 
 

The moment-curvature curve and the shear force-shear strain diagram of reinforced concrete 
beam exposed to fire loading can be represented by the Timoshenko beam model. It can consider 
both the hardening response while micro-cracks develop in fracture process zone and the softening 
behavior of the element once the micro-cracks coalesence happen in producing a macro crack. 
This model was first developed for bending-dominated failure modes in Pham et al. (2010, 2013). 
These developments are summarized in the following section, and then further extended to account 
for shear-dominated failure modes.  

 
3.1 Kinematic equation of Timoshenko beam with strong discontinuities 
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Fig. 17 Discontinuity in rotation and vertical displacement 
 
 
In this model, localized failure due to either bending and/or shear is assumed to happen at the 

local point xc. The corresponding failure modes are represented by ‘jumps’ in either rotation, for 
bending failure, or vertical displacement, for shear failure (see Fig. 16). In the presence of failure 
mode, the displacement field is decomposed into a regular part and a discontinuous part as 
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
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αuu       (26) 

where 
cxH denotes the Heaviside function, which is equal to zero when cxx  and is equal to one 

when cxx  ; whereas  Tv 0α denotes the vector of discontinuities in the local point xc.  

If we introduce a regular differentiable function  x being 0 at x = 0 and 1 at x = l, the 
displacement field can then be rewritten as 

      
 

    
 
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xM

x

x

xxxxx
c

  ααuu
u~

         (27) 

The corresponding deformation field is then computed 

        xxxx
cxααGuεε  ~           (28) 

where G is equal to   xL (with L being the strain-displacement operator) and  x
cx is the 

Dirac delta function. 
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3.2 Stress-resultant constitutive model for reinforced concrete element  
 
3.2.1 Bending model  
The bending behavior of a reinforced concrete beam is represented by the relation between the 

internal moment (M) and the corresponing curvature (κ). In this article, a multi-threshold isotropic 
plasticity model Pham et al. (2010, 2013) is chosen to represent that kind of behavior.  

The curvature is consider to be the composition of ‘elastic’ part and ‘plastic’ part  

pe              (29) 

In continuum regime, the bending behavior of the beam is controlled by a Helmholtz free 
energy 

     eee EI
2

1
,      (27) 

where is the internal variable controlling the plastic hardening of the material. 
The plastic threshold is chosen as 

   qMMqM y  ,
 

     (28) 

where q is the ‘stress-like’ variable controlling the evolution of the threshold. 
The constitutive equations are obtained by applying the second principle of thermodynamics 

for the elastic case 

   KIqEIEIM ep  ;
 
       (29) 

Moreover, considering that these constitutive equations remain valid in the inelastic case, we 
can further obtain the evolution equations for internal variables by appealnig to the maximum 
dissipation principle 

    








q

Msign
M

p ;         (30) 

The rate form of consitutive equation between internal moment and the curvature will finaly be 
computed   


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0

0
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
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KIEI

EIKI

EI
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along with the loading/unloading conditions 0,0,0   
 and consistency condition

0 . 
For the proposed model for reinforce concrete beam, two plasticity thresholds should be taken 

into account. The first threshold:    cccc qMMqM  ,
 

where cM is the elastic limit 

which corresponds to the state in which the concrete in the tension part starts to crack with 

isotropic hardening IKqc 1 . The second threshold:    yyyy qMMqM  ,
 

where
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yM is the plastic limit which corresponds to the state in which the steel bar starts to yield with 

isotropic hardening IKqy 2  

To describe the softening part of internal moment at the ‘plastic’ hinge, a rigid-plastic model is 
introduced: 

    0,  qMMqM uxx cc
     (32) 

where 
cxM is the moment at the failure point, uM is ultimated moment of reinforced concrete 

section. 

The isotropic behavior is chosen for the softening threshold: IKq   with 0K  
Note that due to the rigid behavior of the plastic hinge at xc, the equivalent total strain αφ and 

the plastic strain are equal, and αφ can thus be interpreted as a plastic strain; its evolution is given 
by: 

  


 








q

andMsign
M

   (33) 

The bulk and discontinuity behavior is described in Fig. 17, which is similar to what had been 
explained in Fig. 14. All the parameters of the model can be identified by the layer method as 
already explained in Section 2. 

 
 

 

Fig. 18 Moment-curvature relation for bending stress-strain model 
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3.2.2 Shear model 
 
 

 

Fig. 19 Shear load - shear strain relation for shear stress-resultant model 
 
 
The shear strength of a reinforced concrete beam consists of two mains ingredients: the 

contribution of concrete (Vc) and the contribution of stirrups (Vs). The shear behavior of a beam 
therefore undergoes over three stages. The first stage have the highest strength since the shear 
response come from both concrete and stirrups. Once the concrete is failure, the shear behavior 
moves to the second stage where the shear strength comes from stirrups only. The last stage kicks 
off in case both the stirrups and the concrete are failure. In this stage, the shear behavior is no 
longer increase and starts to reduce. 

In this article, the shear behavior is also modeled by a multi-linear elasto-plastic model (see Fig. 
18). Main equations are summaried in the following: 

The decomposition of the shear strain 

pe                      (34) 

The continuum shear behavior is controlled by the free energy 

   vv
ee

v
e

v GA  
2

1
,          (35) 

The yield threshold for the cross section 

    0,  vyvv qVVqV          (36) 

The state equations 
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  ep GAGAV         (37) 

vvv AKq         (38)
 

where vq is the ‘stress-like’ variable controlling the hardening at plastic regime. 

The evolution equations 
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
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    (39) 

The constitutive equation in continuum shear behavior 
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The softening part of the behavior is described by and a threshold function at the failure point 

    0,  vuxvx qVVqV
cc

     (41) 

with isotropic softening  

0 vvvv KwithAKq       (42) 

 
3.3 Equilibrium equation  

 

We consider a beam summitted to external loads and fire as described in Fig. 
 
 

Fig. 20 Beam under external loading and fire 
 

 
Denoting as N, V and M respectively the internal axial force, transverse shear force and 

bending moment, the strong form of the local equilibrium can be written as 

131



 
 
 
 
 
 

Minh Ngo, Adnan Ibrahimbegovic and Delphine Brancherie 
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     (43) 

The corresponding weak form for the standard Timoshenko beam model becomes 

   
l Tl TT Fdxfdx
0 0

wBwσ         (44) 

where σ is the stress-resultant vector (  TMVNσ ), w is a virtual generalized displacement 

( 0Vw  where      uonandlHRlV  0,0,0: 13
0 www ),  Tmqf ,,f is the vector 

of distributed load  TCQF ,,F the vector of concentrated forces. 
 
3.4 Finite element approximation 
 
Note that from (27), the displacement field is the composition of the regular part and the 

singular part:         xxxx
cx  αuu ~  

We choose the isoparametric interpolation functions for the regular part of displacement field
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where  
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and d is the vector of nodal displacements:  Tvuvu 222111 d  
Furthermore, by choosing N2(x) for the function ϕ(x) (see Fig. 20 ), the general displacement 

field can finally be re-written 

      xNxx
cx

h
2 αNdu        (47) 

The strain field of the beam is computed from the displacement field by using the Timoshenko 
kinematic equation 

132



 
 
 
 
 
 

Thermomechanics failure of RC composites: computational approach with enhanced beam model 

 

 

 

   

  









































x
x

x
x

v
x

x

u
x

x







ε        (48) 
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and
cx is the Dirac delta function. 

To build the weak form of the equibrilium equation, we use the same interpolation functions for 

the virtual strain field  x*ε  

         
cxvv xxxxx ****** ββGdBβGdBε      (51) 

where *d and *β are the virtual nodal displacement and virtual displacement jump, respectively. 
 
 

 

Fig. 21 Heaviside function
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Function Gv is chosen in the framework of the incompatible mode method of Ibrahimbegovic 

and Wilson (1991) 

     
el

rerv dxx
l

xx
0

1
GGG           (52) 

For Timoshenko beam element with only one integration point:    xx rv GG  . With such 

interpolations, the weak form of equilibrium Eq. (45) leads to a system 
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The system (53) can be re-written in the form where the standard set of global equilibrium 
equations for finite element method is accompanied by the element-based equations 
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where  

  
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also, 
elemN denotes the set of elements enriched with a discontinuity and 

cx
σ represents the value 

of the stress-resultant vector at point xc where the discontinuity is introduced: 
e

cc

l

xx
0
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Denoting as i the iteration for time step n+1 of Newton’s iterative procedure and providing the 

corresponding iterative updates      i
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be re-written in the linearized form 
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where the following notations is used 
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We also denote with  i
n 1, dK and  i

n 1, αK  the consistent tangent stiffness for the discontinuity part 
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and  ian
n

,
1C denotes the consistent tangent modulus for the bulk material obtained as a discretized 

version of the tangent modulus given in Eqs. (31) and (40) 
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whereσ  and ε  the generalized stress and strain, respectively. 
The system (56) is solved by an operator split procedure (see Brancherie and Ibrahimbegovic 

(2009) and Ibrahimbegovic (2009)). In which, the second equation (concerning the local 
equilibrium for the element with active failure mode) is solved first at the element level for a given 

nodal displacement increment  i
n 1d to determine the increment of displacement ‘jump’  i

n 1α . 

Once the increment of displacement ‘jump’  i
n 1α is known, we then perform the static 

condensation of at the element level, and carry on to solve the increment of displacement from the 
first equation. The static condesation of the system (56) can be written 
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is the ‘modified’ element tangent modulus.  
 
 

4. Numerical examples 
 

4.1 Four-point bending test 
 

We consider here a simple reinforced concrete beam subjected to ASTM 119 fire (see 
ASTM-E119 (2000)) at its bottom and external mechanical load applied in the vertical direction as 
described in Fig. 21.  

The beam is composed by carbonate concrete with compressive strength MPafc 30'  . Two 

longitudinal reinforcement bars of diameter 14 mm are placed at the top the cross section and three 
longitudinal reinforcement bars of diameter 20 mm are placed at the bottom. The concrete cover 
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thickness is 40 mm. The beam is also transversely reinforced by stirrups of diameter 10 mm with 
the spacing of 125 mm. The yield limit of steel is 400MPa.  

Using the layer method described in section 2, we can identify the stress-resultant models for 
bending failure and shear failure at different instants of fire loading program (Figs. 22 and 23). 
 

 

Fig. 22 Simple reinforced concrete beam subjected to ASTM 119 fire and vertical forces 

 
 

 

Fig. 23 Reduction of bending resistance due to time exposure to fire ASTM 119 
 
 

136



 
 
 
 
 
 

Thermomechanics failure of RC composites: computational approach with enhanced beam model 

 

The corresponding values of material parameters for bending model are given in Table 2. 
 
 
 

Table 2 Bending model parameters for different instants of fire loading program 

Parameters t =0h t =1h t =2h t=3h 

Young Modulus E (kN/m2) 2708121 2835722 2644230 1324882 

Hardening Modulus K1 (kN/m2) 795440.3 773984.9 540969.6 279660.4 

Hardening Modulus K2(kN/m2) 433372.2 404203.2 99201.84 177893.4 

Softening Modulus K (kN/m) -66943.8 -34230.2 -79727.8 -40232.5 

Crack shear Mc (kNm) 42.3144 44.30815 41.3161 41.40257 

Yield shear My (kNm) 87.15347 177.3368 134.2953 76.36012 

Ultimate shear Mu (kNm) 192.5736 189.9682 137.3953 81.91929 

 
 
 

 

Fig. 24 Reduction of shear resistance due to time exposure to fire ASTM 119 
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The corresponding parameters for shear failure model are presented in Table 3. 
 
 

Table 3 Parameters of shear model at different instants of fire loading program 

Parameters t =0h t =1h t =2h t=3h 

Shear Modulus G (kN/m2) 26892218 21686667 19600983 17267528 

Hardening Modulus K1 (kN/m2) 26892218 21690899 19520350 17267528 

Hardening Modulus K2(kN/m2) 26892218 21114573 3850031 8273086 

Softening Modulus K (kN/m2) -1208592 -743844 -444255 -310832 

Crack shear Vc (kN) 40.33833 32.53 29.40148 25.90129 

Yield shear Vy (kN) 161.3533 130.139 371.9836 284.9142 

Ultimate shear Vu (kN) 443.7216 415.1858 391.0413 371.7816 

 
 
Fig. 24 shows the relation between the load P and the deflection in the middle of the beam 

exposed to fire loading at times t=0h, t=1h, t=2h and t=3h. 
 
 

 

Fig. 25 Force/displacement curve of the beam at different instants of fire loading program 
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We note that after a long exposure to fire loading, the bearing resistance of the beam is 
significantly reduced. In particular, after one hour fire exposure, the ultimate load of the beam 
reduces from 185.27 kN to 180.31 kN; then after two hours, the ultimate load reduces to 130.48 
kN and it finally reduces to 79.767 kN after three hours of exposure to ASTM 119 fire (see Fig. 
25). 
 

Fig. 26 Reduction of ultimate load due to fire exposure 
 
 
4.2 Reinforced concrete frame subjected to fire 

 
We consider a two-storey frame with the geometry given in Fig. 26. The material properties are 

listed in the Table 4. Each of the two columns of the frame is subjected to a compressive load 
equal to 700 kN acting on the top of the column. A horizontal force Q acts on the left edge of the 
second storey leading to a horizontal displacement of the frame. Two reinforced concrete beams 
corresponding to the spans of the frame are submitted to ASTM119 standard fire (ASTM-E119 
2000) on their bottom. Fig. 27 shows the evolution of temperature of the beam that has been 
submitted to fire for one, two and three hours. 

 
 

Table 4 Material Properties 

Concrete Properties 

Modulus of Elasticity Ec 26889.6 N/mm2 

Compression Strength fcc 30 N/mm2 

Steel Properties 

Yield Stress fsy 400 N/mm2 

Modulus of Elasticity Es 20000 N/mm2 
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Fig. 27 Two-story reinforced concrete frame subjected to loading and fire 
 
 
 

 

Fig. 28 Temperature profile of the reinforced concrete beam due to time of fire 
 
 
Since the columns are highly compressed with a 700kN force, their bending resistance is much 

greater than the bending resistance of the beam. The bending model of the column at room 
temperature (no fire acting) is given in Fig. 28. 
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Fig. 29 Moment-curvature model for the column 
 
 
The shear model of the column is given in Fig. 29 
 
 

 

Fig. 30 Shear failure model for the column 
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Fig. 30 represents the degradation of moment-curvature curve of the beam after one, two and 
three hours exposing to fire.  
 
 

 

Fig. 31 Degradation of bending resistance of reinforced concrete beam versus fire exposure 
 
 
 

 

Fig. 32 Horizontal force/displacement curve of two-story frame at different instants of fire 
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Fig. 31 illustrates the reduction of the overall response of the frame due to fire by plotting the 
relationship between horizontal force Q with the horizontal displacement of the top beam at 
different times: t= 1 hour, t = 2 hours and t = 3 hours. 

We can note, in particular, that the ultimate horizontal load of the reinforced concrete frame 
decreases from 308.52kN to 251.46kN and then to 180.01kN after one hour, two hours and three 
hours submitted to fire. This is the result of the degradation of the material properties due to high 
temperature and also due to the thermal effect on the beam.  

 
 

5. Conclusions 
 

In this work we have developed a method to calculate the behavior of reinforced concrete 
frame structure subjected to fire, with combined thermal and mechanical loads. The main novelty 
of the proposed method is that is its capability of taking into account the thermal loading and the 
degradation of material properties due to the temperature in determining the ultimate load of the 
reinforced concrete frame. Moreover, in the proposed method we consider not only the bending 
failure but also the shear failure of the reinforced concrete structure. This is also a new 
contribution in solving the resistance of reinforced concrete frame exposure to fire and thermal 
effect. 

The finite element approach presented for this kind of problem can deal with the localized 
failure of the reinforced concrete structure. Two most frequent failure mechanisms are treated 
separately in order to provide the most robust computational procedure. The numerical examples 
we have presented here confirmed a very satisfying results provided by proposed methodology.  

This proposed strategy is a first step towards fully coupled thermomechanical problems to 
achieve reliable description of the structural resistance all along the exposure to the thermal 
loading. 

Extending the proposed formulation to geometrically nonlinear framework can be 
accomplished by following the footsteps indicated in Ibrahimbegovic et al. (2013) and Ngo et al. 
(2014). Another possible line of development will concern combining the proposed structural 
model with refined material modeling of concrete under fire, such as elaborated upon by 
(Ostermann and Dinkler 2014, Cramer et al. 2014). 
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