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Thermomechanics failure of RC composites:
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Abstract. In this paper we present a new model for computing the nonlinear response of reinforced
concrete frame systems subjected to extreme thermomechanical loads. The first main feature of the model is
its ability to account for both bending and shear failure of the reinforced concrete composites within
frame-like model. The second prominent feature concerns the model capability to represent the total
degradation of the material properties due to high temperature and the thermal deformations. Several
numerical simulations are given to confirm these capabilities and illustrate a very satisfying model
performance.
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1. Introduction

The mechanical response of reinforced concrete frame structure at elevated temperature were
studied by many researchers and a number of interesting methods were introduced in Capua and
Mari (2007), Kodur and Dwaikat (2008), Dwaikat and Kodur (2008), Xavier (2009), ACI-216
(1997). Most of these previous studies considered only the bending response and ignored the shear
behavior, which is also a typical damage model of the reinforced concrete structure. Moreover,
practically none of the works available in the literatures considers the effect of shear force and
axial force on the bending resistance of reinforced concrete element, although the stress-strain
relation typical of the cross-section where shear force and axial force exist are much different to
the stress/strain condition in the pure bending cross-section. Another deficiency of previously
proposed methods is that they take into account only the degradation of the mechanical resistance
due to material strength reduction at high temperature, while the ‘thermal’ response of the frame is
usually neglected. However, at high temperature, thermal behavior might contribute a significant
amount to the total behavior of the section. The last important model feature to be improved with
respect to the previous works is to cast the stress-resultant model that can represent such a
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thermomechanical behavior of a reinforced concrete elements (either beam or column), which can
provide an efficient computational basis in identifying the overall response of the frame structure.

The outline and main contributions of this paper are as follows. In the first part of this article,
we studied the degradation of mechanical resistance of the reinforced concrete cross-section under
bending moment, shear force and axial loading due to temperature increase. These degradations
was studied based on the ‘layer’ method in the framework of Modified Compression Theory
proposed by Vecchio and Collins (1988), Vecchio and Emara (1992), Bentz et al. (2006) but was
extended to include the temperature dependence of material properties and the stress-strain
condition due to thermal loading. In such a method, the cross-section is divided into layers, which
are small enough to assume uniform stress and strain condition and constant temperature through
the layer thickness. In that way, the reduction of material properties due to temperature at each
layer is considered and accumulated into the degradation of overall resistance of the cross-section.
The thermal strain due to temperature gradient at each layer is also taken into account to estimate
the total deformation of the cross-section and to compute the total stress in each layer. The latter
contributes in total response of the section, especially for high temperature typical of fire loading.

In the second part of the paper, we introduce the finite element method to provide an efficient
computational framework using the stress-resultant constitutive model of reinforced concrete beam
element. The latter is then used for limit load computations of the reinforced concrete frame
structures subjected to combined mechanical loading and fire.

2. Stress-resultant model of a reinforced concrete beam element subjected to
mechanical and thermal loads

In this section, we present how the modified compression theory is adapted to derive the
stress-resultant model descibing the behavior of a beam cross-section submitted to mechanical and
thermal loading. In particular, we present the evolution of the mechanical parameters entering the
stress-resultant model in terms of the temperature.

2.1 Stress and strain condition at a position in reinforced concrete beam element under
mechanical and temperature loading

MWW

Fig. 1 Mechanical loading and fire acting on reinforced concrete element
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Consider a reinforce concrete beam element subjected to mechanical loading and thermal
loading (see Fig. 1).

Table 1 List of symbols for thermomechanical model

Symbol Meaning
0 Angle of principal direction (for both deformation and stress condition)
Oy Normal stress in x direction (longitudinal direction)
o, Normal stress in y direction (tranverse direction)
T Shear stress
o) 1** (maximum) principal stress
12 2" (minimum) principal stress
Exm Mechanical normal strain in x direction (longitudinal direction)
Em Mechanical normal strain in y direction (tranverse direction)
y Shear strain
& 1** (maximum) principal strain
& 2" (minimum) principal strain
Ot Thermal stress in x direction (longitudinal direction)
Exih Thermal strain in x direction (longitudinal direction)
Ay
Gyrhzo Syth:O
]
1
Oxth O. :
xth ' Exth

Gyrh:O

|
|

Fig. 2 Thermal stress and thermal strain condition
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In this element, beside the mechanical deformation, a thermal strain is also acting. The total
strain is then the sum of mechanical strain and thermal strain

E=¢, +¢&, (1)

Fig. 2 represents the thermal stress and strain condition at a given point in the element.
The thermal strain of concrete depends on the temperature and the kind of aggregates
EN-1992-1-2 (2004), such that we have for calcareous aggregates

( ):{—I.ZxIO“'+6><10‘6T+1.4><10‘“T3 for 20°C<T<805°C ®
o 12x10°° for  T>805"C
for siliceous aggregates
—1.8x10™ +9x10°T+2.3x107"'7? for 20°C<T<700°C
all)= {14>< 107 for  700°C <T <1200°C ®
The thermal strain of steel also depends on the temperature (EN-1992-1-2 2004)
—2416x107* +12x107°T+0.4x10°T>  for 20°C<T <750°C
g, =411x107° for  750°C<T<860°C @)
~6.2x107 +2x107°T for  860°C <T <1200°C

Note that we have assumed that the normal part of the thermal strain and thermal stress in the
transverse direction of the element is equal to zero (¢,,=0 and c,;,=0, see Fig. 2). A similar
assumption also applies to mechanical stress and strain; in particular, the normal part of
mechanical stress and mechanical strain are also ignored (¢, =0,0, =0). This assumption is
sometimes referred to as ‘no interactive compression between longitudinal layers of the element’
or ‘the depth of the cross-section is constant after loading’, which is a well-known and widely
accepted hypothesis for beam analysis. Due to this assumption, only the longitudinal strain (&,) and
the shear strain (y) are considered as non-zero strain components of the beam element (see Fig. 3).

The total stress and strain condition at a point in reinforced concrete beam element can be
represented by the Mohr circle (see Fig. 4).

The angle giving the orientation of the principal directions can then be defined according to

tan29:—2—7—>6’ 5)

The maximum value of principal strain is
& 2 &
X 2 X
& = (—J +) + ©6)

The minimum value of principal strain is
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>

Fig. 3 Total stress and strain condition at a position in beam element (¢,=0 and c,=0)
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Fig. 4 Mohr circle representation for strain and stress condition at a point in beam element
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We note that in this case, the maximum strain is always positive and the minimum strain is
always negative.

Once the strain components are known, we can compute the corresponding stress components
by using the constitutive equation between principal stress and principal strain, assuming that the
principal directions for strain and stress are the same. The latter is always the case for isotropic
elastic response, and also for proper incremental damage parameterization (see Ibrahimbegovic
and Frey (1993)). The constitutive equation between principal stress and principal strain of
concrete and rebar is dependent on the temperature; it can be approximated by a number of
mathematical equations (e.g., see Bentz et al. (2006), EN-1992-1-2 (2004), ACI-318 (2008),
ASTM-E119 (2000), Le (2011), Vecchio and Collins (1988), or Nielsen, Pearce and Bicanic
(2004)). In the following, some typical relationships are introduced:

Concrete

The mechanical stress-strain constitutive equation for concrete in compression can be
computed by the following equation ASCE-1992 (1992) (see Fig. 5)

fr 1—[%} for 6 <6 (T)
c,= - - 2: ®)
' € max (T)_ 29
£(T)1- ETNGE Jor  &,>6,,(T)

where ¢, (T)=0.025+ (67 +0.047)x10°

35
T, 30
£ 25
% 24 1 ——T=20C
% 15 —=T=200C
S 94 T=400C
E - ——T=600C

0 .

0 0.02 0.04 0.06 0.08
Strain

Fig. 5 Relation between compressive stress (MP) and strain of concrete due to tempeture ASCE-1992
(1992)
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The compressive strength of concrete is dependent on temperature EN-1992-1-2 (2004)

1. for T <100°C
£(r)= £.[1.067 -0.00067T] for  100°C < T <400°C o
‘ f.[1.44-0.0016T] for  400°C <T <900°C
0 for  900°C<T

where f c' is the compressive strength of concrete at room temperature (20°C)

The negative principal stress of concrete can also be computed from the negative principal
strain by the equations of Vecchio and Collins (1988), which are widely used in American building
codes ACI-318 (2008), AASHTO-LRFD (2012). In which, the minimum principal stress is
computed by the equation

2
E &
662 = GCZ 2;'2_(;'2] (10)
max gc (90
where
1 . .
Cory =| ———— | < 1. (i1
0.8—-0.34 <L
&

The principal stress-strain relation of concrete in tension can be computed by following the
suggestion of Vecchio and Collins (1988)

|k i st
A 1.(7) "

144200z, 7 “ 7 ET)

The Young modulus of concrete (E.(T)) also depends on the temperature Nielsen et al. (2004)

2
, T-20
ET)=E |1-
(7) [ [moooD (13)

where E, is the Young modulus of concrete at room temperature.
The crack limit of concrete in tension f,(7) also depends on the temperature EN-1992-1-2
(2004)
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£ if T<50°C
£(r)= £, (1-0.001356(T=20))  if  50<T <640°C i
¢ 021, if  640<T <800°C
0 if T >800°C

where f, is the tension limit of concrete at room temperature and, if there is no experiment

value, can be computed from the compressive strength of concrete ACI-318 (2008):

S =062f.

Steel rebar

For reinforcement bar, a bi-linear mathematical model is usually used for both compression and
tension condition (see Fig. 6)

()= {ES (T)e, for &, <0.02 )
¢ £,(7) for 0.02<e,
The yield stress f,(7) of rebar is a function of the temperature (EN-1992-1-2 2004)
f, if  0°C<T<350°C
£,(T)=1 1, [1.8848-2.528x107T] i 350°C<T<706°C  (16)

f, 0242992764 - 2.02494x107*T| if  706°C < T <1200°C
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0
0 0.02 0.04 0.06 0.08 0.1

Stram
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Fig. 6 Stress- strain relationship of rebar in different temperature
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By using the constitutive equation for concrete and steel rebar described above, we can obtain
the principal stresses due to the principal strain, at a given considered position. Assuming isotropic
elastic response implying that the principal stresses and the principal strains coincide, we can
estimate the longitudinal normal stress (o) and the shear stress (t) by using the Mohr circle for
stress condition (see Fig. 4)

The shear stress

r=4/(o, —0o,) sin(20) (17)

The longitudinal stress

o, =—rtan(26) (18)

e S
M, Vsi —
Lol — o--¥
Axial Force and Moment Concrete laver and Rebar S
[——] - P
—p
T
O .
Temperature £xt
= /) %
P T

Shear Force Parabol shear strain distribution

Fig. 7 Response of reinforced concrete element under mechanical and thermal loads
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Response of a reinforced concrete element under external loading and fire loading.

The mechanical response at the cross-section level is defined with respect to the generalized
deformations (in the given section) represented by the curvature «, the longitudinal strain & at the
middle of the section and the sectional shear deformation y. We can further apply the ‘layer’
method Vecchio and Collins (1988), Hsu and Lin (2006), Kodur and Dwaikat (2008), where the
cross-section is divided into a number of layers across the beam depth. Each layer is assumed to be
thin enough to allow for uniform distributions of stress, strain and temperature (see Fig. 7).

We denote the layer width and height as b, and 4., the longitudinal stress as o.; and the

distance from the middle of the layer to the top of the cross-section of concrete layer i as y.;

furthermore, we denote the steel bar aread the longitudinal stress oy,; and the distance from the

middle of the rebar element to the top of the cross section of the rebar element ¢ as Vyg» We can
establish the following set of equilibrium equations

ZO-CXI ci'ci +Zo-sx1 KV
Na

ZO-CXI ci'“ci yci _J_;)+Zo-sxjasxj(ysj _.)_;):M (19)
j=1

Zr,b,h, =

where ¥ is the distance from the neutral axis (where &_=0) to the top of the cross-section.

This system allows us to compute the response of the cross-section, and in particular curvature,
longitudinal strain and shear deformation, at a given force and temperature loads; the following
procedure is used (see Fig. 8):

2.3 Effect of temperature loading, axial force and shear load on mechanical
moment-curvature response of reinforced concrete beam element

By applying the procedure illustrated in Fig. 8, we can establish the moment-curvature relation
for a reinforced concrete beam element, by fixing the temperature loading, the shear loading, the
axial force and tracking the increase of the internal moment (M) proportional to the increase of the
curvature (k).

Fig. 11 shows the degradation of the moment-curvature response of a rectangular reinforced
concrete beam exposed to ASTM 119 fire acting on the bottom (see Fig. 9) in case external axial
force and shear force equal to zero (pure bending test) (N, = 0, V, =0). The temperature profile of
the RC beam subjected to fire loading increases due to time (see Fig. 10), set according to
ASTM-E119 (2000). With increase of temperature, the strength of materials, both concrete and
rebar, will decrease and lead to the degradation of moment-curvature resistance of the element.
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Compute temperature distribution along the cross-section: T,,;; T;

v

Specific section mechanical loading: M,, N,, V,

v

Assume parabolic shear strain distribution: ¥, .. (Fig. 7) \

Compute longitudinal strain distribution ( 8;“ ) from assuming curvature K fest
and position of neutral axis (fmt) with plane section hypothesis (Fig. 7)

v

. . ‘e . test
Estimate the strain condition ( &;;,&,;,0) at layer ‘i from &, 7, and

with the assumption that &, = 0 (depth of the layer remains the same after
loading)

v

Estimate the stress condition ( 0, 0,;,8) of each layer from the strain
condition ( &;,&,;, 0) by the principal stress-strain contitutive equation (8 to
16). Compute the longitudinal stress (o™ ) and the shear stress (er‘?t) for each
layer (Egs. (17) and (18))

v

. Ns
Compute resulting internal force: N = z o'bh, + z O'Stijtasx/.
Jj=1

i “ci'cl
i=l1

N, N N,
_ test —test test —test | . _ test
_zo-cxi bcihci(yci _y )+Zasxj asxj(ysj _y ) ’ V_Zz-i bihi

<heck: N= N, and M = M, NO: Adiust Vv and x/

vOK
NO: Adjust vy /
Check: V=V,

OK
\ 4

END

Fig. 8 Procedure to determine the mechanical response of RC beam element
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Fig. 9 Cross-section and Dimensioning of the considered reinforced concrete element
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Fig. 10 Evolution of temperature profile with time ASTM-E119 (2000)
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Fig. 11 Dependence of moment-curvature curve with time exposure to ASTM 119 fire
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Fig. 13 Dependence of moment-curvature response on shear loading
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Fig. 12 illustrates the evolution of bending resistance of the frame with an increase of the axial
compression.

Fig. 13 expresses the reduction of the bending resistance when shear load increases at four
instants: t =0h, t=1h, t=2h and t=3h.

In Figs. 11 to 13, we have indicated that the moment-curvature diagram can approximately be
represented in a multi-linear form (see Ibrahimbegovic and Frey (1993)) with the ‘crack’ moment
M., the ‘yield moment’ My, the ‘ultimate’ moment M, and the corresponding values of curvature:

K., K,, K,.The ‘crack’ moment is obtained at the state where the tensile fiber of concrete starts

to crack. The ‘yield’ moment is the moment acting on the cross section to make the tensile rebar
starts to yield. The peak resistance of the beam is reached when both the tensile rebar yields and
the concrete the compressive fiber collapses to make the “ultimate’ bearing state of the beam. From
this state on, the ‘bending hinge’ occurs at the cross-section and the bending resistance of the
cross-section starts to decrease with further curvature increase (see Fig. 14).

M=0
A
F ﬁ Mch
e——
4 Crack
| ————— —
[ | ) wem
F=F, . .
/Compressnon Failure
M=M, K
F=Fy Ke Ky Ky

Fig. 14 Multi-linear moment-curvature model of the reinforced concrete beam in bending

2.4 Mechanical shear load — shear strain response of a reinforced concrete element
subjected to pure shear loading under elevated temperature

There can be several positions in frame structures where moment and axial force are small
enough in comparison to shear force (for example, at the place on the top of the pin support), at
such a position, the failure of the frame is due to shear force rather than bending moment. The
shear strength of reinforced concrete element is normally assumed to be the total of the concrete
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component and stirrups component; it can be computed by the proposed general algorithm shown
in Fig. 8 or by applying the compression field theory. In this theory, the shear resistance of the
beam is considered by assuming that the longitudinal strain of the cross-section is equal to zero.
This model implies that the angle of the principal stress and strain is equal to 45°C

tan 260 = — — tan26 =0 — 6 = 45° (20)

E =

X

The maximum and the minimum strains are opposite in sign and equal in magnitude

2
51:\/(5x_0j +(7)2+gx2_0_)‘91:7 (21)

2

e =0 ? e =0
52:—\/[ e j +(r) + e = (22)

The principal stress can be computed from the principal strain for concrete and steel bar by
applying Egs. (8) to (16). The shear stress can therefore be computed from the shear strain and the
temperature at each concrete layer and/or rebar element

Ti:Un:f(gnaTi):f(%’];) (23)

The equilibrium equation for shear force

N,
V, =V, +V, = r.bh deotan() , (24)

ci~cici sV sy

i=1 s

Where d is the ‘effective’ depth of reinforced concrete cross section subjected to shear load, s is
the stirrups’ spacing, A, is the area of stirrup and o, is the stress in the stirrups corresponding

to the considered shear strain. For pure shear test (& = 45°), the result (24) becomes

N,
m=m+n=21bh+i4pw (25)
)

i=l1

From the (23) to (25), we can estimate the corresponding shear force (V,) of a given shear
deformation (y), which allows us to draw the shear force — shear strain diagram in a given
cross-section.

Fig. 15 shows the reduction of shear resistance of the RC element given in Fig. 15 when
subjected to ASTM 119 fire.

With a similar approximation already used for the moment-curvature curve, we also introduce a
multi-linear response for the shear resistance of a reinforced concrete element (see Fig. 15 for
illustration). In the next section, we show how to apply these stress-resultant models in the finite
element analysis of reinforced concrete frame structure subjected to combined mechanical and
thermal loads, by using the Timoshenko beam element.
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Fig. 15 Stress components of reinforced concrete subjected to pure shear loading
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Fig. 16 Mechanical shear force- shear deformation diagram

3. Finite element analysis of reinforced concrete frame

The moment-curvature curve and the shear force-shear strain diagram of reinforced concrete
beam exposed to fire loading can be represented by the Timoshenko beam model. It can consider
both the hardening response while micro-cracks develop in fracture process zone and the softening
behavior of the element once the micro-cracks coalesence happen in producing a macro crack.
This model was first developed for bending-dominated failure modes in Pham ef al. (2010, 2013).
These developments are summarized in the following section, and then further extended to account
for shear-dominated failure modes.

3.1 Kinematic equation of Timoshenko beam with strong discontinuities
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f
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Fig. 17 Discontinuity in rotation and vertical displacement

In this model, localized failure due to either bending and/or shear is assumed to happen at the
local point x.. The corresponding failure modes are represented by ‘jumps’ in either rotation, for
bending failure, or vertical displacement, for shear failure (see Fig. 16). In the presence of failure
mode, the displacement field is decomposed into a regular part and a discontinuous part as

u(x)] |0
u(x):ﬁ(x)+(leE = V(x) +| a, ch (26)
o(x)] |a,

where H _ denotes the Heaviside function, which is equal to zero when X < x_and is equal to one
T . PR .
when x 2 X ; whereas o = (0 a, 0(9) denotes the vector of discontinuities in the local point x..

If we introduce a regular differentiable function ¢(X) being 0 at x = 0 and 1 at x = I, the
displacement field can then be rewritten as

u(x) = [u(x)+ ag(x)]+ alH, (x)-4(x)] 27)
i(x) Y S

The corresponding deformation field is then computed

g(x)=e()(x)+aG(x)+ ad, (x) (28)

where G is equal to L(— ¢)(X)(with L being the strain-displacement operator) and 5}((‘ (x)is the

Dirac delta function.
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3.2 Stress-resultant constitutive model for reinforced concrete element

3.2.1 Bending model

The bending behavior of a reinforced concrete beam is represented by the relation between the
internal moment (M) and the corresponing curvature (x). In this article, a multi-threshold isotropic
plasticity model Pham et al. (2010, 2013) is chosen to represent that kind of behavior.

The curvature is consider to be the composition of ‘elastic’ part and ‘plastic’ part

K=Kk‘+xk"’ (29)

In continuum regime, the bending behavior of the beam is controlled by a Helmholtz free
energy

l, &)= Bl +2(0) @)

where ¢ is the internal variable controlling the plastic hardening of the material.
The plastic threshold is chosen as

(01.)-[u1- o1, ) o

where ¢ is the ‘stress-like’ variable controlling the evolution of the threshold.
The constitutive equations are obtained by applying the second principle of thermodynamics
for the elastic case

M =Ellc—«")=EIx* ; q=—KI& (29)

Moreover, considering that these constitutive equations remain valid in the inelastic case, we
can further obtain the evolution equations for internal variables by appealnig to the maximum
dissipation principle

# =39 gen(v) s E=i%% - (30)
oM oq

The rate form of consitutive equation between internal moment and the curvature will finaly be
computed

Elk A=0

M = . (31
_EIKT is0
EI +KI

along with the loading/unloading conditions AD=0,A>0,0<0 and consistency condition
AP =0.

For the proposed model for reinforce concrete beam, two plasticity thresholds should be taken
into account. The first threshold: CDC(M ,qc): |M | —(M . —qc) where M _is the elastic limit
which corresponds to the state in which the concrete in the tension part starts to crack with
isotropic hardening g, = —K,/&. The second threshold: @ y(M ,qy)z |M | —(M ) —qy) where
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M ,is the plastic limit which corresponds to the state in which the steel bar starts to yield with
isotropic hardening ¢, =-K,/&

To describe the softening part of internal moment at the “plastic’ hinge, a rigid-plastic model is
introduced:

oM, .7)=|m, |-(m,-7)<0 (32)

where M _ is the moment at the failure point, M is ultimated moment of reinforced concrete
section.

The isotropic behavior is chosen for the softening threshold: ¢ =—KI& with K <0
Note that due to the rigid behavior of the plastic hinge at x., the equivalent total strain a,and
the plastic strain are equal, and o, can thus be interpreted as a plastic strain; its evolution is given
by:
a, =2 a—=/1sign(M) and E=1 aif:ﬂ (33)
oM oq

The bulk and discontinuity behavior is described in Fig. 17, which is similar to what had been
explained in Fig. 14. All the parameters of the model can be identified by the layer method as
already explained in Section 2.

Mu r 3 &
My, [ommsss
1
1
:
1
EIK,I
wo |[f  EIKI
! 1
! |
a 1
: EI : Ug
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Fig. 18 Moment-curvature relation for bending stress-strain model
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3.2.2 Shear model

GAK, 4
GA+K, A

GA

A J

Fig. 19 Shear load - shear strain relation for shear stress-resultant model

The shear strength of a reinforced concrete beam consists of two mains ingredients: the
contribution of concrete (V.) and the contribution of stirrups (V). The shear behavior of a beam
therefore undergoes over three stages. The first stage have the highest strength since the shear
response come from both concrete and stirrups. Once the concrete is failure, the shear behavior
moves to the second stage where the shear strength comes from stirrups only. The last stage kicks
off in case both the stirrups and the concrete are failure. In this stage, the shear behavior is no
longer increase and starts to reduce.

In this article, the shear behavior is also modeled by a multi-linear elasto-plastic model (see Fig.
18). Main equations are summaried in the following:

The decomposition of the shear strain

y=rity’ (34)
The continuum shear behavior is controlled by the free energy
e 1 e e —
v,y ,fv)=57 GAy* +E,(8,) (35)

The yield threshold for the cross section
®,(V.q,)=V -V, ~q,)<0 (36)

y

The state equations
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V=GAly-y")=Gay (37)
q, =—K,A4¢, (38)

where ¢, is the ‘stress-like’ variable controlling the hardening at plastic regime.
The evolution equations

7P =4, a@iv = A,sign(V) and &, =4, %cj: =i, (39)
The constitutive equation in continuum shear behavior
GAy A,=0
V={ GAK A . 40
G€;4+—IV<VA 4 A, >0 (*0)
The softening part of the behavior is described by and a threshold function at the failure point
or,.q.)=. |- -3)<0 (@)
with isotropic softening
7. =K A& with K, <0 42)

3.3 Equilibrium equation

We consider a beam summitted to external loads and fire as described in Fig.

A J

Q
q(x) m(x) C
1—“l Y v ¥V ¥V ¥ ::: F
W W

| —_— —>> —>

f(x) Ty

Fig. 20 Beam under external loading and fire

Denoting as N, V and M respectively the internal axial force, transverse shear force and
bending moment, the strong form of the local equilibrium can be written as
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‘;—JI +f(x)=0

A7 x)=0 59 t(x)=0 43)
dx dx

M )+ m(x)=0

dx

The corresponding weak form for the standard Timoshenko beam model becomes
! !
L o’ &(W)dx = L fBdx+F'w (44)
where o is the stress-resultant vector (6 = [N VM ]T ), w is a virtual generalized displacement
(weV, wherelV, = {w : [O,l]—>R3‘w e H'([0,/])and w=00nT, }),f =(f,q,m) is the vector

of distributed load F = (F ,0,C )T the vector of concentrated forces.

3.4 Finite element approximation

Note that from (27), the displacement field is the composition of the regular part and the
singular part: u(x) = U(x)+ a[H . (x)- ¢(x)J
We choose the isoparametric interpolation functions for the regular part of displacement field

u(x)

ﬁh(x): V]’(x):Nl(x)v1+N2(x)v2 :N(x)d (45)

and d is the vector of nodal displacements: d = [”1 Vi @ U, v, @, ]T

Furthermore, by choosing N(x) for the function ¢(x) (see Fig. 20 ), the general displacement
field can finally be re-written

u'(x)=Nd+ea(H, (x)-N, () (47)

The strain field of the beam is computed from the displacement field by using the Timoshenko
kinematic equation
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ou
8()(?)—&
0
sl0)=| 7(x) ="~ olx) (48)
X
op
K'(X)— ax
—>g" (x) = B(x)d +G, (x)a = B(x)d + Er (x)u + (15){[ (49)
where
B, 0O 0 B, 0 0 -B, 0 0
B={0 B -N, 0 B -N,|; G,((x)=| 0 -B, 0 (50)
0 0 B 0 0 B, 0 0 -B

and ¢, is the Dirac delta function.

To build the weak form of the equibrilium equation, we use the same interpolation functions for
the virtual strain field 8*(x)

¢'(x)=Blx)d" +G,(x)p" =B(x)d" +G,(x}p" +p'5, (51)

whered” and B* are the virtual nodal displacement and virtual displacement jump, respectively.

Fig. 21 Heaviside function / _ and ¢(x)
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Function G, is chosen in the framework of the incompatible mode method of Ibrahimbegovic
and Wilson (1991)

1°
G,(x)=G, —H (52)

For Timoshenko beam element with only one integration point: G (x)=G,(x). With such
interpolations, the weak form of equilibrium Eq. (45) leads to a system

jd*BTcdx = jd*Ndex+d*F

vd',vp' l" ‘ (53)
J.B*Efcdx+6|x6 =0 Vee[l e,em]

0

The system (53) can be re-written in the form where the standard set of global equilibrium
equations for finite element method is accompanied by the element-based equations

lem

[ ejint feext] 0

e (54)
:ijsdx+6|x =0 Vee[l elm]
0 ‘
where
‘ ° °
£" = [Bodx £ = [N"fdx+F (55)
0
also, N? denotes the set of elements enriched with a discontinuity and G|x represents the value

elem

of the stress-resultant vector at point x. where the discontinuity is introduced: G|x = J 60,
<y

Denoting as i the iteration for time step n+/ of Newton’s iterative procedure and providing the
corresponding iterative updates Ad% =d"™) —d" andAa'), = a™) — @) | the system (53) can

n+l n+l n+l n+l n+1 ’

be re-written in the linearized form

m

Aliaal +raal) )= gl -] 6
b )+ ) a4+ 0 a0

where the following notations is used
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KW cha" Bdx ch G, dx

r n+l n+l

vn+l J-G Can

n+l

'Bdx HeO j GI/cml

n+l

G dx

We also denote with Kg) . and K"

ans1 the consistent tangent stiffness for the discontinuity part

(@)

X h

=KUY AdY) +KY | Ad)

n+l a,n+l n+l

AG

(57)

and C™)denotes the consistent tangent modulus for the bulk material obtained as a discretized

n+l

version of the tangent modulus given in Egs. (31) and (40)

Acl) = CmliAgl)

n+l n+l n+l

(58)

where6 and € the generalized stress and strain, respectively.
The system (56) is solved by an operator split procedure (see Brancherie and Ibrahimbegovic
(2009) and Ibrahimbegovic (2009)). In which, the second equation (concerning the local

equilibrium for the element with active failure mode) is solved first at the element level for a given
(i ) ()

n+l*

nodal displacement increment Ad)" to determine the increment of displacement ‘jump’Aa.

Once the increment of displacement ‘jump’ Aat) is known, we then perform the static

n+l
condensation of at the element level, and carry on to solve the increment of displacement from the
first equation. The static condesation of the system (56) can be written

Akmmm]Abf4ﬁ] (59)
where

Ret) = )+, () + kO, () k)| (60

is the ‘modified’ element tangent modulus.

4. Numerical examples
4.1 Four-point bending test

We consider here a simple reinforced concrete beam subjected to ASTM 119 fire (see
ASTM-E119 (2000)) at its bottom and external mechanical load applied in the vertical direction as
described in Fig. 21.

The beam is composed by carbonate concrete with compressive strength f c =30MPa . Two

longitudinal reinforcement bars of diameter 14 mm are placed at the top the cross section and three
longitudinal reinforcement bars of diameter 20 mm are placed at the bottom. The concrete cover
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thickness is 40 mm. The beam is also transversely reinforced by stirrups of diameter 10 mm with
the spacing of 125 mm. The yield limit of steel is 400MPa.

Using the layer method described in section 2, we can identify the stress-resultant models for
bending failure and shear failure at different instants of fire loading program (Figs. 22 and 23).
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Fig. 22 Simple reinforced concrete beam subjected to ASTM 119 fire and vertical forces
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Fig. 23 Reduction of bending resistance due to time exposure to fire ASTM 119
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The corresponding values of material parameters for bending model are given in Table 2.

Table 2 Bending model parameters for different instants of fire loading program

Parameters t =0h t=1h t=2h t=3h
Young Modulus E (kN/rnz) 2708121 2835722 2644230 1324882
Hardening Modulus K; (kN/mz) 795440.3 773984.9 540969.6 279660.4
Hardening Modulus Kz(kN/mZ) 433372.2 404203.2 99201.84 177893.4
Softening Modulus [? (KN/m) -66943.8 -34230.2 -79727.8 -40232.5
Crack shear M, (kNm) 42.3144 4430815 41.3161 41.40257
Yield shear M, (kNm) 87.15347 177.3368 134.2953 76.36012
Ultimate shear M, (kNm) 192.5736 189.9682 137.3953 81.91929
500 500

450

400 %
350

300 -

250 -

200 -

Shear Force (kN)

150
100 -
50

0 0.00005  0.0001  0.00015  0.0002 0 0.0001 0.0002

Shear Deformation () 0, (m)

Fig. 24 Reduction of shear resistance due to time exposure to fire ASTM 119
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The corresponding parameters for shear failure model are presented in Table 3.

Table 3 Parameters of shear model at different instants of fire loading program

Parameters t=0h t=1h t=2h t=3h

Shear Modulus G (kN/m?) 26892218 21686667 19600983 17267528
Hardening Modulus K; (kN/m?) 26892218 21690899 19520350 17267528
Hardening Modulus K,(kN/m?) 26892218 21114573 3850031 8273086
Softening Modulus K (kN/m?) -1208592 -743844 -444255 -310832
Crack shear V,, (kN) 40.33833 32.53 29.40148 25.90129
Yield shear V,, (kN) 161.3533 130.139 371.9836 2849142
Ultimate shear V,, (kN) 4437216 415.1858 391.0413 371.7816

Fig. 24 shows the relation between the load P and the deflection in the middle of the beam
exposed to fire loading at times t=0h, t=1h, t=2h and t=3h.

Force (kN)

Displacement (m)

1 1 1 1 1 1 -
-3

0 0.1 0.2 0.3 0.4 0.5 0.6

Fig. 25 Force/displacement curve of the beam at different instants of fire loading program
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We note that after a long exposure to fire loading, the bearing resistance of the beam is
significantly reduced. In particular, after one hour fire exposure, the ultimate load of the beam
reduces from 185.27 kN to 180.31 kN; then after two hours, the ultimate load reduces to 130.48
kN and it finally reduces to 79.767 kN after three hours of exposure to ASTM 119 fire (see Fig.
25).

200 1 8527
180
160
140
120

Ultimate Loading (kM)

0 1 2 3

Time of fire (hours)

Fig. 26 Reduction of ultimate load due to fire exposure

4.2 Reinforced concrete frame subjected to fire

We consider a two-storey frame with the geometry given in Fig. 26. The material properties are
listed in the Table 4. Each of the two columns of the frame is subjected to a compressive load
equal to 700 kN acting on the top of the column. A horizontal force Q acts on the left edge of the
second storey leading to a horizontal displacement of the frame. Two reinforced concrete beams
corresponding to the spans of the frame are submitted to ASTM119 standard fire (ASTM-E119
2000) on their bottom. Fig. 27 shows the evolution of temperature of the beam that has been
submitted to fire for one, two and three hours.

Table 4 Material Properties

Concrete Properties

Modulus of Elasticity E. 26889.6 N/mm?

Compression Strength foe 30 N/mm?

Steel Properties

Yield Stress fiy 400 N/mm’

Modulus of Elasticity E, 20000 N/mm?
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Fig. 27 Two-story reinforced concrete frame subjected to loading and fire
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Fig. 28 Temperature profile of the reinforced concrete beam due to time of fire

Since the columns are highly compressed with a 700kN force, their bending resistance is much
greater than the bending resistance of the beam. The bending model of the column at room
temperature (no fire acting) is given in Fig. 28.
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Fig. 29 Moment-curvature model for the column

The shear model of the column is given in Fig. 29
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Fig. 30 Shear failure model for the column
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Fig. 30 represents the degradation of moment-curvature curve of the beam after one, two and
three hours exposing to fire.
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Fig. 31 Degradation of bending resistance of reinforced concrete beam versus fire exposure
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Fig. 32 Horizontal force/displacement curve of two-story frame at different instants of fire
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Fig. 31 illustrates the reduction of the overall response of the frame due to fire by plotting the
relationship between horizontal force Q with the horizontal displacement of the top beam at
different times: t= 1 hour, t = 2 hours and t = 3 hours.

We can note, in particular, that the ultimate horizontal load of the reinforced concrete frame
decreases from 308.52kN to 251.46kN and then to 180.01%N after one hour, two hours and three
hours submitted to fire. This is the result of the degradation of the material properties due to high
temperature and also due to the thermal effect on the beam.

5. Conclusions

In this work we have developed a method to calculate the behavior of reinforced concrete
frame structure subjected to fire, with combined thermal and mechanical loads. The main novelty
of the proposed method is that is its capability of taking into account the thermal loading and the
degradation of material properties due to the temperature in determining the ultimate load of the
reinforced concrete frame. Moreover, in the proposed method we consider not only the bending
failure but also the shear failure of the reinforced concrete structure. This is also a new
contribution in solving the resistance of reinforced concrete frame exposure to fire and thermal
effect.

The finite element approach presented for this kind of problem can deal with the localized
failure of the reinforced concrete structure. Two most frequent failure mechanisms are treated
separately in order to provide the most robust computational procedure. The numerical examples
we have presented here confirmed a very satisfying results provided by proposed methodology.

This proposed strategy is a first step towards fully coupled thermomechanical problems to
achieve reliable description of the structural resistance all along the exposure to the thermal
loading.

Extending the proposed formulation to geometrically nonlinear framework can be
accomplished by following the footsteps indicated in Ibrahimbegovic et al. (2013) and Ngo et al.
(2014). Another possible line of development will concern combining the proposed structural
model with refined material modeling of concrete under fire, such as elaborated upon by
(Ostermann and Dinkler 2014, Cramer et al. 2014).
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