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Abstract.  In this work, we present the theoretical formulation, operator split solution procedure and 
partitioned software development for the coupled thermomechanical systems. We consider the general case 
with nonlinear evolution for each sub-system (either mechanical or thermal) with dedicated time integration 
scheme for each sub-system. We provide the condition that guarantees the stability of such an operator split 
solution procedure for fully nonlinear evolution of coupled thermomechanical system. We show that the 
proposed solution procedure can accommodate different evolution time-scale for different sub-systems, and 
allow for different time steps for the corresponding integration scheme. We also show that such an approach 
is perfectly suitable for parallel computations. Several numerical simulations are presented in order to 
illustrate very satisfying performance of the proposed solution procedure and confirm the theoretical 
speed-up of parallel computations, which follow from the adequate choice of the time step for each 
sub-problem. This work confirms that one can make the most appropriate selection of the time step with 
respect to the characteristic time-scale, carry out the separate computations for each sub-system, and then 
enforce the coupling to preserve the stability of the operator split computations. The software development 
strategy of direct linking the (existing) codes for each sub-system via Component Template Library (CTL) is 
shown to be perfectly suitable for the proposed approach. 
 

Keywords: coupled thermomechanical system; operator split procedure; nonlinear stability analysis; 

multiscale in time; code-coupling via CTL 

 
 
1. Introduction 
 

Driven by various industry applications, the computational mechanics has expanded into a 

research area much broader than its early-days focus upon the finite element method development 

(e.g., see Zienkiewich and Taylor 2000) for summary of early works). Very diverse problems are 

presently of interest for research and expertise of computational mechanics community, such as 

renewable energy, biomechanics, nanotechnology, predictive home security (e.g., see Oden et al. 

2003). Thus, the main strive today is directed towards connecting the knowledge from different 

disciplines, that were long studied separately. In general, the problems of this kind are very much 

interdisciplinary, extending beyond a single traditional scientific discipline. In other words, a 

typical formulation presently of interest is defined in terms of multiphysics problems: 
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thermomechanical coupling, fluid-structure interaction, coupling of mechanics with 

physical-chemistry, or yet with probability, optimization, identification or control. Moreover, the 

vast majority of these problems in mathematical interpretation are highly nonlinear evolution 

problems with constraints. Thus, in trying to provide the most efficient solution procedure for any 

such problem, one is often prompted to exploit multiscalemodeling and computations, which 

consider the most appropriate spatial and temporal scales of evolution for each particular 

sub-system. Providing the best theoretical formulation for any such problem is one of the currently 

most important challenges that has been addressed in a number of recent works on 

multiscalemodeling and computations (e.g., see Feyel and Chaboche 2000, Ibrahimbegovic and 

Markovic 2003, Hughes 2005, Markovic and Ibrahimbegovic 2004, Ladeveze 2005, Oden and 

Prudhomme 2005, Hautefeuille et al. 2013, among others). 

In this work, we address a coupled thermomechanical system, as a typical representative of the 

whole class of multi-physics problems. Of special interest are complex simulations of nonlinear 

(constrained) evolution of such a system, with respect to presence of different time scales 

characterizing each of coupled sub-systems. 

Our first goal is to provide the sound theoretical formulation and operator split solution 

procedure. When placed within the framework of semi-discrete approximation, the coupled 

thermodynamics results with a set of DAE-Differential Algebraic Equations (e.g., see Dennis and 

Schnabel 1996, Brenan 1996). In a DAE set, the differential equations define the evolution of state 

variables, and the algebraic equations represent constraints (e.g., plastic admissibility of stress, 

incompressibility of strain; (seeIbrahimbegovic 2009). For solving such nonlinear time evolution 

problems by time integration schemes, the monolithic approach (e.g., see Felippa and Park 2004) 

can be used where all equations in a coupled system are solved simultaneously, requiring dedicated 

solver for each new coupled system. An alternative strategy is to use an operator split or 

partitioned approach, where one sub-system is treated at the time, which allows us to exploit the 

existing solvers for all sub-systems (Markovic et al. 2005, Matthies et al. 2006). 

In this paper, we focus upon the operator split approach to solving nonlinear evolution 

problems for coupled thermomechanical systems. We will show that the chosen solution strategy 

provides the possibility for re-using existing codes and software products dedicated to each 

specific sub-problem, and that it has a great potential for parallelism. Namely, a coupled 

multiphysics problem can thus be solved by a distributed time integration, where the time 

integration of the whole DAE-system is distributed to separate time integration methods with 

possibly different time step for each sub-system. The main challenge in solving the coupled 

problems in such a distributed manner, is to keep the coupled solution stable. In other words, we 

seek a more reliable solution than what is possible to compute by explicit schemes with only 

conditional stability (e.g., see early works on plasticity (Owen and Hinton 1980). The stability 

condition is well established for classical monolithic approach with time-integration schemes (e.g., 

see Gear 1971), but such results no longer apply to operator split solution. Namely, the 

unconditionally stable time-integration schemes for each sub-system, when partitioned in operator 

split manner, may result with only conditionally stable scheme. The stability condition of operator 

split procedure was provided in (Arnold 2001) in the framework of multibody dynamics systems 

(e.g., seeIbrahimbegovic and Taylor 2003). We here adapt this stability criterion to nonlinear 

evolution of coupled thermomechanics systems. We note in passing that similar studies have been 

attempted in (Armero and Simo 1992, Farhat et al. 1991), but limited to the same time steps used 

for time-integration schemes for all sub-systems, which is not optimal for different time-scales.  
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Our second goal pertains to software engineering issues corresponding to multiphysics 

problems. This is done re-using the existing codes for each sub-system and coupling them directly 

at linkage phase with the help of software CTL (Niekamp 2001). The corresponding result is a 

seamless code-coupling with the single executable code for a particular multiphysics problem. The 

CTL turns an existing computer code, or component, for each sub-system into a C++ template 

library, where template meta-programming is used to hide as much as possible technical details of 

unfamiliar components from the programmer. This tool has been successfully used in 

fluid-structure interaction (Birkin 2010, Matthies et al. 2006, Kassiotis et al. 2011a,b), multiscale 

simulation with mesh-in-element approach (Ibrahimbegovic and Markovic 2003, Markovic and 

Ibrahimbegovic 2005, Niekamp et al. 2009), where the interaction is typically over domain 

boundary. The present work on thermomechanics systems deals with a novel case of coupling 

within the volume.  

The proposed operator split approach does not only provide advantage in simplifying 

computational procedure for coupled multiscale problems. Re-using a single sub-system existing 

code to provide the efficient development of coupled computational tools, or computer software, 

will have even more benefits for bringing this technology to bear upon the current engineering 

practice. Namely, as the complexity of multiphysics problems grows, many existing codes are 

found insufficient to meet the new requirement or even completely obsolete. Thus, a number of 

new developments have sprung in starting the development of new codes for multiphysics and 

multiscale problems, where higher level programming languages or existing libraries are used to 

accelerate the software development. Case in point is codes in Java (e.g., Eyheramendy 2008) or in 

Smalltalk (e.g., Dubois-Pelerin et al. 1992, 1998). However, the software products of this kind are 

not necessarily the most efficient. In fact, although some tentative to increase the code efficiency 

are made, many such codes are mostly used in academic research environment, very far from real 

industrial applications. 

Here we propose a very different software development strategy, where the final software 

product is capable to fully integrate existing computer codes. The proposed strategy not only 

significantly accelerates the final code development, but even more importantly allows to directly 

include the existing codes that have been extensively tested previously. Last but not least, the 

proposed strategy can directly provide a very appealing interface to user who are used to a 

particular software product making them accept the new code release and other novelties much 

faster. 

We note in passing that the same strategies of coupling of existing codes are currently used by 

interpreters, such as Python (Langtangen 2008) or Matlab (Bindel 2011). However, contrary to 

such an approach which sacrifices the efficiency in favor of flexibility while coupling typically the 

executable versions of existing codes, we target here the code coupling that is done at the 

compilation and linking time, and thus provides truly the single code as the final software product. 

Such a code, perhaps needless to say, will be both more robust and more efficient than any other 

code-coupling alternative. 

The outline of the paper is as follows: in Section 2 we review the governing equations of 

thermomechanics coupling and the stability condition for multiscale operator split integration 

scheme. In Section 3 we discuss the issues pertinent to software implementation and a set of 

numerical simulations that allow to illustrate an excellent performance of proposed operator split 

schemes for coupled thermoelastic problems, their stability and gain for distributed time 

integration. In Section 4, we state the final remarks and conclusions.
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2. Coupledthermomechanics system: theoretical formulation and operator split 
solution procedure 

 

2.1 Linear and nonlinear evolution problems in thermomechanics 

 

For simplicity, we first start with a linear evolution problem of the thermomechanical coupling 

in 1D setting. The chosen model is a truss-bar of length L. One side of the bar is built-in with the 

imposed zero displacement conditions u(0,t)=0 and zero temperature θ(0,t)=0. The displacement 

u(L,t) and the temperature θ(L,t) are imposed values that drive the corresponding evolution 

problem. 

We follow (Ibrahimbegovic 2009) in postulating the standard hypotheses for the classical linear 

thermoelasticity, with the Helmholtz free energy function that can be written as 

 (,)= 
1
2E(

0
)mc 









(
0
)+ln 









 



0

               (1) 

where xu  /  is the classical small strain expression defined for a 1D truss-bar, E is Young’s 

modulus, m is the thermal stress for unit temperature change, and c is the specific heat capacity 

coefficient. We note in passing that c can be defined from the free energy according to 

 c:= 



(+s)= 




+s+ 

s


= 

2

2 .                    (2) 

The proposed free energy form could take into account any eventual large temperature variation. 

However, we will limit our subsequent study to only a small variation of temperature, around the 

chosen reference value 
0
. The consistent linearization of the last expression around this reference 

value of temperature leads to a quadratic form of the free energy density pertaining to linear 

thermoelasticity with small strains and small temperature change 

(,)= 
1
2Em 

1
2 

c


0

2                      (3) 

where (
0
) is used to simplify the notations. The free energy function in (3) above gives 

the following linear constitutive equations for stress and entropy s  

 := 



=E 

u

x
mands:= 




= 

c


0

+m                  (4) 

The local form of the momentum balance for the quasi-static case considered herein, can then 

be written as 



x
+b=0                           (5) 

The local form of the energy balance is also linearized around the reference value of 

temperature 
0
, and it leads to the following final result 
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
0
 
s

t
:==c 



t
+

0
m 



t
= 

dq
dx+r                       (6) 

We recall again that the reference temperature 
0
 can be considered as a part of the set of the 

chosen material properties, and not an additional unknown. 

Combining last three results we define the Strong Form of 1D thermoelasticity:  

Given: the mechanical loading b and thermal loading r, 

Find: displacement u(x,t) and temperature (x,t) such that 





 

 


x
+b=0      ;    =E 

u

x
m

c 


t
+m

0
 
2u

tx
+ 
dq
dxr=0      ;    q=k 

d
dx

                   (7) 

For the FEM based solution procedure, these equations are rewritten in the weak form 

(Ibrahimbegovic 2009)  

 

 

L

  
dw
dx dx= 

L

 wb dx+[w t ]



 

L

 c 


t
 dx+ 

L

 m
0
 
2u

tx
 

L

  
d
dxq dx= 

L

 r dx+[h ]

q

           (8) 

In order to derive the simplest model problem illustrating these ideas, we choose the 

homogeneous load case and a single 2-node finite element approximation and the lumped capacity 

matrix, which results with the following set of ordinary differential equations to be solved  

 





 

 
E
Lu(t) 

m
2(t) =0

 
cL
2  

(t)+ 
k
L(t)+ 

m
0

2 u (t)=0

                   (9) 

We seek to provide the stability condition of the iterative scheme for coupling partitioned 

solution for the coupled thermoelasticity problem, for any time discretization for each sub-problem 

that can accommodate any particular time step. Tacit assumption pertains to the need to integrate 

by an implicit, unconditionally stable time-stepping scheme the both sub-systems, mechanical and 

thermal part.  

We note that an equivalent result will be obtained for a more general model of 2D/3D elasticity 

applied to coupled thermomechanics systems. We will consider again the case of quasi-static 

evolution for the mechanical sub-system along with the transient heat transfer. The problem of this 

kind is the most useful preparation for inelastic problem studied subsequently. We assume that 

semi-discretization is carried out by FE method (e.g., see Zienkiewicz and Taylor 2000, Bathe 

1996 or Ibrahimbegovic 2009). The weak form of 2D/3D thermoelasticity leads to the following 

set of ordinary differential equations: 
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



 
K
M
u(t)F

M
(t) =0

M
T
 (t)+K

T
(t)+F

T
u (t)=0

                    (10) 

Where K
M

 is the stiffness matrix, M
T
 is the heat capacity matrix, K

T
 is the heat conductivity 

matrix, whereas F
M

and F
T

are the coupling matrices in semi-discrete approximation of 

thermomechanical system. Each of these matrices is defined by the standard finite element 

assembly procedure (e.g., see Zienkiewicz and Taylor 2000, Bathe 1996) to account for different 

element contributions (each denoted with superscript ’e’) to either mechanical or thermal 

sub-system, resulting with:  

K
M

=A
e
K
e
M; K

e
M= 


e

 BTEBd

F
M

=A
e
F
e
M; F

e
M= 


e

 BTmNd

M
T
=A

e
M

e
T; M

e
T= 


e

 NTcNd

K
T
=A

e
K
e
T; K

e
T= 


e

 BTkBd

F
T
=A

e
F
e
T F

e
T= 


e

 NTm
0
Bd

                        (11) 

Here, E denotes the elasticity tensor, c is specific heat capacity coefficient, k is the heat 

conduction tensor, whereas m and 
0

 are the thermal stress and reference temperature, 

respectively. Moreover, N denotes the matrix representation of the shape functions chosen for a 

particular semi-discrete approximation constructed by finite element, and B is the corresponding 

strain displacement matrix (e.g., see Ibrahimbegovic 2009). 

In order to derive the stability proof in the sense of (Anrold 2001), we recast the 

thermoelasticity problem in terms of a set of differential-algebraic equations (DAE), which can be 

written as  





 
u (t)=v(t) ; 0=r

M
 ( )v(t);g(t) :=K

M
v(t)F

M
g(t)

 (t)=g(t) ; 0=r
T
 ( )(t);g(t);v(t) :=M

T
 (t)+K

T
(t)+F

T
u (t)

           (12) 

The 1D thermoelasticity problem defined with the simplest semi-discrete approximation also 

belongs to the class of problems, with 

K
M

= 
E
L,    F

M
= 
m
2 ,    M

T
= 
cL
2 ,    K

T
= 
k
L    andF

T
= 
m

0

2           (13) 
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We note that the stability proof remains valid for an inelastic evolution problem of coupled 

thermomechanics system. The most general form of a nonlinear coupled thermomechanics 

problem of direct interest for practical applications will consider inelastic behavior described by 

the internal variables, such as plastic strain or hardening variables (Ibrahimbegovic 2009). The 

explicit form of thermoechanical residuals depends on a particular choice of inelastic model 

(Ibrahimbegovic 2009); however, it always counts the equilibrium equations, evolution equations 

of internal variables and energy balance, resulting with a set of DAEs. In general, we can write: (i) 

the mechanical residual r
M

 for quasi-static evolution in terms of displacement u(t) and internal 

variables (t), gathering the semi-discrete approximation to the weak form of equilibrium 

equations and plastic constraint on stress admissibility 





 
u (t)=v(t)      ;       (t)=(t)

0=r
M

 ( )u(t);v(t);(t);(t);(t);g(t)                       (14) 

The DAE corresponding to thermal residual r
T

 can be written in terms of the same state 

variables, also accounting for the inelastic dissipation as an additional source of heating 

(Ibrahimbegovic 2009) 





 
 (t)=g(t)

0=r
T
 ( )(t);g(t);u(t);v(t);(t);(t)                       (15) 

The thermomechanical coupling takes place throughout the whole domain . The latter is in 

contrast with the pertinent work on multibody dynamics systems (Anrold 2001), where the 

coupling conditions are enhanced by an algebraic equation posed on linked boundaries. In order to 

place these two cases on the same basis, we assume heres here the coupling algebraic equation 

 

0 = ℎ(𝑢(𝑡), 𝑣(𝑡), 𝜉(t), 𝜁(𝑡),𝜃(𝑡), 𝑔(𝑡))                                (16) 

In the following, we consider mechanical equilibrium as coupling algebraic condition h=r
M

, 

with the temperature as the coupling variable.  

 

2.2 Stability of operator split method for time integration of coupled thermomechanical 
problems 

 
For studying the stability of the iterative scheme for enforcing the convergence of partitioned 

solution of the coupled thermomechanics problem, no particular discretization in time ought to be 

chosen, other than assumption on unconditional stability of the time-integration scheme for each 

sub-system. Following (Arnold 2001), the convergence proof can be applied directly the product 

of FEM-based semi-discretization, presented in previous section. 

However, in order to illustrate the most general computational procedure, we will assume that 

in computing solutions in the interval [ ]0,T
e

 for the two sub-systems, we might use 

independent solvers on a windows (or macro time step) [ ]T
n
,T

n+1
 for each sub-system. The 
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chosen values T
n

 are synchronization points where the thermomechanical coupling 

communication is enforced. The iteration counter for corresponding procedure in each window n is 

denoted as (k), and the best iterative value solutions can thus be denoted 

|uT
[T
n
]

 [ ]T
n
,T
n+1

(t)    u 
(k)
n (t) 


T

[T
n
]

 [ ]T
n
,T
n+1

(t)      
(k)
n (t) 


T

[T
n
]

 [ ]T
n
,T
n+1

(t)      
(k)
n (t)                     (17) 

It is important to note that u 
(k)
n ,  

(k)
n  and  (k)

n are functions of time t defined on window 

[ ]T
n
,T

n+1
. For the case where time step is the same for each sub-system, we do not need to 

consider any particular interpolation in time. However, for the present case of using multi-scale 

methods in time, it is important to choose a way to interpolate each function between 

synchronization points in order to enforce the matching in algebraic equations r
M

, r
T
 and hover 

the whole macro time-step. Thus, the multi-scale in time can be seen in a certain manner as an 

increase in order of interpolation. 

As illustrated in Fig. 1, enforcing the thermomechanical coupling condition in the operator split 

method for any such constrained evolution problem corresponds to the Gauss-Seidel iterative 

algorithm; further. This choice can compare favorably to the classical iterative procedure of Jacobi 

(e.g., see Ciarlet et al. 1989, Golub and VanLoan 1989), since it provides a better convergence rate. 

Further improvement of convergence can be achieved by Newton’s iterative method for enforcing 

the coupling (e.g., see Matthies et al. 2006, Matthies and Steindorf 2003), but requires needs an 

approximation to off-diagonal terms of the Hessian matrix based on mixed derivatives which are 

not readily available. Hence, the Gauss-Seidel iterative algorithm seems as the best strategy when 

one seeks to directly reuse the existing solvers (and codes) for all sub-systems. The only serious 

drawbacks of the Gauss-Seidel method concern only conditional stability (compared to Newton’s 

method), and the lack of easy parallelism (compared to Jacobi’s). The former is the subject of 

further study in this section, and the latter is studied in the subsequent section. 

 

 

Fig. 1 Coupling algorithm example: Gauss-Seidel method on the window [Tn,Tn+1] 
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We study here the stability of the proposed operator split when compute the numerical solution 

in a typical window for t[T
n
,T

n+1
], by analogy with dynamic iteration proposed in (Arnold 2001). 

We choose to enforce the coupling condition with the first sub-system to be solved, concerning the 

computation of the mechanical residual or enforcement of the equilibrium equations. Considering 

a typical iteration sweep (k), we can write 

 
0=r

M
 ( )u 

(k)
n (t);v u 

(k)
n (t); u 

(k)
n (t); u 

(k)
n (t); u 

(k1)
n (t);g u 

(k1)
n (t)

0=h
M

 ( )u 
(k)
n (t);v u 

(k)
n (t); u 

(k)
n (t); u 

(k)
n (t); u 

(k1)
n (t);g u 

(k1)
n (t)

           (18) 

The second sub-system is solved with thermal residual 

 0=r
T
 ( )u 

(k)
n (t);v u 

(k)
n (t); u 

(k)
n (t); u 

(k)
n (t); u 

(k)
n (t);g u 

(k)
n (t)              (19) 

Even if the numerical integration of u(t), (t) and(t) for each sub-system is guaranteed to be 

stable and convergent in each window, the coupled algorithm for the whole system does not 

necessarily remain stable depending upon the strength of the coupling. In order to guarantee a 

stable error propagation from one macro-scale window of coupled system time-integration to 

another, the contractivity condition (Arnold 2001) has to be fulfilled with <1. For the chosen 

order of the resolution of different sub-systems (Arnold 2001, Matthies et al. 2006), the coefficient 

 reads: 
            = 

 

max
t [ ]0,T

e

 










 










 










 
r

(k)
T

g
(k)
n

1

 
r

(k1)
T

g
(k1)
n

 










 
h(k)

u 
(k)
n

 










 
r

(k)
M

u 
(k)
n

1

 
r

(k1)
M

g
(k1)
n

1

 
h(k)

g
(k)
n

        (20) 

For the chosen multi-scale computations for coupled problem of linear thermoelasticity. with 

the Gauss-Seidel iterative algorithm in a typical window [Tn,Tn+1] and at (k)-th iterative sweep 

we get  
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            (21) 

We can show explicitly that the proposed isothermal split is only conditionally stable. Namely, 

from (21) above, we can obtain:  
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With these results on hand, the stability condition can be expressed with 

 = 
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
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For the simplest coupled thermomechanics model we defined in terms of 1D thermoelasticity, 

the stability criterion in (23) reduces to  

 := 







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
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
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

 
E
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1

 
m
2 <1                     (24) 

The same criterion can be stated in terms of non-dimensional parameter, in terms of: 

 := 
m2

0

Ec <2   (25) 

We note in passing that the same stability condition can be provided for 3D thermoelasticity in 

terms of the non-dimensional parameter =(3+2)2m2
0/c(+2). It turns out that such a 

stability criterion is identical to the linearized A-stability criterion (Chorin et al. 1978), as 

proposed in (Armero and Simo 1992) for thermoelasticity and in (Armero and Simo 1993) for 

thermoplasticity. Besides linear stability, all these works considered the same time steps for 

integrating both mechanical and thermal sub-systems in computing un+1 and n+1, respectively. 

For the simplest case of discrete approximation of 1D thermoelasticity with a single 2-node 

element, the isothermal split would lead to 



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                 (26) 

We further rewrite this set of equations in matrix notation, which allows us to define the 

amplification matrix 
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The stability condition requires that the determinant of the amplification matrix remains 

bounded by 1, which can further be expressed as  
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h2                 (28) 

It thus follows that such a A-stability criterion is automatically verified if= 
m2

0
Ec <2, which 

confirms our result in (Ibrahimbegovic et al. 2005)for the same time step. Still, our result remains 

more general than the result in (Armero and Simo 1992, 1993), since it also holds for multi-scale 

problem in time with different time step for any particular sub-system.  

The conditional stability requirement can be eliminated by appealing to adiabatic split for 

thermoelasticity. This is one of possible solutions for conditional stability drawback of the 

isothermal split, next to more simple equations reordering (Matthies et al. 2006) or more costly 

Newton or quasi-Newton iterative procedure (Matthies and Steindorf 2003, Matthies et al. 2006). 

The adiabatic split (Armero and Simo 1992, Ibrahimbegovic 2009) is fully equivalent as the 

constraint splitting, as advocated in (Arnold 2001), that can be used to recover the unconditional 

stability of coupled solution. We propose to use the following  

 G
(k)
n (t)=(I

d
A(t))g

(k)
n (t)+A(t)g

(k1)
n                     (29) 

The preconditioning of this kind can be seen as an adiabatic split (Armero and Simo 1992, 

1993, Ibrahimbegovic 2009), which implies that during the mechanical phase of calculation a 

fictitious temperature evolution occurs due to difference betweenG
(k1)
n (t) and G

(k)
n (t). The 

computation in thermal phase is then started from computed value in mechanical phase. An 

important point to note is that the cost of calculation remains the same as for the isothermal split, 

with only a slight difference regarding implementation. In that manner, the proposed 

preconditioning can be considered optimal for this kind of computation. 

With such a choice, the coupled problem to be solved reduces to the following set of constraint 

equations 
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T
 ( )
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(k)
n (t);v

(k)
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                   (30) 

We thus obtain a new value for the contractivity constant , which is defined as 
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The best choice for pre-conditioning with A=I
d
will ensure that the computation for the 

adiabatic split remains always stable, for any values of material properties and for any value 

of= 
m2

0

Ec . 

 

 

3. Software development via CTL and numerical simulations 

 
3.1 Software coupling by using CTL for Dirchlet-to-Neumann case 

 
There are several alternatives for enforcing the unconditional stability requirement of coupled 

mechanics systems computations, starting from simple equations reordering in Gauss-Seidel 

scheme (Matthies 2006) to more costly Newton or quasi-Newton iterative procedure ((Matthies 

2003, 2006). The CTL implementation of these methods is here discussed in the simplest possible 

context of 1D structure-structure coupled system, as shown in Fig. 2. 

 

 

 

Fig. 2 Simple coupled 1D-system 

 

 

The CTL-based code coupling is illustrated for the ’standard’ coupling case of 

Dirichlet-to-Neumann coupling of two mechanical sub-systems, which is typical of many coupled 

systems. The most prominent example of this kind is fluid-structure interaction (Kassiotis 2011a, 

b), where the Dirichlet condition is enforced on fluid with mesh motion in ALE imposed by 

structure, and the Neumann condition is imposed on structure with imposed traction forces exerted 

by fluid. In such context, the stability of the operator split for coupling enforcement depends only 

upon the ratio of the stiffness between two sub-systems for stationary, or upon the ratio between 

their densities for non-stationary case. As long as the stiffness (respectively density) of the 

displacement controlled sub-system with Dirichlet boundary condition is small compared to the 

other sub-system controlled with Neumann boundary, the standard iterative schemes, such as 
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Gauss-Seidel or Jacobi-like will converge. In the opposite case, when starting coupled iteration 

with a soft sub-system, the coupled iterations will diverge. This fact is intuitively clear, since 

controlling a stiff structure by an inaccurate imposed displacement leads to a force response with 

an even larger error and on the other hand controlling a flexible structure by an inaccurate force 

leads to a displacement answer with enlarged error. 

In order to implement such a coupling using the CTL, we first have to define 

software-interfaces which describe the functionality needed for the chosen coupling scheme. Thus, 

any useful simulation code should at least implement an interface ’stationarySimulationCI’, which 

can be written as:  

 
interfacestationarySimulationCI 

{ 

// initialisation with input-file 

stationarySimulationCI (const string /*input-file*/); 

void solve(); 

voidget_state(array<real8>/*state*/) const; 

}; 

 

Using Gauss-Seidel or Jacobi-type solution schemes, the force controlled part of a stationary 

coupled simulation needs at least to implement the interface:  

 

interfacestationaryNeumannCI: extends stationarySimulationCI 

{ 

voidset_load(const array<real8> /*load*/); 

voidget_disp(array<real8> /*disp*/); 

}; 

 

The clause extends stationary Simulation CI has the effect, that the methods in 

stationarySimulationCI get also part of stationary Neumann CI. In this case, the sub-system 

controlled by Dirichlet-conditions needs at least to implement the following interface:  

 

interfacestationaryDirichletCI: extends stationarySimulationCI 

{ 

voidset_disp(const array<real8> /*disp*/); 

voidget_load(array<real8> /*load*/); 

}; 

 

The next step is to get the software components for the left and right sub-systems. Here, we use 

for both sub-systems the FEAP code, as described in detail in (Niekamp et al. 2009, Markovic et al. 

2005, Ibrahimbegovic et al. 2014). The only requirement on the simulation codes to be capable for 

the transfer to software components are:  

•  its functionality can be split into the functions listed in the interfaces as shown above   

•  a method invocation has no more side-effects than those given in the interface.   
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The latter implies that a method declared as ’const’ may not change the state of the simulation, 

or in other words, the mathematical meaning of a function (same argument, same result) must be 

ensured. 

At the end, we need an implementation of an iterative solution scheme. For example, for the 

Gauss-Seidel iteration with partially given C++ code, we can write: 

 
stationaryDirichletCI left("leftInputFile"); 

stationaryNeumannCI right("rightInputFile"); 

 

vector<double> f, d; 

// Gauss-Seidel iteration 

while(/*not converged*/) 

{ 

left.solve(); 

left.get_load(f); 

right.set_load(f); 

right.solve(); 

right.get_disp(d); 

left.set_disp(d): 

} 

 

The key point in one master process of the Gauss-Seidel iteration are the calls to two 

sub-systems of the coupled system as two separate software-components. If we have to enforce the 

stability by applying other algebraic solver for such a coupled problem, we have to define and 

implement other interfaces. In order to provide the optimal re-usability these should be arranged, 

using the extends mechanism, in the order of growing richness of functionality. Having the solve 

method and those acting on boundary conditions as given above, we can apply Gauss-Seidel-like 

iterations. 

Other solvers would have other pre-assumption on the implemented features of the components 

that ought to be provided via interfaces. Let us consider for example the case of the 

Broyden-Fletcher-Goldfarb-Shanno (BFGS) solver. As CTL-interfaces for the simulations we can 

take for the Dirichlet boundary controlled sub-system:  

 
interfacestationaryDirichletwResidualCI: extends 

stationaryDirichletCI 

{ 

voidset_state(const array<real8> /*state*/); 

voidget_residual(array<real8> /*res*/); 

}; 

 
and for the sub-system with Neumann boundary:  

 

interfacestationaryNeumannwResidualCI: extends 

stationaryNeumannCI 

{ 

voidset_state(const array<real8> /*state*/); 
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voidget_residual(array<real8> /*res*/); 

}; 

 

The BFGS algorithm needs access to all, also internal degrees of freedom, of the two 

simulation sub-systems. Therefore, in order to avoid the communication of the all the coefficients, 

it is reasonable to have two solver instances each with a local CTL-linkage to the corresponding 

simulation component. 

 
// The Dirichlet part of the BFGS solver  

// (running in parallel with  its Neumann part) 

... 

// create local link using thread linkage to Dirichletsimu part 

ctl::linkdirichletSimu("path/to/dirichlet/simulation", 

ctl::thread); 

stationaryDirichletwResidualCI left(dirichletSimu, 

"leftInputFile"); 

// link to the Neumann part of solver 

ctl::linkneumannSolver; 

 

// BFGS iteration 

vector<double> r, f, d, u=inertial_guess; 

while(/*not converged*/) 

{ 

// compute left part of global residual 

left.set_state(u); 

 // receive displacement at Dirichlet boundary from Neumann part 

neumannSolver>> d;  

left.set_disp(d); 

left.get_residual(r); 

left.get_load(f); 

 // send resulting force/pressure at interface boundary of Neumann 

part  

neumannSolver<< f;   

 

// perform BFGS update for u using residual r 

... 

} 

 

// The Neumann part of the BFGS solver  

// (running in parallel  with its Dirichlet part) 

... 

// create local link using thread linkage to Neumann simu part 

ctl::linkneumannSimu("path/to/neumann/simulation", ctl::thread); 

stationaryNeumannwResidualCI right(NeumannSimu, 

"rightInputFile"); 

// link to the Dirichlet part of solver 
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ctl::linkdirichletSolver; 

 

// BFGS iteration 

vector<double> r, f, d, u=inertial_guess; 

while(/*not converged*/) 

{ 

// compute right part of global residual 

right.set_state(u); 

right.get_disp(d);  

 // send displacement at Dirichlet boundary  

dirichletSolver<< d;  

toDirichlet part 

left.get_residual(r); 

 // get force/pressure at interface boundary  

dirichletSolver>> f;  

fromDirichlet part  

 

  r = r + f; 

 

// perform BFGS update for u using residual r 

... 

} 

 

These findings can be summarised within the following list:  

• The Gauss-Seidel and Jacobi-iterations need essentially the simulation internal solver (via 

solve).  

• The BFGS method needs essentially the residual function (via residual) which can (and 

should) be preconditioned.  

• The inexact Newton-method needs the residual function together with the directional 

derivatives (via directionalDerivative) which are needed for the iterative solver for the linearised 

system.  

In the case the method directionalDerivative cannot provide the corresponding values of 

cross-term derivatives, numerical differentiation can be used instead. However, this typically leads 

to a limited accuracy of the solution. 

 

3.2 Numerical examples 

 
3.2.1 Simple 1D thermoelastic coupling for validating stability criterion 
In the context of code coupling, one of the main goal is to re-use existing specialized 

components where each one can be, for instance a finite element code. For thermomechanical 

problems, we split our problem into a mechanical and a thermal sub-problem. Both sub-problems 

are then solved by two independent sessions of the FEAP computer code (), and each part is linked 

by the CTL according to the corresponding partitioning scheme shown in Fig. 3 for isothermal 

split. In such a case, the mechanical sub-problem is solved at fixed temperature which is computed 

at the previous step as the solution of thermal sub-problem. Only temperature θ and gradient 
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velocity e  are exchanged between each solver at any synchronization point of a window.  

This example is used to validate the stability criterion discussed in the previous section for 

thermomechanical coupling. For clarity of illustration, we consider a simple one-dimensional 

thermoelastic truss-bar structure and its FE model that consists of 100 elements. 

We impose at the left end displacement time variation in terms of sinusoidal wave (see Fig. 4).  

The imposed displacement generates a compressive wave in a bar. Through structural heating, 

this mechanical wave will generate a local increase in temperature. The reflection on the other end 

of the bar then generates a traction wave, with the corresponding decrease in temperature. We note 

that the variations in temperature remain essentially local, since the time scale of non-stationary 

heat transfer is much larger than the time scale of mechanical wave propagation. 

 

 

 

Fig. 3 Software implementation for thermomechanical coupling 

 

 

 

Fig. 4 One-dimensionalthermomechanical test 

 

 

Fig. 5 Global solution of the 1D coupled problem in thermoelasticity computed by isothermal split: i) 

displacement field u(x,t), ii) temperature field θ(x,t) 
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Table 1 Materials properties for 1D thermoelastic bar 

Young’s modulus E 200 000 N mm
-2

 

Area A 1 mm
2
 

Specific heat capacity c 1,2 N mm
-2

K
-1

 

Reference temperature θ0 1 K 

Conductivity k 0.15 N s
-1

K
-1

 

Expansion coefficient  α0 1.5 10
-5

 K
-1

 

Thermal stress coupling term m0 = E α0 3.00 N mm
-2

 K
-1

 

Coupling coefficient  ε 0.376 10
-4

  

 

The main goal is to confirm the stability criterion and illustrate instabilities that can occur for 

strong thermomechanical coupling case. Namely, a weak coupling case corresponding to  (see all 

values for material thermomechanical properties in Table 1), would lead to a very small of ε = 

0.376 10
-4

. The results in Figure 6 indeed confirm the expected convergence of isothermal split for 

small values of ε. However, for the strong coupling with an order-of-magnitude increase in , with 

the value of ε = 0.376 we run into instability problems with isothermal split for both displacement 

and temperature, as illustrated in Fig. 6. The same figures show that the adiabatic split 

preconditioning is capable to deliver the stable even for such strong coupling case. One can only 

note some spurious oscillations for temperature in Fig. 6 and obviously due to difficulty in 

representing a propagating sinus function with classical finite element shape functions. These 

oscillations increase with an increase of . 

 

  

  
Fig. 6 Computed displacement and temperature  for isothermal split (gray dashed line [ __ __ __ ] which 

exhibits instabilities) and adiabatic split (black continuous line [ ______________ ] which always 

remains stable) 
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3.2.2 Nonlinear coupled thermomechanical analysis of masonry walls under 
fire-loading 

In this particular example we study a nonlinear constrained evolution problem pertinent to fire 

resistance and damage of masonry structures under sustained fire. The thermomechanical coupling 

is brought about by temperature dependence of mechanical properties of the chosen plasticity 

model for brick material failure, as well as by the failure-induced topological changes to the holes 

inside the brick-cells where heat radiations effects are accounted for. The chosen material 

properties and brittle failure of masonry, generating a very small amount of heat, guarantee the 

stability of isothermal split. Hence, our goal here is not to illustrate the need for pre-conditioning 

to ensure stability, but to show the advantage of the proposed multi-scale strategy with different 

time steps for each sub-problem and the resulting gains in computational efficiency. Namely, the 

multi-scale in time scheme is very appropriate for this case where heat transfer scale is much 

larger than the mechanics scale of damage phenomena propagation. 

The main challenge is to properly account for the thermomechanics coupling within inelastic 

analysis of masonry walls made from hollow clay bricks (see Fig. 7) exposed to fire. The main 

difficulty in modelling heat transfer in hollow bricks concerns the proper representation of the heat 

flow both through the cell-walls by heat conduction in the solid parts and by radiation within the 

holes inside the cells. The latter is the main source of non-linearity in heat transfer problem, since 

the inelastic dissipation to brittle failure is negligible. Moreover, the mechanical failure will also 

influence the thermal problem when the sufficient damage will require to remove the interior 

partitions between two adjacent holes inside the cell, causing a sudden change in the heat radiation 

domain. The temperature dependence of mechanical properties, along with the thermal stress 

produced with temperature induced constrained deformation of the wall, is the way the thermal 

problem influences the mechanical part.  

The computational model, presented in our previous work (Ibrahimbegovic et al. 2005), 

combines folded plates or non-smooth shells for brick-cell partitions and heat radiation element 

placed inside each hole within a cell. The shell element we use (Ibrahimbegovic et al. 1994 a,b) 

combines the discrete Kirchhoff quadrilateral plate and a membrane element with drilling degrees 

of freedom (Ibrahimbegovic et al. 1990). This allows us to eliminate the lack of compatibility 

between the membrane and plate degrees of freedom, and corresponding membrane and plate 

bending deformation modes. 

 

 

 

Fig. 7 Clay hollow block and damage contours under fire loading 
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The mechanical damage of the brick wall is modelled by the plasticity model of Saint-Venant 

developed in the strain space (Ibrahimbegovic 2009) and further recast in terms of stress resultants 

(Ibrahimbegovic et al. 2005), in the format of multi-surface plasticity (e.g., see Simo 1988). The 

key idea of this model is to limit the elastic domain by the maximum mechanical strain values, 

which is in accordance with the experimentally observed behavior of brittle materials. where 

failure is mainly driven by extensions (positive strains), leading to cracking in the directions 

perpendicular to the principal tension stress.  

The heat transfer model is also developed within the flat shells context, accounting for both 

conductive and radiative transfers. The corresponding discrete formulation of heat conduction is 

based upon four degrees-of-freedom per node in-plane interpolations, where we assumed a linear 

temperature distribution through-the-thickness of the shell elements (Colliat et al. 2006). The key 

point here is that both of these mechanisms are leading to nonlinear behavior. Moreover, due to the 

particular features of radiative transfers, the tangent operator corresponding to this sub-problem is 

non-symmetric. 

The computations are performed for the case where both mechanical and thermal loading is 

applied in the manner representative of fire-resistance testing. The mechanical loading is dead load 

on the brick wall. The chosen value of 1.3 MPa is directly introduced in the initial configuration in 

terms of compressive pre-stress and kept constant throughout the computation. The thermal 

loading is then applied, in terms of the uniformly distributed temperature field applied only at the 

brick facet exposed to fire. The time evolution of this temperature field is imposed according to 

specified fire duration:  

 θ(t) = θ0 + 345 log(8t + 1) ; t 2 [0, 200]                 (32) 

where θ0 is the initial temperature and t the time in minutes. The thermal and mechanical problems 

are solved by multi-scale in time independent computations of each sub-problem carried out by 

separate runs of the FEM-code FEAP, linked through the CTL software, as described in the 

previous section,  

The principal benefit of the chosen multi-scale in time strategy pertains to coupled problems of 

this kind where the time scale of the different coupled sub-problems are quite different. Here, the 

time scale for thermal problem is much bigger that the one used the mechanics process pertaining 

to the evolution of internal variables. Hence, it pays off to use different time steps for each 

sub-problem in order to gain efficiency. This is confirmed by the results illustrated in Fig. 8, 

showing the CPU total solution time as measured by the machine clock at a PIV 3.4GHz processor. 

In different computations we carried out, the time step of mechanical problem is kept fixed with 

ΔtM=24s, and the time step of thermal problem is ΔtT = N ΔtM leading to a window size of a single 

ΔtT and N ΔtM for the exchange of data with the Gauss-Seidel algorithm. By assuming that both 

mechanics and thermal nonlinear evolution problems have the same size and same convergence 

rate, the theoretical speed-up one can obtain with such a choice of different time steps for each 

sub-problem in the limit equals to 

 
lim

N
 
CPUtime(N)
CPUtime(N=1)

lim

N
 
N+1
2N = 

1
2                  (33) 

Even if the hypothesis on equal convergence rate for each sub-problem is not necessary 

satisfied in each time step, our results denoted as black squares in Fig. 8 seem to confirm this 

asymptotic value denoted as dashed line of computational speed-up granted by multi-scale in time 

computational strategy.  
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Fig. 8 CPU computation time for different values of ratio N = ΔtT /ΔtM 

 

 

We note that the main reason for choosing a fixed time step for mechanics was in a more 

reliable comparison of the CPU time. We note in passing that such a choice is not the same as an 

optimal value proposed in (Ibrahimbegovic et al. 2005), which is obtained by adaptive procedure 

that ensures the same accuracy of computations of internal variables evolution for the complete 

duration of fire. Despite a non-optimal choice of time step for mechanics, we show next that our 

numerical results compare quite well with experimental results. 

First, this applies to the results presented for temperature field in Figure, where we show the 

time-evolution of the temperature in three different cells. The chosen locations (see Fig. 9) concern 

the two surfaces on both sides of each cell and confirm we are able to capture the temperature 

evolutions even far from the exposed facet of the wall. This result is further confirmed in Fig. 9, 

which shows a temperature profile in through wall thickness at 48 minutes after the beginning of 

fire. One of the main ingredients allows to obtain such a good result is the introduction of radiative 

exchanges in the heat transfer model. 

In Fig. 10 we show the evolution of the total vertical reaction at selected nodes. Each curve 

corresponds to a line of nodes parallel to the face of the wall exposed to fire, with positive values 

indicating the compression. We note the variations of this kind of reaction forces with respect to 

prestressed initial value due to mechanical dead load. Fig. 10 shows the comparison on the 

horizontal computed displacement with an experimental value measured for the real wall built with 

ten rows of bricks. This kind of displacement is produced by bending which is due to the 

temperature gradient through the wall. We can see that the stiffness provided by the analysis is 

quite correct, even though the displacements are slightly over-estimated due to a poor 

representation of the true boundary conditions. 

 

 

 

Fig. 9 Brick – (a) locations in brick; (b) temperature evolutions; (c) temperature profile after 48 min; 
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Fig. 10 Brick – total vertical reactions for the facet exposed to fire and horizontal displacement due to 

bending of the wall 

 

 

4. Conclusions 

 
The main thrust of this work is directed towards coupled thermomechanics systems, and the 

solution of corresponding (nonlinear) evolution problems. We have shown that providing the 

complete answer to such a question pertains to aspects of theoretical formulations, operator split 

solution procedure and efficient software development by using CTL-Component Template 

Library that allows to re-integrate the existing codes.  

The model problem addressed herein concerns coupled thermomechanical system, which was 

first studied for the elastic case. We have provided the explicit stability criterion for the operator 

split solution procedure of coupled problem, where each sub-system (mechanical or thermal) is 

integrated by its dedicated stable scheme. The proposed stability criterion applies to the case where 

time-scale of evolution for each sub-system is different from others, and is integrated with its own 

time step. The stability of the coupled computation is thus enforced on a given window. We have 

also demonstrated the gain one can obtain when using the different time steps for each sub-system 

and the corresponding speed-up one can achieve with such a strategy. 

The detailed theoretical development of stability criterion is presented for thermoelasticity. 

However, given that each sub-problem (between mechanics and heat transfer) is handled by an 

appropriate iterative scheme that is guaranteed to converges, the stability result of coupled 

problem computations remains valid. In particular, this has been demonstrated in our examples for 

thermoplasticity problem used to simulate the damage propagation of masonry structure exposed 

to fire. Other inelastic models are also suitable for the same approach. 

We have further exploited this stability criterion to automatically satisfy stability of coupled 

problem computation. In the present context this amounts to the adiabatic split of the constraint. 

While this kind of split leads to a stronger interaction of sub-systems within the coupled problem, 

the benefits of unconditional stability are worthy of it. The corresponding software implementation 

is shown to increase quite modestly in terms of complexity.  

With our previous works on interaction problems (Kassiotis 2011a, b, Ibrahimbegovic et al. 

2014), the present coupled thermomechanical problem allows to complete the different possibility 

of interface interaction, either on the sub-domain boundary or within the volume. The future works 

of interest should expand upon the coupling with non-physical sub-system, such as in stochastic 

finite element analysis (Krosche and Matthies 2008, Ibrahimbegovic and Matthies 2012), and 

optimization (Niekamp and Krosche 2003).  
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