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Abstract.  Soils consist of an assemblage of particles with different sizes and shapes which form a 
skeleton whose voids are filled with water and air. Hence, soil behaviour must be analyzed by 
incorporating the effects of the transient flow of the pore-fluid through the voids, and therefore requires 
a two-phase continuum formulation for saturated porous media. The present paper presents briefly the 
Biot‟s basic theory of dynamics of saturated porous media with u–P formulation to determine the 
responses of pore fluid and soil skeleton during cyclic loading. Kelvin elements are attached to 
transmitting boundary. The Pastor–Zienkiewicz–Chan model has been used to describe the inelastic 
behavior of soils under isotropic cyclic loadings. Newmark-Beta method is employed to discretize the 
time domain. The response of fluid-saturated porous media which are subjected to time dependent 
loads has been simulated numerically to predict the liquefaction potential of a semi-infinite saturated 
sandy layer using finite-infinite elements. A settlement of 17.1 cm is observed at top surface. It is also 
noticed that liquefaction occurs at shallow depth. The mathematical advantage of the coupled finite 
element analysis is that the excess pore pressure and displacement can be evaluated simultaneously 
without using any empirical relationship. 
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1. Introduction 
 

Liquefaction occurs frequently in saturated loose granular materials under earthquake and other 

dynamic loadings. During past earthquakes, the liquefaction of saturated loose sands has been the 

cause of severe damage to various buildings and other structures. The catastrophic nature of this 

type of failure attracted the attention of researchers, and considerable work has been reported to 

evaluate liquefaction susceptibility (Seed and Lee 1966, Seed and Idriss 1971, Seed 1979, Seed et 

al. 1985, Kramer 1996). A quantitative prediction of the phenomena leading to permanent 

deformation or unacceptably high build-up of pore pressures is therefore essential to guarantee the 

safe behaviour of structures. 
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In a saturated soil, the steady-state pore-fluid pressures depend only on the hydraulic conditions 

and are independent of the soil skeleton response to external loads during free drainage conditions 

which show a single-phase continuum description of soil behaviour. Similarly, a single-phase 

description of soil behaviour is also adequate when no drainage (no flow) conditions prevail. 

However, in intermediate cases in which some flow can take place, there is an interaction between 

the skeleton strains and the pore-fluid flow. The solution of these problems requires that soil 

behaviour be analyzed by incorporating the effects of the transient flow of the pore-fluid through 

the voids, which requires a two-phase continuum formulation for saturated porous media named 

„mixture theory‟. 

There are several different approaches to model the behaviour of a two-phase medium which is 

generally classified as uncoupled and coupled analyses. Numerous researchers (Finn et al. 1977, 

Nemat-Nasser and Shokooh 1979, Liyanapathirana and Poulos 2002) had perfomed the uncoupled 

analysis of liquefaction in which the response of saturated soil is modeled without considering the 

effect of soil–water interaction, and then the pore water pressure is included separately by means 

of a pore pressure generation model. The major deficiency in the uncoupled approach is that it is 

unable to take into account the progressive stiffness degradation caused by the increase in pore 

pressures in the soil. Only coupled approach can model the gradual loss of soil strength due to 

build-up of pore water pressures. 

In the coupled analysis a formulation is used where all unknowns are computed simultaneously 

at each time step. This is a more realistic representation of the physical phenomena than that 

provided by uncoupled formulation. Biot (1955, 1956) and Biot and Willis (1957) was the first 

researcher who developed mixture theory for an elastic porous medium. Applications of Biot‟s 

theory to finite element analysis of saturated porous media have been presented by Simon et al. 

(1986) for wide range of existing finite element formulations. Prevost (1985, 1989) focused on the 

integration of the discretized field equations based on the mixture theory and presented a general 

analytical procedure for encompassing nonlinear constitutive models. Oka et al. (1994) discussed 

the FEM-FDM coupled liquefaction analysis of a porous soil using elasto-plastic model. Elgamal 

(2003) developed a computational model for analysis of cyclic mobility scenarios which was 

based on general fully coupled (solid–fluid) finite element formulations. Mesgouez et al. (2005) 

presented the applications of Biot‟s theory in transient wave propagation in saturated porous media. 

Taiebat (2007) worked on numerical analyses of liquefiable sand using critical state two-surface 

plasticity model and densification model for bounded soil domain. 

The objective of the present paper is to determine the responses of pore fluid and soil skeleton 

during cyclic loading using Biot‟s basic theory of dynamics of saturated porous media with u–P 

formulation in unbounded soil domain. Kelvin elements are attached to transmitting boundary. The 

purpose of Kelvin elements is to absorb the wave energy and prevent back propagation of wave 

into the domain. The Pastor–Zienkiewicz–Chan model has been used to describe the inelastic 

behaviour of soils under isotropic cyclic loadings, including liquefaction and cyclic mobility. 

Newmark-Beta method is employed to discretize the time domain. Effect of some of the key 

parameters is examined. 

 

 

2. Finite element implementation 
 

Continuum based formulations for modeling liquefaction problems have been presented for 

over two decades. In a landmark paper, Zienkiewicz and Shiomi (1984) presented three possible 
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coupled formulations for modeling of soil skeleton – pore fluid problems. The most general and 

simplest one is u-p formulation which captures the movements of the soil skeleton and the change 

of the pore pressure. This formulation neglects the differential accelerations of the pore fluid. It 

does account for acceleration of pore fluid together with soil skeleton, but not the differential one 

if exist and also neglects the compressibility of the fluid. Using the finite element method for 

spatial discretization, the u–P formulation is as follows 

          ue e e
M q K q Q p f    (1) 

              
T

pe e e
G q Q q S p H p f     (2) 

Numerical solutions of Eqs. (1) and (2) can be achieved by integrating the equations in the time 

domain which can extrapolated to the next time instance (tn+1), using known previous initial 

conditions by employing generalized Newmark method (Katona and Zienkiewicz 1985). In terms 

of incremental displacements ∆qe and pore pressure ∆pe as primary unknowns, the final set of 

equations is obtained as follows 

           1 2 1 3 1u i ii i
C M K q Q p F M C q C q          (3) 
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T T

i i p i i i iC G C Q q C S H p F G C q C q Q C q C q               

(4) 
     2

1 2 3 4 5 61 ; 1 ; 0.5 / ; ; / ; 0.5 / 1C t C t C C t C C                  

In which, α and β the parameters of the generalized Newmark method and ∆t is the time step. 

The vectors, tq , tq  and tp can be evaluated explicitly from the information available at time nt . 

Viscous damping is also incorporated into the dynamic equation of the solid phase in the form 

of   uCm
 , where 

     1 2mC M K    (5) 

is called the Rayleigh damping (Ladhane and Sawant 2012). The coefficients α1 and α2 can be 

obtained by selecting a damping ratio ξn and a certain frequency ωn such that 
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Nonlinear elasticity and theory of generalized plasticity are used to determine the relationships 

between incremental stresses and strains. The incremental stress–strain relationship is expressed as 

:epd D d   (7) 

where dσ and Dep = incremental stress tensor and elastoplastic stiffness tensor, respectively. 

The elastoplastic stiffness tensor is given as (Zienkiewicz and Mroz 1984). 
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where De, n, ngL/U , and HL/U  are elastic stiffness tensor, loading direction vector, flow direction 

vector under loading or unloading conditions, and loading or unloading plastic modulus, 

respectively. 

 

2.1 Pastor–zienkiewicz–chan model 
 

Soil behaviour under cyclic loading is complex. Hence, the constitutive model used in a 

numerical code should be able to capture important features of soil behaviour under cyclic loading 

such as permanent deformation, dilatancy, and hysteresis loops to obtain reliable solutions of 

displacements and pore water pressure. For this study the constitutive model described by Pastor et 

al. (1990) was used for the sand. The P-Z Mark III model is a generalized plasticity-bounding 

surface-non associative type model. The model is described by means of yield surfaces and 

potential surfaces which are described by these equations respectively 
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In which, p is mean confining stress; q is deviatoric shear stress; Mg is slope of the critical state 

line; αf and αg are constant; pc and pg are size parameter. 

The dilatancy of the sand in the P-Z Mark III model is approximated using the linear function 

of the stress ratio η = q/p as suggested by Nova and Wood (1982) as 

  1
p

v
g g gp
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d
d M

d


 


     (10) 

and p
vd  and p

sd  are incremental plastic volumetric and deviatoric strains, respectively.  

Mg is related to the angle of angle of friction ' by the Mohr-Coulomb relations 

 ' '6 sin 3 singM S S    (11) 

Value of S is 1 based on compression or extension. 

The plastic flow direction under loading ngL is given in the triaxial space as 

1

11

g

gL

g

d

d


 
  

  
 (12) 

The non-associate flow rule is followed so that the loading direction is expressed as 
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(1 )( )f f fd M     (14) 

Mf maintains a constant ratio with Mg. Pastor et al. (1990) assumed this ratio to be dependent 

on relative density (Dr) suggesting relation for Mf as 

f g rM M D   (15) 

In the P-Z Mark III model, the plastic modulus for loading (HL) is obtained as 

)e/1()/1( 0-
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where H0, 0 and 1 are model parameters; and d is plastic deviatoric strain increment. 

The undrained triaxial tests predict rapid pore pressure build up on unloading. This highlights 

the necessity to predict plastic strains on unloading in a constitutive model. The P-Z Mark III 

model uses the following expression for the plastic flow direction and the unloading plastic 

modulus Hu) 
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Fig. 1 Variation in pore pressure along depth 
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ηu is called the unloading stress ratio given by 

 /u u
q p   (19) 

Huo and γu are specified material constants. 
 

 

3. Validation 
 

The correctness and accuracy of the proposed FEM based solution algorithm are validated by 

comparing the numerical results obtained with the analytical solutions in the literature. For this 

purpose, the standard problem of consolidation process was considered. Initial applied pressure on 

the top of clay layer is 100 kPa. Variation of pore pressure along the depth for Time factors Tv 0.1, 

0.5 and 0.9 are compared in Fig. 1 with analytical solution. A good agreement is observed between 

FEM result and analytical solution. 
 

 

4. Numerical simulation 
 

The liquefaction phenomenon had been numerically modeled considering two-dimensional 

plane-strain conditions. The saturated loose sand layer of thickness 10 m, underlain by 4m depth 

of gravel had been considered for numerical simulation. The unbounded soil domain is discretized 

into 224 elements of uniform finite-infinite element mesh as shown in Fig. 2. The 8–4 Node mixed 

 

 

 

Fig. 2 Unbounded soil domain under consideration 
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Table 1 Material properties and model parameters (Sadeghian and Manouchehr 2012) 

Parameters Description Value 

γ Unit weight of soil 18 kN/m3 

μ Poisson‟s ratio 0.31 

k Co-efficient of permeability 6.5  10-6 m/s 

K Bulk Modulus 20000 KPa 

Mg Slope of the critical state line (CSL) 1.15 

Mf Yield surface parameter 1.03 

DR Relative density 0.4 

0 Shear hardening parameter (proposed by modellers) 4.2 

1 Shear hardening parameter (proposed by modellers) 0.2 

αf  and αg Dilatancy parameters (proposed by modellers) 0.45 

H0 Found by matching the shape of q–p‟ plot 600 

Hu0 Unloading plastic modulus 4000 

γu Unloading plastic deformation parameter 2 

o Friction angle 30o 

 

 

element having 8 displacement nodes and 4 pore pressure nodes satisfying the Babuska-Brezzi 

stability condition were used for finite element. As a result, displacements are continuous 

biquadratic and pore pressures are continuous bilinear in the element. 

The soil domain was extended infinitesimally in the longitudinal direction and vertical direction. 

Hence, finite elements could be extended by attaching 5–4 Node mixed infinite elements, having 5 

displacement nodes and 4 pore pressure nodes, at the horizontal and vertical boundary, whereas 

corner element should be extended by attaching 3- noded infinite elements (as shown in Fig. 2) as 

to appropriately model the infinite boundary conditions (Patil et al. 2013a). Kelvin elements are 

attached to transmitting boundary. The purpose of Kelvin elements is to absorb the wave energy 

and prevent back propagation of wave into the domain (Patil et al. 2013b). 

Material properties of the purposed model were reported in Table 1. Dissipation of pore 

pressure was allowed to occur only through the top surface of the sand layer; while the lateral 

boundaries and the base were considered to infinite extent. The variation of displacement and pore 

pressure with time at a particular depth had been calculated using finite element code written in 

FORTRAN-90. The variation of both parameters with time was considered for comparing the 

response. Analyses were performed in two steps: (1) Static analysis and (2) Dynamic analysis. 
 

4.1 Static analysis 
 

A static analysis was performed to apply the gravitational forces due to self weight of the soil 

before cyclic excitation. The resulted hydrostatic pressures of fluid and the stress state along a soil 

column were used as initial conditions for the subsequent dynamic analysis. The coupled equations 

considered for static analysis were as follows 

       ue e
K q Q p f   (20) 
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4.2 Dynamic analysis 

 

When equilibrium condition was achieved for initial stress condition, a nonlinear analysis was 

performed for the cyclic load with the supplied horizontal and vertical cyclic acceleration 

taa sin0 . The dynamic analyses were performed using a Generalized Newmark (Katona and 

Zienkiewicz 1985) scheme with nonlinear iterations using initial linear elastic tangential global 

matrix. The numerical integration parameters of the generalized Newmark‟s method were selected 

as α = 0.60 and β = 0.3025 for the dynamic analysis. The material parameters used are described in 

table.1. 

The time step used is usually depends on time of cyclic loading and frequency of the input. 

Void ratio, permeability and other geometric properties were kept constant during the analysis. 

Rayleigh damping of 5% is applied at the dominant frequency in the earthquake-like motion input 

to enhance the energy dissipation characteristic of the constitutive model. The numerical 

simulation has been performed for 24 cycles of the loading. The amplitude and frequency of the 

cyclic loading were a0 = 0.22 g and 1 Hz respectively. 

 

 

5. Numerical results and discussion 
 

The liquefaction behavior of saturated sand has been numerically simulated using the fully 

coupled formulation. Fig. 3 displays the computed horizontal and vertical displacement at different 

depth. The maximum values of horizontal and vertical settlement, 2.4 cm and 17 cm are predicted 

at the top of soil layer respectively. It has been observed that most of the settlements occur during 

the shaking period. Generally, the horizontal settlement is less than vertical settlement at different 

depths but it is higher at bottom because of proper drainage and infinite boundary. A relatively less 

value of settlement observed at 2 m depth, whereas displacements at 12 m depth are negligible in 

the gravel layer indicating marginal effect of seismic loading due to higher permeability. 

The stress paths depicted in Fig. 4 show the typical mechanism of cyclic decrease in effective 

stress due to pore pressure build-up, captured using the Pastor–Zienkiewicz–Chan model. It is 

observed that maximum stress ratio q/p is 0.87 at the depth of 0.5 m, which decreases with depth 

mainly due to effect of overburden pressure. 

Fig. 5 displays the computed excess pore pressure at different depth. The computed pore 

pressure time histories indicate that soil at the depth of 2 m and 4 m is liquefied because excess 

pore pressure (EPP) is higher than initial vertical stress. A state close to liquefaction was captured 

at 6 m and 8 m depth because EPP is nearly equal to the initial vertical stress. At bottom of soil 

domain, rise in excess pore water pressure is less due to gravel layer of high permeability, hence 

no liquefaction occurs. It also seems that dissipation of EPP is fast at shallow depth after 

completion of cyclic loading. The reason behind this behavior may due to the change of the 

coefficient of permeability at the end of shaking takes place in such a way that it increases at 

shallow depths and decreases at increased depths. In addition, at shallow depth the drainage path is 

shorter for dissipation of excess pore pressure. These observations indicate that the coefficient of 

permeability is not a stationary parameter during shaking as well as during drainage processes. 

Therefore using a constant value for permeability in a numerical analysis possesses an inherent 

pitfall by which the drainage cannot be simulated in a desirable manner which requires further 

investigation. 

Figs. 6 and 7 shows the computed horizontal and vertical accelerations time histories at 
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Fig. 3 Computed lateral and vertical displacement 

time histories at different depth 
Fig. 4 Computed effective stress path at different 

depths 

 

 

 

different depths. It has been observed that the peak value of these parameters are found to be about 

0.3 m/s2
 and 0.75 m/s2

 at top surface, resulting higher settlement. A relatively less value of 

accelerations are seen at bottom, corresponding to lesser excess pore water pressure. A negligible 

acceleration is reported in both directions after the end of 24 cycle of loading. Results indicate 

amplification of earthquake input motion from base to the top surface showing maximum 

amplification at top level. 
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Fig. 5 Computed excess pore pressure time histories at different depth 

 

  

  

Fig. 6 Computed Horizontal acceleration time histories at different depth 
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Fig. 7 Computed vertical acceleration time histories at different depth 

 
 
6. Conclusions 

 

In the present investigation, a computer program based on Coupled dynamic field equations of 

extended Biot‟s theory with u–P formulation is developed to predict the liquefaction potential of a 

saturated sandy layer. The method predicts the phenomenological features of dynamic response of 

saturated sand layers that commonly occur as pore water pressure rises in the sand during cyclic 

loading. It allows the distribution of pore-water pressure and the effects that drainage and internal 

flow have on the time of liquefaction to be determined quantitatively. A vertical settlement of 17.1 

cm and horizontal displacement of 2.2 cm are observed at top surface. It is noticed that 

liquefaction occurs at shallow depth. It is observed that maximum stress ratio q/p is 0.87 at the 

depth of 0.5 m, which decreases with depth mainly due to effect of overburden pressure. This 

results in development of higher excess pore pressure at shallow depth. 

Liquefaction usually causes a significant increase of the coefficient of permeability, but rapid 

changes in the pattern of excess pore pressure in the soil column during shaking indicates that 

permeability is not a constant parameter in the liquefaction process and it may either increase or 

decrease at different depths. Hence, assuming a constant value of the coefficient of permeability 

may be conservative approach. Finding a realistic assumption for variation of the coefficient of 

permeability during liquefaction requires further investigation. 

The mathematical advantage of the coupled finite element analysis is that the excess pore 

pressure and displacement can be evaluated simultaneously without using any empirical 

relationship. The developed numerical formulation can be easily adapted to provide confidence for 

practicing engineers to use fully coupled procedures for predicting the dynamic performance of 

geotechnical site. 
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