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Abstract.  In this work we propose a novel procedure for direct computation of buckling loads for extreme 
mechanical or thermomechanical conditions. The procedure efficiency is built upon the von Karmann strain 
measure providing the special format of the tangent stiffness matrix, leading to a general linear eigenvalue 
problem for critical load multiplier estimates. The proposal is illustrated on a number of validation examples, 
along with more complex examples of interest for practical applications. The comparison is also made 
against a more complex computational procedure based upon the finite strain elasticity, as well as against a 
more refined model using the frame elements. All these results confirm a very satisfying performance of the 
proposed methodology. 
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1. Introduction 
 

One of the most frequent cases of extreme loading conditions that engineering structures can be 
exposed to, pertains to fire. The most sadly famous example, the World Trade Center collapse in 
September 2001, is certainly not the only one. One can cite a number of catastrophic failures under 
combined action of mechanical and thermal loads, such as MGM Grand Hotel in 1980 in Nevada, 
First Interstate Bank in Los Angeles in 1988 or Windsor Tower in Madrid in 2005. 

Each of these failures has been caused by the same mechanism of combined action of 
mechanical loading and high temperature. Hence, for the predictive analysis of the phenomena of 
this kind we ought to provide the correct representations of two different failure mechanisms. The 
first one pertains to softening material failure under temperature increase (e.g., Van Ngo et al. 
(2013)), and the second one pertains to geometric instability phenomena brought about the critical 
values of mechanical and thermal load. The latter failure mechanism pertaining to buckling and its 
correct representation are studied in detail in this work. 

In particular, we seek to provide as simple as possible and yet sufficiently predictive model for 
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instability failure under extreme mechanical or thermomechanical loads. We take for simplicity the 
mechanical systems built of truss or frame in order to illustrate the details of the proposed coupled 
system instability computational procedure. However, the proposed method would directly apply 
to more complex mechanical systems. 

The main novelty concerns the proposed model for thermomechanical coupling based upon the 
von Karman strain measure to account for geometric nonlinearities, along with the corresponding 
generalized eigenvalue problem for direct estimate of the critical load leading to instability and 
failure. Each of model ingredients has been until now studied separately, but never before 
combined within a single predictive model as proposed herein. Namely, the previous studies of 
thermomechanical coupling have been carried out either in small strain framework that precludes 
the geometric instabilities and only account for temperature dependence of material parameters 
(e.g., see Ibrahimbegovic and Chorfi (2002) for steel, Ibrahimbegovic et al. (2005) for cellular 
masonry materials or Ngo et al. (2013) for damage of concrete). Similarly, geometric instabilities 
are studied only for slender elastic structures, for either small (e.g., Ibrahimbegovic et al. (1996)), 
or large pre–buckling displacements (Ibrahimbegovic and Al Mikdad (2000), Dujc et al. (2010)) 
with no specific development as presented herein. The latter departs from these general studies of 
instability phenomena in seeking efficiency by using the von Karman strain measure that is 
intrinsically connected to buckling problems and results with general eigenvalue problem where 
solution directly leads to critical buckling load. The resulting computational efficiency is the main 
advantage with respect to the most general approach combining the large displacements and 
temperature effect (e.g., Yang et al. (2008)), which require very complex and costly computational 
procedure (Ibrahimbegovic and Al Mikdad (2000), Ibrahimbegovic et al. (1996, 2001)). Moreover, 
provided that the main hypothesis on small pre-buckling displacement is valid, the procedure 
proposed here will apply to any kind of material response. 

The outline of the paper is as follows. In the next section we briefly recall the basics of heat 
transfer problem. We discuss both nonstationary case, which can lead to the mechanical properties 
reduction, as well as the stationary case which can produce internal forces in the structural 
elements. In Section 3, we present the proposed geometrically nonlinear framework based upon 
the von Karman strain measure, resulting with the general linear eigenvalue problem. Section 4 
provides a brief summary of the final problem formulation in terms of general linear eigenvalue 
problem, different methods for its efficient solution procedure and in particular the power method 
and subspace iteration method. The results of several illustrative numerical examples are presented 
and discussed in Section 5. The concluding remarks are stated in Section 6. 
 
 
2. Thermoelasticity 
 

The phenomena of thermomechanical coupling are very important in terms of accounting 
properly for temperature induced change of material parameters. We are also interested in 
computation of thermally induced deformations, as well as in detecting a critical thermal loading 
that causes buckling phenomena. 

For simplicity, we start with the constitutive model of thermoelasticity, which must be able to 
account for both mechanics and thermal effects. We consider a simple 1D problem of 
thermomechanical coupling, defined in the domain  lx ,0 . We briefly review the classical 
model of small strain thermoelasticity. First, the two equations derived in purely mechanics case 
that also apply to the present coupled thermomechanics framework, pertaining to equilibrium and 
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kinematics 
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where σ is stress, b distributed load, ε is strain and u is displacement. One dimensional heat 
equation for the stationary case is given as 

0    
q

r q k
x x

 
    
 

 (2)

where r is the external heat supply, q is outgoing heat flux, k is the diffusion coefficient and θ is 
temperature. 

The nonstationary case is based on the first principle of thermodynamics (e.g., Ericksen (1998), 
Ibrahimbegovic (2009)), which states that any change of the internal energy is proportional to the 
combined effects of the stress power and the heat supply 

 ,
q

e s r
t t x

   
  

  
 (3)

where e is specific internal energy, and s is its state-variable of entropy. 
We can avoid working with entropy as the state variable, by exploiting the Legendre 

transformation in order to introduce the free energy of Helmholtz ),(   

   , ,    ,    
e

e s s
s

      
  


 (4)

The first principle of the thermodynamics can then be described as follows 
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 (5)

Varying independently the state variables, ε and θ, we obtain the constitutive equation for stress 
and entropy, along with a reduced form of the first principle 

;     ;     
s q

s r
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 (6)

Local balance and energy equations are then reduced to 
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 (7)

In the numerical implementation it is more convenient to use the weak form of these equations 

   0 , ; :M

l
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where w and ω are virtual displacement and virtual temperature field, respectively. The weak form 
written above holds for a bar of length l, with the left end clamped and maintained at a fixed 
temperature, and the right end loaded by traction t and submitted to imposed heat flux h . 

If we consider the fire of long duration (e.g., World Trade Center), we can count with diffusion 
phenomena to remove the temperature field time-dependence ( 0/  t ) and thus obtain the 
stationary heat transfer problem. 

For an elastic truss bar and the corresponding thermomechanical problem, stress equation is 
given by 

     ;   th m th thE            (10)

We note in passing that these results can further be generalized to elastoplastic case (e.g., Ngo 
et al. (2013)), where we can further allow for the appearance of plastic strain which can reduce the 
stress–producing strain to its elastic component only, pe   . The plastic strain evolution is 
described by yield criterion with plastic regime also contributing the plastic dissipation pD    
as the additional heat source. All the material parameter defining the elastic and plastic regime can 
be temperature dependent, such as )(E  or )( y  which can further affect the critical loading. 
 
 
3. Geometric instability problem 

 
The geometric instability problem pertains to the structures that can undergo critical 

equilibrium state taking it from stable to unstable. The latter implies that a small change in loads 
can lead to a disproportional change in structural response, and it is usually associated with the 
singularity of the structure stiffness matrix. Geometric instability in general implies that there is a 
risk of large (or moderate) structural motion such that kinematics and equilibrium equations ought 
to be taken as nonlinear. The structure stiffness matrix in this case will have two parts: usual term 
often referred to as material part and external loading proportional term referred to as geometric 
stiffness. The last part can thus cause the structural stiffness singularity for the case of the structure 
with compressed structural elements. 

The most efficient approach for dealing with geometric instability phenomena can be provided 
for buckling, considering small pre–buckling displacements before reaching the critical 
equilibrium state. In that case, we can still consider linear kinematics and only turn to nonlinear 
equilibrium equations. More precisely this implies that equilibrium equations are set in the 
deformed configuration if we compute the solution by using the strong (local) form of these 
equations. A number of classical results for buckling loads were computed in this manner for 
simple structures, and reported in standard reference books (e.g., Timoshenko and Gere (1962)). 

However, when computing the solution by using the finite element method, we typically take 
weak (integral) form of the problem. This allows us to tackle a much more complex problem, but 
at price to obtain only an approximate solution. The quality of such an approximate solution can 
always be improved by refining the mesh in the standard manner of the finite element method. We 
show here that such an approach can be developed in a very systematic manner for dealing with 
buckling problems of large diversity of complex structures by using the von Karman deformation 
measure.  

The von Karman deformation measure is well suited for typical structural mechanics problems 
in geometrically nonlinear response where the deformations are small and rotations are moderate. 
For clarity, we choose here the simplest such model of truss-bar. In such a case, the infinitesimal 
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strain measure, dxdu /1  (where u1 is the bar axial displacement), remains much smaller than 
infinitesimal rotation dxdu /2  (where u2 is the transverse displacement). 

Thus, we ought to use a geometrically nonlinear measure of deformation, with additional term 
as square of the rotation, which is the same order of magnitude as the infinitesimal dilatation. Such 
deformation measure, first proposed by von Karman (e.g., see Bathe (1996)), can be written as 

2
1 21

2
vk du du

E
dx dx

    
 

 (11)

where u1 is displacement along the bar and u2 is transverse displacement. We can easily show that 
such an expression is the second order approximation to the stretch, which is the true nonlinear 
measure of large strain (e.g., see Ibrahimbegovic (2009)) we refer to Fig. 1 for ilustration. 

 

2 2 2
2 2 1 1
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2 2

vk v
v v

ds dxdv dv dv
ds dx dv dx dx E

dx dx dx dx

                              

             vk u
u u
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dx dx


      

(11a)

With the real von Karman deformation defined as quadratic form in transverse displacement, 
the virtual strain measure of the same kind will remain a function of that displacement. We can 
compute the virtual von Karman deformation by using the Gâteaux or directional derivative 
formulation (e.g., see Ibrahimbegovic (2009)). In particular, we introduce the displacements in the 
perturbed configuration 

1 1 1

2 2 2

u u w

u u w






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 
 (12)

where w1 and w2 are corresponding virtual displacements in direction x1 and x2. The Gâteaux 
derivative computation in the direction of these virtual displacements leads to 

 
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1 2
1 2
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(13)

 
 

Fig. 1 The graphic illustration of von Karman strain measure 

353



 
 
 
 
 
 

Adnan Ibrahimbegovic, Emina Hajdo and Samir Dolarevic 

The weak form of such an instability problem can thus be defined by the following set of 
equations 

kinematic equation:     1du
x

dx
   

constitutive equation:           trx E x          N A  

equilibrium equation:  
0

l
vk extNdx f   

(14)

By combining the last three equations into a single one, we can also write an explicit form of 
the variational equation 

1 1 2 2 1

0 0

    
  

l l
ext

N

dw du du dw du
EA dx EA dx f

dx dx dx dx dx


  (15)

We will use a two-node truss-bar finite element (see Fig. 2) for constructing the finite element 
approximations. Thus we can write the real displacement field interpolation 

     1 1 11 2 21u x N x u N x u   

     2 1 12 2 22u x N x u N x u 
 (16)

Where )(1 xN  and )(2 xN are linear shape functions (see Fig. 2). In the spirit of Galerkin’s 
method, the same kind of interpolation is chosen for the virtual displacement field 

     1 1 11 2 21w x N x w N x w   

     2 1 12 2 22w x N x w N x w 
 (17)

Given this simple choice of interpolation with shape functions as linear polynomials, we can 
easily obtain the corresponding derivatives 

 1 1dN x

dx l
 

  

 2 1dN x

dx l
  (18)

We can thus obtain the discrete approximations of the displacement derivatives that will be 
constant in each element 

 
 

 
Fig. 2 Truss-bar 2-node element and shape functions 
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We gather nodal values of real displacements and virtual displacements, inside the 
corresponding vectors 

   11 12 21 22
Ted u u u u

 

   11 12 21 22
Tew w w w w

 

(20)

The corresponding displacements derivatives can be further arranged in a strain–displacement 
matrix B, which can be written as 
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(21)

With this result on hand we can obtain the material part of the structure stiffness matrix leading 
to 

1 1
1 1 1 1 1

0 0 0

e
m

Tl l l
T T T Tdw du

I EA dx EA dx EA dx
dx dx

    
   

K

w B B d w B B d

  (22)

For the chosen approximation with 2-node truss-bar element, the material stiffness matrix can 
be written explicitly as 

1 0 1 0

0 0 0 0

1 0 1 0

0 0 0 0

e
m

EA

l

 
 
 
 
 
 

K
 

(23)

The geometric part of the structure stiffness matrix can then be written as follows 

2 2
2 2 2 2 2

0 0 0

e
g

l l l
T T T Tdw du

I Ndx Ndx Ndx
dx dx

    
K

w B B d w B B d

  (24)
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The geometric part of the stiffness matrix can also be stated explicitly in form of 

0 0 0 0

0 1 0 1

0 0 0 0

0 1 0 1

e
g

N

l

 
  
 
 

 

K
 

(25)

 
 

4. General linear eigenvalue problem and solution procedure 
 
The final product of the finite element discretization of geometrical instability problem is a set 

of algebraic equations that can be written as 

1
t

n
eT eT e e

m g
e

   
K

w f w K K d
  (26)

This is indeed a nonlinear problem, since the geometric part of the stiffness is a function of the 
internal force which further depends upon the displacement at the critical point. However, we can 
exploit such a special form of the geometric stiffness, which depends linearly upon applied loads 
to rewrite the geometric stiffness as the product of the load multiplier λ and the reference value 

gK
 

t m gK = K K (27)

In this manner we indicate that the geometric stiffness matrix involves the state of stress at the 
critical point, which can be the result of either mechanical or thermal loading. The material part of 
stiffness matrix depends on material response only, and it can eventually be affected by inelastic 
behavior of material. 

We are interested in dealing with instability phenomena, where the stiffness matrix can become 
singular. The instability phenomena thus imply that a small perturbation of loading (mechanical, 
thermal etc.) can lead to a disproportional amplification in computed response. Under a critical 
force ff crcr   a system is in the critical equilibrium state. At the critical equilibrium state 
tangent stiffness becomes singular and its determinant will take zero value 

 det 0m cr gK K =
 

(28)

We can further use the solution of such an eigenvalue problem to estimate the critical load. The 
material stiffness in an elastic material will not change with respect to the case of linearized 
kinematics since the displacements prior to the critical equilibrium state remain small. The 
geometric stiffness depends linearly on the load parameter, since the stresses depend linearly on 
applied load if the displacements are small. The applied mechanical or thermal load is independent 
of the displacements. At the critical equilibrium state, 0crt ψK , which implies that for critical 
mode crψ , tangent stiffness matrix Kt will have a zero eigenvalue. Since the geometric stiffness 
varies linearly with the load, we can write 

  0m g crK K =  (29)
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where gK is the geometric stiffness computed for a reference value of the load parameter, ,f . 
The critical value of the load parameter λcr can be obtained by solving the general eigenvalue 
problem stated in Eq. (29) above. We note in passing that the same kind of eigenvalue problem 
appears in dynamics with mass matrix M replacing gK , and eigenvalue pertinent to the natural 
frequencies. We will thus borrow the methods already known for efficiency in solving the 
eigenvalue problem in dynamics, such as the Lanczos method (e.g., see Ibrahimbegovic and 
Wilson (1990), Ibrahimbegovic et al. (1990)). 

We note that the present buckling problem can even be solved efficiently simply by using the 
power method (e.g., Bathe (1996)), given that only the first eigenvalue is usually needed, leading 
to true critical load. Namely, by using any vector x (a good starting value should be as close as 
possible to the first critical mode), we can launch the iterative sequence by 

  1,2,...i 

 

   
 

 

1
1 1

1
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
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        1 1 1 1
T

  x x Mx  
 

     2 1 1
m gK x K x

   
   1 2  x

,  

 
 

 

2
1

2


x
x

x




 

   1 2 tol  
 

(30)

The complete summary of the proposed procedure is as follows. We write the nonlinear 
equilibrium equation for a special form of external loads 

ext f = f  (31)

where f  is the load reference value and λ is the load multiplier. 
We solve for the corresponding reference values of displacement fuK m  and then proceed 

to compute the reference values of internal force N  in each element, as well as the 
corresponding reference value of the geometric stiffness gK . Finally, by solving general linear 
eigenvalue problem in Eq. (29) we compute λcr along with the critical value of the external loading 

ffcr cr . 
When we are dealing with coupled thermomechanical problem, we consider a particular load 

combination of two load cases – mechanical and thermal loading. First we consider the 
proportional loads. Solving fuK m , we get displacements caused by this load combination. 
Once we have the values of displacements, we can calculate corresponding axial forces, and 
finally form the geometric part of stiffness matrix thermmechg ,K . Then we can solve the eigenvalue 
problem, and get critical value of the load parameter λcr for the load combination. 

 , 0m g mech therm cr K K =
 

(32)

Next, we are interested in calculating critical value of the load parameter λcr for one load case 
only, here for example for thermal load case. Mechanical loads (for example dead loads and some 
of the live loads) can be considered fixed (their intensity does not change). We apply force fmech on 
the top of the bar system. Now we can write 
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m mech mechK u f (33)

Once we obtain displacements caused by mechanical load, we can calculate stresses under 
mechanical load and its contribution to geometric part of stiffness matrix Kg,mech. 

We will consider that the thermal load is load case that changes. Same problem as described 
above in Eq. (33) we are solving for thermal load thermf . Once we get the geometric part of 
stiffness matrix thermg ,K , which depends on stresses caused by thermal load, we can solve next 
problem and obtain critical value of the load parameter λcr 

 , , ,

ˆ

ˆ0    0

m

m g mech g therm cr m g therm cr 
 
       
 
 K

K K K K K


   (34)

We note that the mechanical load induced geometric stiffness can here act as the pre-stressing 
increasing the resistance to buckling in a tensile truss-bar or as a factor for reducing the final value 
of buckling load if truss-bar is compressed. 
 
 
5. Numerical examples 

 
In this section we consider several numerical examples in order to illustrate the satisfying 

performance of the proposed method for buckling load computations. All numerical computations 
were performed by a research version of the computer code FEAP (see Zienkiewicz and Taylor 
(2005)). 

 
5.1 Validation examples 
 
5.1.1 Simple truss structure under mechanical load 
The first example that we will consider for validation of the proposed method for a simple 

truss-bar structure loaded with mechanical load. The chosen geometric and mechanical 
characteristics of the structure are given in Table 1 and Fig. 3 
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Table 1 Mechanical characteristics of the structure 

b[m] h[m] l[m] A[m2] E[kN/m2] f [kN] c s 

0.3 4.0 4.011 10-4 2·108 1.0 b/l h/l 
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Fig. 3 Simple truss-bar system example 1 
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We have thus got validation for mechanical part. 
 
 

Fig. 4 Truss bar system example 2 
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5.1.2 Simple truss under thermal load 
Let us consider an example of a truss bar system, given in Fig. 4. All bars are the same length l 

and cross section A, subjected to a constant temperature  . We assume that material properties 
are independent on temperature. Due to temperature load, axial force EAN   occurs in bars. 

Vector of unknown displacements: 

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u
u , u is displacement in direction x, and v in 

direction y. 

Tangent stiffness matrix of a bar element can be obtained by:      e
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e
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Here, Km is the material, or elastic part of stiffness matrix, and Kg is the geometric part of the 
stiffness matrix 
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Results obtained by the model in FEAP: 03D50000000.221  crcr   
In this manner, we have also got validation for thermal part. 
 
5.2 Tower instability under mechanical and thermal load 
 
We further will deal with coupled thermomechanical problems. Any real structure (e.g., a tower 

in Fig. 5) is designed to withstand mechanical loads, first including the dead load. The thermal 
load comes from different kinds of accidents that can cause fire in structures. Here we would like 
to check the risk of instability phenomena under combined thermomechanical loads of this kind. 

Given that if we consider a multistory structure, of special interest is the case where the fire is 
located only on one floor. 

In this example we will consider the instability of the tower given in Fig. 5, under coupled 
thermomechanical loads. The mechanical load is always the same with a single concentrated force 
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applied on top. However, different thermal loads are considered: i) with increase of temperature in 
outside bars only throughout the tower height, ii) the temperature increase in the second storey of 
the tower. 

 
5.2.1 Tower instability under mechanical loads only 
In this case, the system is loaded only by a mechanical force applied at the top of the structure 
 
 

  
Fig. 5 Initial configuration of the tower Fig. 6 Buckling mode 

 

Fig. 7 Critical load multiplier – mechanical load curve 
 

(a) Critical load – mechanical load curve (b) Critical load – critical load multiplier curve 

Fig. 8 Critical load change 
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(see Fig. 5). We performed several computations of the critical load for different force intensity, in 
order to get the corresponding value of critical load multiplier. Each of those computations 
resulted with the same buckling mode shown in Fig. 6. The change of critical load multiplier as a 
function of mechanical load is presented in Fig. 7. In Fig. 8(a) we can see that critical load does 
not depend on reference load intensity. 

 
5.2.2 Tower instability under thermal load – heating of outside bars 
We further study instability problem when outside bars of the tower are heated throughout 

tower height. The bars of the system, undergoing heating are marked in Fig. 9(a) in red. We tested 
behavior of the critical load multiplier and the critical thermal load for different values of reference 
temperature. The results are given in figures that follow. 

The buckling mode of the system, in the case when outside bars of the system are heated, is 
shown in Fig. 9(b). Fig. 10 shows the change of the critical load multiplier with respect to 
temperature change. In Fig. 11(a) we can see that the critical load is independent of chosen 
reference temperature change. 

 
 

  
(a) Initial configuration (b) Buckling mode 

Fig. 9 Tower under thermal load 
 

Fig. 10 Critical load multiplier – thermal load curve 
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(a) Critical load – mechanical load curve (b) Critical load – critical load multiplier curve 

Fig. 11 Critical load change 
 
 
 

 

 
 
 

 
(a) Initial configuration (b) Buckling mode 

Fig. 12 Tower under coupled mechanical and thermal loads 
 
 
 

Fig. 13 Critical load multiplier – thermal load curve 
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(a) Critical load – mechanical load curve (b) Critical load – critical load multiplier curve 

Fig. 14 Critical load change 
 
 

5.2.3 Tower instability under coupled mechanical and thermal loads – heating of 
outside bars 

The following analyses were carried out for constant value of mechanical load, and for 
different values of the temperature. We considered the same truss-bar structure, loaded with 
constant mechanical load on the top of the system mechf , and then the red bars in Fig. 12(a) were 
heated. For different temperature values, the critical load parameter λcr was calculated. In Fig. 13 it 
can be seen that the critical load does not change with temperature. 

In Fig. 14(a) we have shown change of the critical load parameter with respect to temperature, 
for constant mechanical load value. Buckling mode for this case is given in Fig. 12(b). 

We can note that the critical mode assembles the one computed for mechanical load in Fig. 6 
and Fig. 9(b) for thermal load. Thus, there is an increased risk of structure sensitivity to buckling 
for combined of these two modes. It is interesting to note that similarity of these two buckling 
modes allow to obtain the same critical load values of fcr and θcr if the of reference load role is 
between switched mechanical and thermal loads. 
 
 

  
(a) Initial configuration (b) Buckling mode 

Fig. 15 Tower under thermal loads 
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Fig. 16 Critical load multiplier – thermal load curve 
 

 
(a) Critical load – mechanical load curve (b) Critical load – critical load multiplier curve 

Fig. 17 Critical load change 
 
 
5.2.4 Tower instability under thermal load – heating one floor 

Next, we change the thermal load with heating one floor of the structure. The bars of the structure, 
marked in Fig. 15(a) with red color undergo heating in this case correspond to the second floor. 
We tested the change of the critical load multiplier and the critical thermal load with temperature 
change. 

In the case when we were heating only one storey bars, obtained buckling mode of the system 
is given in Fig. 15(b). The change of the critical load multiplier with respect to temperature change 
is shown in Fig. 16. The critical load is independent of temperature change, which can be seen in 
Fig. 17(a). 

 
5.2.5 Tower instability under coupled mechanical and thermal load - heating one floor 
In this example we study the coupled thermomechanical problem where fire in structure is 

localized only in one part of the structure. Here, the temperature is rising, while mechanical loads 
stay unchanged. We will consider the same truss-bar structure loaded with constant mechanical 
load on the top of the structure. The bars which are submitted to heating are shown in Fig. 18(a) in 
red color. 

In Fig. 18(b) we can see buckling mode for this analysis case, and it shows that influence of 
temperature is dominant in response. In fact, by comparison of instability mode for mechanical 
case shown in Fig. 6 and buckling mode for local temperature change shown in Fig. 15(b), we can 
see that the combined loads instability is mostly characterized by the latter. We thus conclude that 
the local temperature change with only one storey exposed to fire will not have the same resonance 
effect as in the previous example. Furthermore, if the order is reversed, with one storey 
temperature change kept fixed while increasing mechanical loads until critical value we do not 
obtain the same critical loads values. 

365



 
 
 
 
 
 

Adnan Ibrahimbegovic, Emina Hajdo and Samir Dolarevic 

   
(a) Initial configuration (b) Buckling mode 

Fig. 18 Tower under coupled mechanical and thermal loads 
 
 
 

Fig. 19 Critical load multiplier – thermal load curve 
 
 
 

(a) Critical load – mechanical load curve (b) Critical load – critical load multiplier curve 

Fig. 20 Critical load change 
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5.3 Comparison against finite strain elasticity model 
 
Next, we will compare values of critical forces we obtained in previous chapters against results 

of finite strain elasticity model (see Appendix). First, we will compare simple truss structure from 
validation example (Fig. 3). An analysis was performed using finite strain model, and we obtained 
force-displacement curve presented in Fig. 21. Curve shows values of vertical force and vertical 
 
 
Table 2 Mechanical characteristics of the structure 

b[m] h[m] l[m] A[m2] E[kN/m2] λcr 

0.3 4.0 4.011 10-4 2·108 224.37 
 

Fig. 21 Force-displacement curve 
 

Fig. 22 Force-displacement curve (different horizontal forces) 
 

  
Fig. 23 Force-displacement curve (changing cross 

section of the tower’s left side bars) 
Fig. 24 Force-displacement curve (changing Young’s 

modulus of the tower’s left side bars) 
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Fig. 25 Force-displacement curve (perturbation 
caused by horizontal force) 

Fig. 26 Force-displacement curve (perturbation 
caused by cross section change) 

 

Fig. 27 Force-displacement curve (perturbation caused by Young’s modulus change) 
 
 

displacement of node 2 (see Fig. 3). While performing nonlinear analysis, we had to apply small 
horizontal perturbation in order to disturb the symmetry of the truss structure. 

Critical force was computed using the arc-length method (e.g., Ibrahimbegovic (2009)), and its 
value is fcr = 221,54 kN. In 5.2.1 is given critical force value obtained by linear computation, fcr = 
224,37 kN. These two values are approximately the same, which gives us validation of obtained 
results. In the case of incremental analysis force fcr = 218,63 kN was obtained. 

In order to get full validation of our results and models, we performed couple of tests on this 
simple truss structure. We tested behavior of the truss in case when symmetry is disturbed in 
manner that one bar has smaller cross section (A2 = 0,95A), and also the case when bars have equal 
cross sections, but different Young’s modulus (E2 = 0,95E). Using the arc-length method critical 
force fcr = 216,11 kN was computed for both cases, and using incremental analysis force fcr = 
216,00 kN was obtained. 

The similar comparison as shown above, we performed for tower given in Fig. 5. First, we 
performed nonlinear analysis only with mechanical load applied (see Fig. 5). In order to obtain the 
loss of stability we performed several analyses with different kinds of perturbation. First type of 
perturbation we used is horizontal force applied on the top of the tower. We made couple of 
computations varying horizontal force intensity. In the Fig. 22 are presented force-displacement 
curves: force on the top of the tower, and displacement of the same node. 

Then we changed a cross section of the bars on the left side of the tower, and in that manner we 
disturbed symmetry. Force-displacement curves are given in Fig. 23. The final way in which we 
disrupted symmetry of the tower was reducing of the Yang’s modulus of the bars on the left side 
of the tower, computed results are shown in Fig. 24. 
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Above results are obtained using the arc-length method. We also made similar computations 
using incremental method. Horizontal force, the change of cross section, and the change of 
Young’s modulus were used as perturbations. Obtained results are shown in Figs. 25- 27. 

Here, we will also show how results change with slenderness of the truss. 
In Table 3 are given values of the critical force obtained by linear and nonlinear analysis, for 

different h/b (height/base) ratio. We can notice that larger the ratio h/b, the smaller difference 
between the critical force values obtained by two models (linear and nonlinear). 

Comparing results obtained using finite strain elasticity model with results computed in 5.2, 
one can see significant differences. We can conclude that it would be necessary to refine the mesh, 
but this is not possible using truss elements. 

 
 

Table 3 Critical force values 

Model h/b 3.33 6.67 8.33 10 

Linear 
fcr [kN] 

3356.6 2970.0 1938.6 1358.2 

Nonlinear 27414.0 6984.0 4480.0 3115.0 

 

Fig. 28 Force-displacement curve 
 

 

 

 

Fig. 29 Buckling mode 
Fig. 30 Deformed shape in time when instability 

occurs 
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5.4 Tower instability using frame elements 
 

In order to prove that accuracy of the results given in 5.3 is mesh-dependent, we will consider 
the same tower loaded with force on the top, but model composed by using the frame elements. 
First, we will use simple mesh, the same we used when tower was modeled with truss elements. 

Force-displacement curve is given in Fig. 28. In Fig. 29 is given buckling mode of tower. Fig. 
30 shows the deformed shape of the tower obtained using finite strain elasticity model, in time 
when buckling occurs. 

Critical values of force and displacement are given in Table 4. 
We can see that critical values obtained using linear and finite strain model are significantly 

different, just like in case when truss elements were used. 
 
 
Table 4 Critical force and displacement values 

Model fcr [kN] vcr [m] 

Linear 30490,7 -4,635E-02 
Nonlinear 59375,0 -1,2920 

 

Table 5 Critical force and displacement values 

Model fcr [kN] vcr [m] 

Linear 16439,0 -2,517E-02 
Nonlinear 16175,0 -2,558E-02 

 

  
Fig. 31 Buckling mode (refined mesh) 

 
Fig. 32 Deformed shape in time when 

instability occurs (refined mesh) 
 

Fig. 33 Force-displacement curve (refined mesh) 
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The same analysis is performed for the tower with refined mesh. All frames from previous case 
are divided in 19 elements. New values of critical force and critical displacement are obtained and 
the results are given in Table 5. 

We can see that obtained results, after the mesh is refined, are nearly the same for linear and 
nonlinear analysis. Therefore, we can conclude that the same problem exists using truss elements, 
which gives us explanation for differences in critical force values in 5.3. Since using truss 
elements, mesh cannot be further refined, we are not able to obtain matching results. 
 
 
5. Conclusions 
 

In this paper, a model for instability failure under thermomechanical loads is introduced. The 
model is capable of modeling the behavior of structure subjected to mechanical and thermal 
loading. The main novelty of the proposed model is its capability to account for geometric 
nonlinearities, based upon the von-Karman strain measure, under mechanical or combined 
thermomechanical loads. The corresponding generalized eigenvalue problem for direct estimate of 
the critical load leading to instability and failure is introduced. We considered small pre-buckling 
displacements, which leads to linear kinematics and nonlinear equilibrium equations. We 
introduced the finite element method dealing buckling problems. It is shown that such a critical 
value of load parameter can be obtained by solving the general eigenvalue problem. 

The numerical examples have shown that response of the structure depends on the part of the 
structure where the fire is located. The first buckling mode of the tower for mechanical loads only 
can sometimes be in a “resonance” with the buckling mode for fire loading. The case in point is 
the uniform heating of overall structure. On the other hand, for the case of localized fire the 
buckling load correspond to the higher order buckling mode for mechanical loads only. It is thus 
very important to define the most precise load combination and the corresponding loading 
program when computing the estimates of buckling mode for coupled thermomechanical loading. 
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Appendix 
 
Thermomechanical coupling for 1D finite elasticity 
 
In order to illustrate theoretical description of thermomechanical coupling in large strain 

elasticity, we start with the simplest 1D problem, considering elastic truss bar. The deformed shape 
of such a bar, stretched along x-axis, can be defined by the position vector 

   , ,x t x d x t  
 

where x is an independent variable of space, and t is the pseudo-time parameter which describes 
chosen loading program, ),( txd  is the displacement along the bar axis. The stretch ),( tx  
defined at each point x 

   ,
,

x t
x t

x








 

Equilibrium equation in the deformed configuration can be written 

   ,
0 ,

P x t
b x t

x


 


 

where P is the first Piola-Kirchhoff stress and b distributed loading per unit length of initial 
configuration. 

If we write internal energy potential in a form 

 ln ),( se   

We can establish the local form of the first principle of thermodynamics. The first principle of 
thermodynamics states that any change of the internal energy is proportional to the combined 
effects of the stress power and the heat supply 

 


0,

e e s
tt s t

q
e s P r

t t x
 




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

   

 
  

    

The last result can be rewritten 

0qe e s
r

t s t x




             
 

One can avoid working with the entropy as independent variable by making use of the 
Legendre transformation which gives rise to the Helmholtz free energy and switches the roles 
between entropy and temperature. 

   , ,e s s     
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The first principle of thermodynamics can then be restated as 

0qs
s r

t t t x

    
 

                       
 

We can further introduce the free energy potential 
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We can obtain the corresponding constitutive equations for the Kirchhoff stress including the 
thermal stress component, as well as the entropy for the elastic processes 
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The weak form of the mechanical part of the coupled problem in thermoplasticity can be 
written 

   1
0 , , :M

l

dw
G w w wb dx w l t

dx
   


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The linearized version of the mechanical part leads to 
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The instability criterion in terms of the singularity of the tangent stiffness matrix remains the 
same. However, the tangent stiffness remains highly nonlinear function of applied load multiplier, 
and we can no longer solve this problem with the same efficiency as for the case of the buckling. 
Another effect that is nonlinear is the temperature with nonstationary flow. 
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