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Abstract.  The present work aims at investigating the nonlinear dynamics, bifurcations, and stability of an 
axially accelerating beam with an intermediate spring-support. The problem of a parametrically excited 
system is addressed for the gyroscopic system. A geometric nonlinearity due to mid-plane stretching is 
considered and Hamilton’s principle is employed to derive the nonlinear equation of motion. The equation is 
then reduced into a set of nonlinear ordinary differential equations with coupled terms via Galerkin’s method. 
For the system in the sub-critical speed regime, the pseudo-arclength continuation technique is employed to 
plot the frequency-response curves. The results are presented for the system with and without a three-to-one 
internal resonance between the first two transverse modes. Also, the global dynamics of the system is 
investigated using direct time integration of the discretized equations. The mean axial speed and the 
amplitude of speed variations are varied as the bifurcation parameters and the bifurcation diagrams of 
Poincare maps are constructed. 
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1. Introduction 

 
Beam structures (Ghayesh et al. 2011, Sahebkar et al. 2011, Kural and Ö zkaya 2012, 

Movahedian 2012, Saffari et al. 2012, Song et al. 2012, Bayat et al. 2013) are present in many 

engineering devices and machine components. Among them, robot arms, aerial cable tramways, 

textile fibers, automobile and aerospace structures, conveyor belts, magnetic tapes, and 

fluid-conveying pipes can be modeled as axially moving beams (Ravindra and Zhu 1988, Ding 

and Chen 2009, Chen et al. 2012, Ghayesh et al. 2013). These widespread applications have 

stimulated continuing research on this topic, as evident from literature.  

The axial speed greatly affects the dynamical behavior of axially moving systems by producing 

travelling waves and centrifugal forces. Real-life axially moving systems do not travel at a 

constant axial speed, mainly due to some internal or external imperfections; there are always some 

small variations in the axial speed over the mean value. Therefore, the axial speed can be modelled 

by superimposing some harmonic fluctuations in time on the mean value to obtain an axial 

acceleration. This time-variant variation in the axial speed is very important since it can cause 
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parametric resonances.  

The literature concerning the dynamics of axially moving beams and strings undergoing a 

constant axial speed is quite large. Such examples are the following papers: Marynowski and 

Kapitaniak (2002) who employed two different energy dissipation mechanism in the model of an 

axially moving web. Ding and Chen (2010) determined the nonlinear natural frequencies of 

high-speed axially moving beams using the Galerkin method. Huang et al. (2011) examined the 

forced sub-critical dynamics of an axially moving beam via harmonic balance method. Pellicano 

and Vestroni (2000) examined the dynamics of an axially moving beam in both the sub- and 

super-critical speed regimes. Tang et al. (2008) determined the natural frequencies, mode 

functions, and critical speeds of an axially moving Timoshenko beam. Riedel and Tan (2002) 

employed the method of multiple timescales and the Galerkin technique to examine the coupled 

vibrations of an axially moving beam. Ghayesh (2011) studied the nonlinear dynamics of an 

axially moving viscoelstic beam with an internal resonance. Ghayesh (2011) determined the 

natural frequencies, mode functions, and critical speeds of an axially moving laminated composite 

beam. 

The dynamics of an axially accelerating beam or string has been investigated for many years 

by various authors (Pakdemirli et al. 1994, Parkdemirli and Ulsoy 1997, Ö z and Pakdemirli 1999, 

Ö zkaya and Pakdemirli 2000, Suweken and Van 2003, Pakdemirli 2008, Sahebkar et al. 2011). 

Most of these studies (Pakdemirli et al. 1994, Parkdemirli and Ulsoy 1997, Ö z et al. 1998, Ö z and 

Pakdemirli 1999, Ö zkaya and Pakdemirli 2000, Ö z et al. 2001, Ghayesh 2008, Ghayesh and Balar 

2010, Sahebkar et al. 2011) employed analytical techniques, mainly the method of multiple 

timescales so as to determine the single-mode approximation for the resonant response of the 

system. For example, Oz and Pakdemirli (1999) investigated the linear parametric vibrations and 

stability of an axially accelerating beam via the method of multiple timescales. In a series of 

papers, a systematic research on this topic was conducted by Ghayesh and co-workers (Ghayesh 

and Khadem 2007, Ghayesh 2008, Ghayesh and Balar 2008, Ghayesh 2009, 2010, Ghayesh and 

Balar 2010, Ghayesh et al. 2010) including several system models such as linear, nonlinear, energy 

dissipative, Euler-Bernoulli, Rayleigh, Timoshenko, and laminated composite models. There are 

also some other works in the literature which considered direct time integration of discretized 

equations of motion to examine the global dynamics of the system (Yang and Chen 2005). The 

current paper addresses the lack of research on the sub-critical resonant response of an axially 

moving beam via efficient numerical technique, and employing larger degrees of freedom in 

discretization. Moreover, the global dynamics of the system is investigated via direct time 

integration of discretized equations. 

In some applications, beams are subject to intermediate concentrated elements such as point 

masses and springs. The vibrations and stability of stationary (not traveling) beams with 

intermediate elements have received considerable attention in the literature. The literature 

regarding the dynamics of axially moving systems with intermediate elements, on the other hand, 

is not large. For instance, the stability characteristics of an axially accelerating string supported by 

a partial elastic foundation were examined via the method of multiple scales by Ghayesh (2009). 

This paper addresses an axially moving beam with an intermediate spring-support which can be 

simplified model of an intermediate support in real mechanical systems. 

In the present paper, the nonlinear dynamics, bifurcations, and stability of an axially 

accelerating beam with an intermediate spring-support are examined numerically. The equation of 

motion is derived via Hamilton’s method and discretized using the Galerkin method, yielding a set 

of nonlinear ordinary differential equations with time-dependent coefficients and coupled terms. 
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The sub-critical resonant response is obtained via the pseudo-arclength continuation technique for 

the system when possessing a three-to-one internal resonance and when it is not. The bifurcation 

diagrams of Poincare maps for this parametrically excited system are also constructed via direct 

time integration. The results are presented in the form of time histories, phase-plane diagrams, 

Poincare maps, and fast Fourier transforms (FFTs). 

 

 

2. Problem statement, equation of motion, and methods of solution 
 

Shown schematically in Fig.1 is a hinged-hinged axially accelerating beam of length L, with 

cross-sectional area A, constant density ρ, area moment of inertia I, and Young’s modulus E, which 

is traveling at a time-dependent axial speed V(t). Moreover, the beam is subjected to a pretension 

p, and a spring with linear and nonlinear stiffness coefficients of k1 and k2 respectively, which is 

attached at a distance sx̂  from the left end of the beam.  

The equation of motion for a hinged-hinged axially accelerating beam additionally supported 

by a nonlinear spring is derived in the following via Hamilton’s principle under the assumptions : 

(i) only the transverse displacement is considered (Pakdemirli et al. 1994, Suweken and Van 2003, 

Marynowski 2004, Chen and Yang 2005, Ahmadian et al. 2010) (ii) the beam has a uniform 

cross-sectional area; (iii) the beam is modelled via  nonlinear Euler-Bernoulli beam theory; (iv) 

the type of nonlinearity is geometric and comes from the stretching effect of the mid-plane of the 

beam; (v) the equation of motion is truncated at third order; (vi) the nonlinear spring is assumed to 

be attached to the centerline of the beam and the force generated by is assumed to be purely in the 

transverse direction; (vii) the axial speed is assumed to involve a constant mean value along with a 

term which is harmonic function of time. 

The potential energy of the system is given by  
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where w(x,t) represents the transverse displacement and δ(x) is the Dirac delta function. In Eq. (1), 

the first term on the right-hand side is due to the mid-plane stretching, the second term is due to 

the flexural restoring force, the third to the pretension, and the last one to the spring force acting 

on the beam. 

 

 

 
Fig. 1 Schematic representation of an axially accelerating beam with an intermediate spring-support 
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The kinetic energy of the system is given by 
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The kinetic and potential energies of the system (Eqs. (1) and (2)) can all be combined via 

Hamilton’s principle. This operation yields the following dimensionless equation of motion 
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where the dimensionless parameters are defined as 
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The dimensionless equations for boundary conditions of a hinged-hinged beam are given by 
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The axial speed is assumed to involve a constant mean value f0 along with a harmonic 

fluctuations, f1sin(Ωτ), where Ω and f1 represent the frequency and the amplitude of the speed 

variations respectively.  

Employing the well-known Galerkin method on Eq. (3) in order to discretized this equation 

results in 
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(6) 

where ϕi(x)=sin(iπx) denotes the i
th
 eigenfunction of a hinged-hinged beam and qi(τ) represents the 

i
th
 generalized coordinate. The dot and prime superscripts represent the differentiation with respect 

to dimensionless time and axial coordinate respectively.  

Eq. (6) forms a set of N ordinary differential equations with coupled non-inertial terms. 

Transforming this set via ii qy 
 

for i=1,2,…,N doubles the number of equations to 2N, but 

allows us to utilize standard numerical techniques; most numerical techniques can best handle first 
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order ordinary differential equations rather than second-order ones. Twelve first-order ordinary 

differential equations are solved in this paper employing two different numerical techniques. The 

first technique uses the pseudo-arclength continuation technique to obtain frequency-response 

curves of the system (Doedels et al. 1998). In the second technique, the variable step-size 

Runge-Kutta method is employed to the direct time integration (Ghayesh and Païdoussis 2010, 

Ghayesh et al. 2011, Ghayesh 2012, Ghayesh et al. 2012) of Eq. (6) and to construct the 

bifurcation diagrams of Poincare maps. Although there is no damping term in the equation of 

motion, the numerical analyses include viscous damping µ . 

 

 

3. Frequency-response curves of the system in the sub-critical speed regime 
 

The frequency-response curves of the system away from internal resonances between the first 

two modes as well as the case possessing a three-to-one internal resonance between the first two 

modes are plotted in this section. For the case with an internal resonance, the curves are plotted for 

two values of the excitation amplitude. As we shall see, the frequency-response curves typically 

show a trivial solution, both stable and unstable, throughout the solution space separated by 

bifurcation points. All the results of this section were obtained using the pseudo-arclength 

continuation technique.  

 

3.1 Parametric response of the system with no internal resonances between the first 
two modes 

 
In this section the nonlinear parametric response of the system without any internal resonances 

between the first two modes is examined. The following dimensionless parameters have been 

selected in the analysis of this section: v1=33.526, vf=0.173, µ=0.05, f0=0.3, f1=0.08, α=3.0, γ=0.5, 

 

 

 
Fig. 2 The frequency-response curve of the system with no internal resonances between the first two 

modes. Bold line and dotted lines represent the stable and unstable solutions respectively 
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and xs=0.5; the spring is located at the mid-point of the beam. As seen in Fig. 2, it was found that 

as the excitation frequency is increased gradually from Ω=0.98×2ω1 (i.e., the resonance occurs 

when the excitation frequency approaches twice the amount of any linear natural frequency of the 

system), the amplitude of the first generalized coordinate remains zero until the first 

period-doubling bifurcation occurs at point A (Ω=0.9976×2ω1) where the trivial solution loses 

stability, and a stable non-trivial solution branch bifurcates. The amplitude of this stable non-trivial 

solution increases with the excitation frequency until Ω=1.1500×2ω1. The trivial solution branch 

regains the stability at point B (Ω=1.0028×2ω1) via the second period-doubling bifurcation point. 

At this point, unstable non-trivial solution branch also bifurcates; the amplitude of this branch 

increases with the excitation frequency until Ω=1.1500×2ω1.  

 

3.2 Parametric response of the system possessing a three-to-one internal resonance 
between the first two modes 

 
In this section, the parametric resonant response of the system possessing a three-to-one 

internal resonance is investigated for two cases with different excitation amplitudes. This is 

accomplished by carefully selecting system parameters such that: v1=33.526, vf=0.173, µ=0.05, 

f0=0.702, α=3.5, γ=0.7, and xs=0.2 which yields the second linear natural frequency of the system 

to be approximately three times that of the first one. Two cases are addressed in the following; in 

the first case the excitation amplitude is set to f1=0.08 and in the second case to a smaller value of 

f1=0.05.  

 

3.2.1 Case 1: Parametric response of the system having a three-to-one internal 
resonance between the first two modes with f1=0.08  

 
 

 
Fig. 3 The frequency-response curve of the system, associated with Case 1 with f1=0.08, possessing a 

three-to-one internal resonance between the first two modes. Bold line and dotted lines represent 

the stable and unstable solutions respectively 
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Fig. 4 The frequency-response curve of the system, associated with Case 2 with f1=0.05 possessing a 

three-to-one internal resonance between the first two modes. Bold line and dotted lines represent 

the stable and unstable solutions respectively 

 

 

Fig. 3 shows that as the excitation frequency is increased gradually from Ω=0.95×2ω1, there is 

only one stable trivial solution until point A (Ω=0.9634×2ω1) where a stable non-trivial solution 

bifurcates and the trivial solution loses stability. As the excitation frequency is increased further, 

the amplitude of the stable non-trivial solution increases accordingly until it reaches a limit point 

bifurcation at B (Ω=1.0112×2ω1) where it becomes unstable. The amplitude of this now unstable 

non-trivial branch decreases until point C (Ω=0.9845×2ω1) is hit, where the trivial solution regains 

the stability via a period-doubling bifurcation. This stability is lost again at point D 

(Ω=0.9940×2ω1) via the first torus bifurcation and retrieved at point E (Ω=1.0022×2ω1)                 

via the second torus bifurcation. As the excitation frequency is increased even further, another 

period-doubling bifurcation occurs at F (Ω=1.0113×2ω1). At this point, the trivial solution loses 

stability and a stable non-trivial solution bifurcates, which loses stability at Point G 

(Ω=1.0232×2ω1) via a torus bifurcation. This unstable non-trivial solution branch continues until 

Ω=1.2000×2ω1. There is also another period-doubling bifurcation point at H where 

Ω=1.0346×2ω1.    

 

3.2.2 Case 2: Parametric response of the system having a three-to-one internal 
resonance between the first two modes with f1=0.05 

Decreasing the excitation amplitude from 0.08 to 0.05 in Figs. 3 and 4 is generated. As seen in 

this figure, there are five trivial solution branches, three stable and two unstable, six non-trivial 

solution branches, three stable and three unstable.  In other words, as the excitation frequency is 

increased gradually from Ω=0.95×2ω1, the amplitude of the first generalized coordinate, remains 

zero until the first period-doubling bifurcation point at A (Ω=0.9785×2ω1) is hit, where the 

stability of the trivial solution is lost and a stable non-trivial solution bifurcates. The amplitude of 

the stable non-trivial solution increases with Ω until point B (Ω=0.9998×2ω1) where a limit point 
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bifurcation occurs. The second period-doubling bifurcation occurs at point C (Ω=0.9899×2ω1), 

where the trivial solution regains the stability.  

As the excitation frequency is increased further, the third period-doubling bifurcation occurs at 

point D (Ω=1.0086×2ω1), where the trivial solution loses stability and a stable non-trivial solution 

bifurcates, which loses stability at E (Ω=1.0208×2ω1) via a torus bifurcation and regains it via 

reverse torus bifurcation at point F (Ω=1.1413×2ω1). The amplitude of this now stable non-trivial 

solution increases with the excitation frequency until a limit point bifurcation at point G 

(Ω=1.4083×2ω1) is reached. At this point, the stability is lost once again. Decreasing the excitation 

frequency, the amplitude of the unstable non-trivial solution decreases until the last 

period-doubling bifurcation at point H (Ω=1.0207×2ω1) is hit. At this point, the stability of the 

trivial solution is regained. 

 

 

4. Complex nonlinear dynamics of the system 
 

The bifurcation diagrams of Poincaré maps of the system, obtained from direct time integration 

of the transformed form of Eq. (6) using the variable step-size Runge-Kutta method, are presented 

in this section. Although the AUTO code is capable of providing continuation of solutions and 

stability and bifurcation analysis, it cannot obtain quasiperiodic and chaotic motions. The mean 

axial speed and the amplitude of the axial speed variations are chosen as bifurcation parameters. 

The computations were carried out for a time interval of [0 2500] dimensionless seconds and the 

last 30% of the time response is taken as steady state responses. The phase-space is sectioned in 

every period of the speed fluctuations and the Poincaré maps are plotted versus the bifurcation 

parameter. The state of the system at each step is adopted as the initial conditions for the next step. 

In this section it is implied that the response and amplitude are with respect to the q1 motion where 

it is sectioned, respectively. 

 

4.1 The mean axial speed as the bifurcation parameter 
 
 

  
(a) (b) 

Fig. 5 Bifurcation diagrams of Poincaré points for increasing mean axial speed of the system with f1=0.05 
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(a) (b) 

Fig. 6 Bifurcation diagrams of Poincaré points for increasing mean axial speed of the system with f1=0.1 

 

  

(a) (b) 

  

(c) (d) 

Fig.7 Period-2 oscillation for the system of Fig. 6 at f0=1.36; (a), (b) time trace and phase-plane portrait of 

the q1 motion respectively; (c), (d) time trace and phase-plane portrait of the q2 motion respectively 
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(a) (b) 

  

(c) (d) 

  

(e) (f) 

Fig. 8 Chaotic oscillation for the system of Fig. 6 at f0=1.48; (a), (b) time trace and phase-plane portrait of 

the q1 motion; (c), (d) Poincare map and FFT of the q1 motion respectively; (e), (f) time trace and 

phase-plane portrait of the q2 motion respectively 
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(a) (b) 

Fig. 9 Bifurcation diagrams of Poincaré points for increasing mean axial speed of the system with f1=0.15 

 

 

Figs. 5, 6 and 9 shows the bifurcation diagrams of Poincare sections for amplitude of speed 

variations of f1=0.05, 0.1, and 0.15; in these figures the mean axial speed is chosen as the 

bifurcation parameter. The first two generalized coordinates are only presented for brevity while 

twelve nonlinear ordinary differential equations are solved numerically. The other dimensionless 

parameters for these figures are selected as: v1=33.526, vf=0.173, µ=0.04, α=1.5, γ=0.3, and xs=0.5.  

The bifurcation diagrams of the first generalized coordinates versus the mean axial speed for 

the case with f1=0.05 are given in Figs. 5(a) and 5(b). In Fig. 5(a), the mean axial speed is 

increased and shows a zero response until f0=1.136 where a non-zero response occurs. Although 

the motion resembles a period-doubling in the range of [1.136 1.480], there are in fact two 

coexisting attractors and the response repeatedly jumps from one attractor to the other as the mean 

axial speed is increased. The motion becomes quasiperiodic at f0=1.484, 1.488, 1.492 and periodic 

at f0=1.496. As f0 is increased a little, a sudden reduction occurs at f0=1.504 and the response 

changes phase. As the mean axial speed is increased further, a jump occurs at f0=1.788. This 

periodic motion continues until f0=2.000. 

The bifurcation diagram of the same system of Figs. 5(a) and 5(b), but with a higher value for 

the amplitude of the speed variations is shown in Figs. 6(a) and 6(b) -- the value for f1 is set to 0.1. 

As seen in this figure, due to increased amplitude of the speed variations, the system displays more 

interesting and complex dynamics involving period-2 and chaotic motions in different ranges of 

the mean axial speed. The phase-planes and time traces of the first generalized coordinates at 

f0=1.36 is shown in Fig. 7, illustrating a period-2 motion. Also, typical characteristics of chaotic 

oscillations at f0=1.480 is shown in Fig. 8 through (a), (b) the time trace and phase-plane portrait of 

the q1 motion, (c), (d) Poincare section, FFT of the q1 motion, and (e), (f) the time trace and 

phase-plane portrait of the q2 motion.  

Increasing f1 from 0.1 to 0.15in Figs. 6 and 9 is generated. Due to this increased amplitude of 

the speed variations, the range of the chaotic region becomes wider. Comparing the dynamics of 

the system in Figs. 5, 6 and 9, it is observed that there is always zero response in the bifurcation 

diagrams; this is an interesting feature of this parametrically excited system that even though in the 

presence of the harmonic excitation, the zero-response still exists. 
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4.2 The amplitude of the speed variations as the bifurcation parameter 
 
   In this section, the amplitude of the speed variations is varied as the bifurcation parameter 

when the mean axial speed is fixed to 1.0 and 1.2 in Figs. 10 and 12, respectively.   

As seen in Fig. 10(a), as the amplitude of the speed variations is increased, the response 

amplitude remains zero until f1= 0.087 where the motion becomes quasiperiodic. This 

quasiperiodic motion bridges to a periodic attractor, accompanied by a small jump in the response. 

There are two coexisting periodic attractors in the range of [0.088 0.356] and the response jumps 

from one to the other; the response is not period-2 in this range even though it looks like. As the 

amplitude of the speed variations is increased further, the system displays the following dynamics: 

 

 

  
(a) (b) 

Fig. 10 Bifurcation diagrams of Poincaré points for increasing mean axial speed of the system with f1=0.15 

 

  
(a) (b) 

Fig. 11 Period-3 oscillation for the system of Fig. 10 at f1=0.379; (a) phase-plane diagrams of the q1 

motion; (b) FFT of the q1 motion 
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(a) (b) 

Fig. 12. Bifurcation diagrams of Poincaré points for increasing excitation amplitude on the system with 

f0=1.2 

 

 

(i) periodic, period-3, and period-4 in the range [0.357 0.383]; (ii) period-4 in the range [0.384 

0.393]; (iii) quasiperiodic at f1=0.394; (iv) periodic, period-2, period-4, and period-6 in the interval 

[0.395 0.500], except at f1=0.472 where the motion is chaotic. Typical characteristics of period-3 

motion at f1=0.379 is shown in Fig. 11. 

Fig. 12 shows the bifurcation diagram of the same system of Fig. 10, but with a higher mean 

axial speed (i.e., f0=1.2). As seen in this figure, compared to the previous case, period-3 and 

period-4 motions occur at lower amplitudes of the axial speed variations. Furthermore, the 

non-zero solution emerges earlier.  

 

 

5. Conclusions 
 

 The nonlinear resonant response as well as global complex dynamics of a hinged-hinged 

axially accelerating beam additionally supported by a nonlinear spring-support has been 

investigated in this paper using two different numerical techniques. The equation of motion was 

derived using Hamilton’s principle and discretized via the Galerkin method, yielding a set of 

nonlinear ordinary differential equations. The equations were solved via the pseudo-arclength 

continuation technique for the system with sub-critical mean axial speed. Bifurcation diagrams of 

Poincare maps were constructed using direct time integration of discretized equations of motion.  

In connection with the frequency-response curves of the system, the results of this paper 

confirm the occurrence of the first resonance near twice the first linear natural frequency; this was 

predicted previously in the literature via analytical techniques such as the method of multiple 

timescales. In addition, results showed that there is always a trivial solution in the 

frequency-response of the system either possessing a three-to-one internal resonance or with no 

internal resonances between the first two modes. Investigation of the system dynamics showed that 

for both cases (i.e., with and without internal resonances) the period-doubling bifurcation exists. 

Apart from this bifurcation, the system with an internal resonance faces limit point and torus 
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bifurcations as well. Investigating the global dynamics of the system showed that the response 

involves periodic, period-n, and chaotic oscillations. 
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