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Abstract.  This paper introduces an improved shear deformation theory for analyzing the buckling behavior of 
functionally graded plates subjected to varying temperatures. The transverse shear strain functions employed satisfy 
the stress-free condition on the plate surfaces without requiring shear correction factors. The material properties and 
thermal expansion coefficient of the porous functionally graded plate are assumed temperature-dependent and exhibit 
continuous variation throughout the thickness, following a modified power-law distribution based on the volume 
fractions of the constituents. Moreover, the study considers the influence of porosity distribution on the buckling of 
the functionally graded plates. Thermal loads are assumed to have uniform, linear, and nonlinear distributions 
through the thickness. The obtained results, considering the effect of porosity distribution, are compared with 
alternative solutions available in the existing literature. Additionally, this study provides comprehensive discussions 
on the influence of various parameters, emphasizing the importance of accounting for the porosity distribution in the 
buckling analysis of functionally graded plates. 
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1. Introduction 
 

The emergence of Functionally Graded Materials (FGMs) has revolutionized the field of 
composites. Unlike traditional composite materials, FGMs offer a seamless and continuous 
variation between different materials, eliminating stress concentration and the risk of failure. 
Proposed in the early 1980s by Japanese scientists to address delamination in reusable rocket 
engines, FGMs allow tailored material gradation along preferred directions, resulting in distinct 
and desired properties. These advanced composites are highly versatile and well suited for various 
engineering applications, offering superior performance in challenging environments with varying 
thermal and mechanical conditions. FGMs represent a significant advancement, empowering 

engineers to design materials with enhanced resilience and efficiency (Tounsi et al. 2023, 
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HassaineDaouadji et al. 2021e, Fan et al. 2021, Radwan 2017, Wang et al. 2021, Abdelhak et al. 

2023, Bouakaz et al. 2014, Rabahi et al. 2019, Rabahi et al. 2023, Chergui et al. 2019, Hamrat et 

al. 2020, Ben Henni et al. 2021, Bensatallah et al. 2023, Haytham et al. 2023a, Haytham et al. 

2023b, Kablia et al. 2023, Kablia et al. 20022, Tounsi et al. 2008, Hassaine Daouadji 2017, 

Benferhat et al. 2018, Hassaine Daouadji et al. 2022, Rabia et al. 2019, Rabahi et al. 2022a, Tlidji 

et al. 2022, Hussein 2021, Bouiadjra et al. 2012). 

The exploration of the buckling behavior in Functionally Graded Material plates holds 

substantial importance within a wide range of industrial domains, spanning aerospace, civil 

engineering, and the fabrication of biomedical devices. Due to their exceptional properties, 

numerous researchers have dedicated their endeavors to the analysis of buckling in FGM 

materials. In their work, Yassir et al. (2021) introduced an advanced finite element model for 

analyzing the buckling and post-buckling behavior of functionally graded material plates. Their 

investigation encompassed varying load conditions and solicitations applied to FGM plates. Adnan 

et al. (2021) conducted a series of analyses to explore the buckling tendencies of thin plates made 

of Functionally Graded Material featuring diverse circular cutout configurations. The 

computational simulation employed the Finite Element (FE) software Abaqus. Ramu et al. (2014) 

delved into the buckling analysis of rectangular FGM plates using classical plate theory (CPT). 

They investigated uniaxial and biaxial compression loads, along with simply supported boundary 

conditions, on these plates. Souhit et al. (2021) examined the thermomechanical-buckling response 

of skewed functionally graded plates subjected to varying thermal loads. This study utilized the 

finite element method based on the Love-Kirchhoff assumptions (Rabahi et al. 2021b, Hassaine 

Daouadji 2013). Bouaza et al. (2009) explored thermal buckling analyses of S-FGM structures by 

employing a first order shear deformation theory. The thermal buckling behaviors were analyzed 

under uniform, linear, and sinusoidal temperature distributions across the material thickness 

(Benferhat et al. 2019, Rabahi et al. 2021a, Hassaine Daouadji et al. 2021d). Thinh et al. (2016) 

introduced a novel eight-unknown higher-order shear deformation theory to investigate the 

buckling and free vibration characteristics of functionally graded material plates. Their theory is 

rooted in a comprehensive twelve-unknown higher-order shear deformation theory that 

simultaneously ensures zero transverse shear stress at the upper and lower surfaces of the FG 

plates. SiddaReddy et al. (2013) presented analytical formulations and solutions for the buckling 

analysis of simply supported functionally gradedplates using a higher-order shear deformation 

theory (HSDT), all without imposing zero transverse shear stresses on the upper and lower plate 

surfaces. Thus, several researchers have studied this approach well (Hassaine Daouadji et al. 2019, 

Benferhat et al. 2021a, Rabahi et al. 2022b, Hassaine Daouadji et al. 2021b, Rabahi et al. 2020, 

Rabia et al. 2020, Hassaine Daouadji et al. 2020, Benferhat et al. 2021b). 

Research studies on the effect of porosity on the buckling of FGM plates and beams play a 

crucial role in advancing our understanding of the mechanical and thermal behaviors of these 

complex materials. Kumar et al. (2023) explored the buckling behavior of porous plates composed 

of functionally graded materials subjected to uniaxial and biaxial loading under diverse boundary 

conditions. In a similar vein, Chen et al. (2015) investigated the elastic buckling and static bending 

characteristics of shear deformable functionally graded porous beams, employing the Timoshenko 

beam theory. Moving forward, Zenkour et al. (2022) delved into the buckling response of 

functionally graded porous plates, utilizing a quasi-3D refined theory that accounts for thickness 

stretching effects. This comprehensive theory introduced three distinct models for FG porous 

plates: an isotropic FG porous plate, FG skins encompassing a homogeneous core, and an FG core 

accompanied by homogeneous skins. Addressing a related aspect, Bekki et al. (2021) analyzed the  
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Fig. 1 FGM plate in the global coordinate system 

 

 

influence of porosity on the buckling of functionally graded sandwich plates under thermal loading 

that extends throughout the thickness of the plate. Their investigation employed the four-variable 

refined plate theory and encompassed various types of functionally graded material sandwich 

plates, as well as diverse boundary conditions, to highlight the impact of transverse shear 

(Benferhat et al. 2023, Rabia et al. 2016, Hassaine Daouadji et al. 2021a, Hassaine Daouadji et al. 

2021c, Rabahi et al. 2021c, Rabahi et al. 2021d). 

From the above literature, it is found that the effect of distribution shape of porosity on the 

buckling of FGM plate subjected to varying temperatures has received few attentions. Hence, the 

present work has been done on the above limitations to bring the completeness of analysis on 

FGM plates. This study aims to develop analytical formulations and solutions for assessing the 

buckling behavior of functionally graded plates while considering the impact of porosity. The 

analysis employs a higher-order shear deformation theory (HSDT) that does not enforce zero 

transverse shear stress on the top and bottom surfaces of the plate, thereby eliminating the need for 

a shear correction factor. The material composition of the plate varies across its thickness, 

resulting in a unique distribution of porosity. By applying the principle of virtual work, the 

governing equations of the plate are derived. Closed-form solutions for FGPs are obtained using 

Navier’s technique and solving the eigenvalue equation. In order to validate the accuracy of the 

proposed theory in predicting the critical buckling loads of FG plates, the obtained results are 

compared with findings from previous research studies. With the accuracy of the FG plate results 

confirmed, the study proceeds to analyze how various factors influence the critical buckling loads. 

These factors include the shape of the porosity distribution, side-to-thickness ratios, aspect ratios, 

modulus ratios, and volume fraction exponent. 

 

 

2. Theoretical formulation 
 

2.1 Displacement field and strains 
 

Consider a plate with a total thickness represented as ℎ. This plate is fabricated using a material 

that demonstrates functional grading throughout the thickness. This material possesses uniform 

properties in all directions, while the grading exclusively occurs along the thickness dimension of 

the plate. The 𝑥𝑦 plane is taken to be the undeformed mid plane of the plate with the 𝑧 axis 
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positive upward from the mid plane (Fig. 1).  

The displacement field of this theory can be formulated as follows 

𝑢(𝑥, 𝑦, 𝑧, 𝑡) = 𝑢0(𝑥, 𝑦, 𝑡) − 𝑧
𝜕𝑤𝑏

𝜕𝑥
−

1

𝑛
(
2

ℎ
)
𝑛−1

𝑧𝑛
𝜕𝑤𝑠

𝜕𝑥
  

𝑣(𝑥, 𝑦, 𝑧, 𝑡) = 𝑣0(𝑥, 𝑦, 𝑡) − 𝑧
𝜕𝑤𝑏

𝜕𝑦
−

1

𝑛
(
2

ℎ
)
𝑛−1

𝑧𝑛
𝜕𝑤𝑠

𝜕𝑦
𝑛 = 3,5,7,9, . ..  

𝑤(𝑥, 𝑦, 𝑧, 𝑡) = 𝑤𝑏(𝑥, 𝑦, 𝑡) + 𝑤𝑠(𝑥, 𝑦, 𝑡) 

(1) 

The mid-plane displacements of the plate in the x and y directions are denoted as 𝑢0 and 𝑣0 

respectively. Meanwhile, 𝑤𝑏  represents the bending component, and 𝑤𝑠  signifies the shear 

component of transverse displacement. 

The equations describing the strain-displacement relationship, following the non-linear von 

Karman formulation, can be stated as follows 

{

𝜀𝑥
𝜀𝑦
𝛾𝑥𝑦

} = {

𝜀𝑥
0

𝜀𝑦
0

𝛾𝑥𝑦
0

} + 𝑧 {

𝑘𝑥
𝑏

𝑘𝑦
𝑏

𝑘𝑥𝑦
𝑏

} + 𝑓(𝑧) {

𝑘𝑥
𝑠

𝑘𝑦
𝑠

𝑘𝑥𝑦
𝑠
},                                              (2a) 

{
𝛾𝑦𝑧
𝛾𝑥𝑧
} = 𝑔(𝑧) {

𝛾𝑦𝑧
𝑠

𝛾𝑥𝑧
𝑠 },                                                            (2b) 

𝜀𝑧 = 0                                                                       
(2c) 

Where:    {

𝜀𝑥
0

𝜀𝑦
0

𝛾𝑥𝑦
0

} =

{
 
 

 
 

𝜕𝑢0

𝜕𝑥
+
1

2
(
𝜕𝑤𝑏

𝜕𝑥
+
𝜕𝑤𝑠

𝜕𝑥
)
2

𝜕𝑣0

𝜕𝑦
+
1

2
(
𝜕𝑤𝑏

𝜕𝑦
+
𝜕𝑤𝑠

𝜕𝑦
)
2

𝜕𝑢0

𝜕𝑦
+
𝜕𝑣0

𝜕𝑥
+ (

𝜕𝑤𝑏

𝜕𝑥
+
𝜕𝑤𝑠

𝜕𝑥
) (

𝜕𝑤𝑏

𝜕𝑦
+
𝜕𝑤𝑠

𝜕𝑦
)}
 
 

 
 

,                               (3a) 

{

𝑘𝑥
𝑏

𝑘𝑦
𝑏

𝑘𝑥𝑦
𝑏

} =

{
 
 

 
 −

𝜕2𝑤𝑏

𝜕𝑥2

−
𝜕2𝑤𝑏

𝜕𝑦2

−2
𝜕2𝑤𝑏

𝜕𝑥𝜕𝑦}
 
 

 
 

,                                                        (3b) 

{

𝑘𝑥
𝑠

𝑘𝑦
𝑠

𝑘𝑥𝑦
𝑠
} =

{
 
 

 
 −

𝜕2𝑤𝑠

𝜕𝑥2

−
𝜕2𝑤𝑠

𝜕𝑦2

−2
𝜕2𝑤𝑠

𝜕𝑥𝜕𝑦}
 
 

 
 

,                                                        (3c) 

{
𝛾𝑦𝑧
𝑠

𝛾𝑥𝑧
𝑠 } = {

𝜕𝑤𝑠

𝜕𝑦

𝜕𝑤𝑠

𝜕𝑥

},                                                             (3d) 

𝑓 =
𝑧𝑛(

2

ℎ
)
𝑛−1

𝑛
; 𝑔 = 1 −

𝑧𝑛(
2

ℎ
)
𝑛−1

𝑧
                                                   (3e) 
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2.2 Constitutive relations 
 

Analyze a functionally graded plate composed of a combination of ceramics and metals. This 

plate subjected a thermal load denoted as 𝑇(𝑥, 𝑦, 𝑧). It is assumed that the material properties of 

the functionally graded material (FGM) undergo changes across the thickness of the plate. 

The variation in material characteristics can be formulated as follows 

𝑃 = 𝑃𝑚 (𝑉𝑚 −
𝛽

2
) + 𝑃𝑐 (𝑉𝑐 −

𝛽

2
)                                                    (4a) 

 

Distribution shape 

of porosity 

The expression of the young’s modulus E(z) and the coefficient of thermal 

expansion (z) of each form of porosity distribution 

Homogeneous 

porosity 

distribution 

𝐸(𝑧) = (𝑒𝑐 − 𝑒𝑚) ∗ ((
𝑧

ℎ
+ 0.5))

𝑘

+ 𝑒𝑚 − (𝑒𝑐 + 𝑒𝑚) ∗
𝛽

2
                             (4b) 

𝛼(𝑧) = (𝛼𝑐 − 𝛼𝑚) ∗ ((
𝑧

ℎ
+ 0.5))

𝑘

+ 𝛼𝑚 − (𝛼𝑐 + 𝛼𝑚) ∗
𝛽

2
                            (4c) 

X  shape 

distribution of 

porosity 

𝐸(𝑧) = (𝑒𝑐 − 𝑒𝑚) ∗ ((
𝑧

ℎ
+ 0.5))

𝑘

+ 𝑒𝑚 − (𝑒𝑐 + 𝑒𝑚) ∗
𝛽

2
∗ 2

𝑧

ℎ
                     (4d) 

𝛼(𝑧) = (𝛼𝑐 − 𝛼𝑚) ∗ ((
𝑧

ℎ
+ 0.5))

𝑘

+ 𝛼𝑚 − (𝛼𝑐 + 𝛼𝑚) ∗
𝛽

2
∗ 2

𝑧

ℎ
                  (4e) 

O shape 

distribution of 

porosity 

𝐸(𝑧) = (𝑒𝑐 − 𝑒𝑚) ∗ ((
𝑧

ℎ
+ 0.5))

𝑘

+ 𝑒𝑚 − (𝑒𝑐 + 𝑒𝑚) ∗
𝛽

2
∗ (1 − 2 ∗

𝑧

ℎ
)       (4f) 

𝛼(𝑧) = (𝛼𝑐 − 𝛼𝑚) ∗ ((
𝑧

ℎ
+ 0.5))

𝑘

+ 𝛼𝑚 − (𝛼𝑐 + 𝛼𝑚) ∗
𝛽

2
∗ (1 − 2 ∗

𝑧

ℎ
)     (4g) 

V shape 

distribution of 

porosity 

𝐸(𝑧) = (𝑒𝑐 − 𝑒𝑚) ∗ ((
𝑧

ℎ
+ 0.5))

𝑘

+ 𝑒𝑚 − (𝑒𝑐 + 𝑒𝑚) ∗
𝛽

2
∗ (

1

2
+

𝑧

ℎ
)            (4h) 

𝛼(𝑧) = (𝛼𝑐 − 𝛼𝑚) ∗ ((
𝑧

ℎ
+ 0.5))

𝑘

+ 𝛼𝑚 − (𝛼𝑐 + 𝛼𝑚) ∗
𝛽

2
∗ (

1

2
+

𝑧

ℎ
)           (4i) 

Ʌ  shape 

distribution of 

porosity 

𝐸(𝑧) = (𝑒𝑐 − 𝑒𝑚) ∗ ((
𝑧

ℎ
+ 0.5))

𝑘

+ 𝑒𝑚 − (𝑒𝑐 + 𝑒𝑚) ∗
𝛽

2
∗ (

1

2
−

𝑧

ℎ
)             (4j) 

𝛼(𝑧) = (𝛼𝑐 − 𝛼𝑚) ∗ ((
𝑧

ℎ
+ 0.5))

𝑘

+ 𝛼𝑚 − (𝛼𝑐 + 𝛼𝑚) ∗
𝛽

2
∗ (

1

2
−

𝑧

ℎ
)        (4k) 

Where, : volume fraction of porosity  

𝑃 symbolizes a general material property, such as modulus, while 𝑃𝑡  and 𝑃𝑏 represent the 

respective properties of the upper and lower surfaces of the plate. Additionally, 𝑉𝑡   in Eq. (4) 

signifies the volume fraction of the upper surface constituent, which adheres to a straightforward 

power-law function 

𝑉𝑡 = (
𝑧

ℎ
+
1

2
)
𝑘

                                                                   

(5) 

Here, k (0 ≤ 𝑘 ≤ ∞)serves as a parameter influencing the material variation pattern across the 
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thickness. In this context, we consider that the moduli 𝐸 , 𝐺 , and the coefficient of thermal 

expansion 𝛼 vary as defined in Eq. (4), while the Poisson’s ratio 𝜈 is held constant. 

The linear relationships governing the constitutive behavior are as follows 

{

𝜎𝑥
𝜎𝑦
𝜏𝑥𝑦

} = [

𝑄11 𝑄12 0
𝑄12 𝑄22 0
0 0 𝑄66

] {

𝜀𝑥 − 𝛼𝑇
𝜀𝑦 − 𝛼𝑇
𝛾𝑥𝑦

}

                                              

(6a)

 

and {
𝜏𝑦𝑧
𝜏𝑧𝑥
} = [

𝑄44 0
0 𝑄55

] {
𝛾𝑦𝑧
𝛾𝑧𝑥
}

                                                  

(6b) 

Where, (𝜎𝑥 , 𝜎𝑦 , 𝜏𝑥𝑦, 𝜏𝑥𝑧, 𝜏𝑦𝑧) and (𝜀𝑥 , 𝜀𝑦, 𝛾𝑥𝑦 , 𝛾𝑥𝑧 , 𝛾𝑦𝑧)  represent the stress and strain 

components respectively. By utilizing the material properties described in Eq. (4), the stiffness 

coefficients denoted as 𝑄𝑖𝑗 can be formulated as 

𝑄11 = 𝑄22 =
𝐸(𝑧)

1−𝜈2
,
                                                            

(7a) 

𝑄12 =
𝜈 𝐸(𝑧)

1−𝜈2
,
                                                                

(7b) 

𝑄44 = 𝑄55 = 𝑄66 =
𝐸(𝑧)

2(1+𝜈)
                                                      

(7c) 

 

2.3 Stability equations 
 

The total potential energy of the functionally graded plate can be expressed as follows 

𝑈 =
1

2
∫∫∫[𝜎𝑥(𝜀𝑥 − 𝛼𝑇) + 𝜎𝑦(𝜀𝑦 − 𝛼𝑇) + 𝜏𝑥𝑦𝛾𝑥𝑦 + 𝜏𝑦𝑧𝛾𝑦𝑧 + 𝜏𝑥𝑧𝛾𝑥𝑧] 𝑑𝑥𝑑𝑦𝑑𝑧

          
(8) 

The principle of virtual work applicable to the current problem can be stated in the following 

manner 

∫∫ [
𝑁𝑥𝛿𝜀𝑥

0 + 𝑁𝑦𝛿𝜀𝑦
0 + 𝑁𝑥𝑦𝛿𝛾𝑥𝑦

0 +𝑀𝑥
𝑏𝛿𝑘𝑥

𝑏 +𝑀𝑦
𝑏𝛿𝑘𝑦

𝑏 +𝑀𝑥𝑦
𝑏 𝛿𝑘𝑥𝑦

𝑏 +𝑀𝑥
𝑠𝛿𝑘𝑥

𝑠

+𝑀𝑦
𝑠𝛿𝑘𝑦

𝑠 +𝑀𝑥𝑦
𝑠 𝛿𝑘𝑥𝑦

𝑠 + 𝑆𝑦𝑧
𝑠 𝛿𝛾𝑦𝑧

𝑠 + 𝑆𝑥𝑧
𝑠 𝛿𝛾𝑥𝑧

𝑠 ] 𝑑𝑥𝑑𝑦 = 0

    

(9) 

Where 

{

𝑁𝑥 𝑁𝑦 𝑁𝑥𝑦

𝑀𝑥
𝑏 𝑀𝑦

𝑏 𝑀𝑥𝑦
𝑏

𝑀𝑥
𝑠 𝑀𝑦

𝑠 𝑀𝑥𝑦
𝑠

} = ∫ (𝜎𝑥 , 𝜎𝑦 , 𝜏𝑥𝑦)
ℎ/2

−ℎ/2
{
1
𝑧
𝑓(𝑧)

} 𝑑𝑧

                           

(10a) 

(𝑆𝑥𝑧
𝑠 , 𝑆𝑦𝑧

𝑠 ) = ∫ (𝜏𝑥𝑧, 𝜏𝑦𝑧)
ℎ/2

−ℎ/2
𝑔(𝑧)𝑑𝑧

                                     

(10b) 

By substituting Eq. (6) into Eq. (10), the stress resultants of the functionally graded plate can be 

connected to the total strains through the following relationship 

{
𝑁
𝑀𝑏

𝑀𝑠
} = [

𝐴 𝐵 𝐵𝑠

𝐵 𝐷 𝐷𝑠

𝐵𝑠 𝐷𝑠 𝐻𝑠
] {
𝜀
𝑘𝑏

𝑘𝑠
} − {

𝑁𝑇

𝑀𝑏𝑇

𝑀𝑠𝑇

},                                    (11a) 

𝑆 = 𝐴𝑠𝛾                                                           (11b) 

Where 
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𝑁 = {𝑁𝑥 , 𝑁𝑦, 𝑁𝑥𝑦}
𝑡
,   ,M,M,MM

tb
xy

b
y

b
x

b = 𝑀𝑠 = {𝑀𝑥
𝑠 , 𝑀𝑦

𝑠 , 𝑀𝑥𝑦
𝑠 }

𝑡
,
                

(12a) 

𝑁𝑇 = {𝑁𝑥
𝑇 , 𝑁𝑦

𝑇 , 0}
𝑡
,   ,0,M,MM

tbT
y

bT
x

bT = 𝑀𝑠𝑇 = {𝑀𝑥
𝑠𝑇 , 𝑀𝑦

𝑠𝑇 , 0}
𝑡
,
                 

(12b) 

𝜀 = {𝜀𝑥
0, 𝜀𝑦

0, 𝛾𝑥𝑦
0 }

𝑡
,   ,k,k,kk

tb
xy

b
y

b
x

b = 𝑘𝑠 = {𝑘𝑥
𝑠 , 𝑘𝑦

𝑠 , 𝑘𝑥𝑦
𝑠 }

𝑡
,
                        

(12c) 

𝐴 = [

𝐴11 𝐴12 0
𝐴12 𝐴22 0
0 0 𝐴66

], 𝐵 = [

𝐵11 𝐵12 0
𝐵12 𝐵22 0
0 0 𝐵66

], 𝐷 = [

𝐷11 𝐷12 0
𝐷12 𝐷22 0
0 0 𝐷66

]

             

(12d) 

𝐵𝑠 = [

𝐵11
𝑠 𝐵12

𝑠 0

𝐵12
𝑠 𝐵22

𝑠 0

0 0 𝐵66
𝑠
], 𝐷𝑠 = [

𝐷11
𝑠 𝐷12

𝑠 0

𝐷12
𝑠 𝐷22

𝑠 0

0 0 𝐷66
𝑠
], 𝐻𝑠 = [

𝐻11
𝑠 𝐻12

𝑠 0

𝐻12
𝑠 𝐻22

𝑠 0

0 0 𝐻66
𝑠
]

          

(12e) 

𝑆 = {𝑆𝑥𝑧
𝑠 , 𝑆𝑦𝑧

𝑠 }
𝑡
,   ,,

ts

yz

s

xz  = 𝐴𝑠 = [
𝐴44
𝑠 0

0 𝐴55
𝑠 ]

                                 

(12f) 

Where 𝐴𝑖𝑗, 𝐵𝑖𝑗, etc., represent the plate stiffness, defined as 

{
𝐴11
𝐴12
𝐴66

𝐵11
𝐵12
𝐵66

𝐷11
𝐷12
𝐷66

𝐵11
𝑠

𝐵12
𝑠

𝐵66
𝑠

𝐷11
𝑠

𝐷12
𝑠

𝐷66
𝑠

𝐻11
𝑠

𝐻12
𝑠

𝐻66
𝑠
} = ∫ (1, 𝑧, 𝑧2, 𝑓(𝑧), 𝑧𝑓(𝑧), 𝑓2(𝑧)) {

1
𝜈(𝑛)

1−𝜈(𝑛)

2

}𝑑𝑧
ℎ/2

−ℎ/2

             

(13a) 

And 

(𝐴22, 𝐵22, 𝐷22, 𝐵22
𝑠 , 𝐷22

𝑠 , 𝐻22
𝑠 ) = (𝐴11, 𝐵11, 𝐷11, 𝐵11

𝑠 , 𝐷11
𝑠 , 𝐻11

𝑠 )
                        (13b) 

𝐴44
𝑠 = 𝐴55

𝑠 = ∫
𝐸(𝑧)

2(1−𝜈)
[𝑔(𝑧)]2𝑑

ℎ/2

−ℎ/2
𝑧

                                           

(13c) 

The stress and moment resultants, denoted as 𝑁𝑥
𝑇 = 𝑁𝑦

𝑇 , 𝑀𝑥
𝑏𝑇 = 𝑀𝑦

𝑏𝑇and 𝑀𝑥
𝑠𝑇 = 𝑀𝑦

𝑠𝑇, resulting 

from thermal loading are defined as follows 

{

𝑁𝑥
𝑇

𝑀𝑥
𝑏𝑇

𝑀𝑥
𝑠𝑇

} = ∫
𝐸(𝑧)

1−𝜈
𝛼(𝑧)𝑇 {

1
𝑧
𝑓(𝑧)

} 𝑑𝑧
ℎ/2

−ℎ/2

                                          

(14) 

The stability equations for the plate can be deduced through the criterion of adjacent 

equilibrium. Let’s consider that the equilibrium condition of the functionally graded plate under 

thermal loads is described in relation to the displacement components (𝑢0
0, 𝑣0

0, 𝑤𝑏
0, 𝑤𝑠

0) . The 

displacement components of a neighboring stable state deviate by (𝑢0
1, 𝑣0

1, 𝑤𝑏
1, 𝑤𝑠

1)  from the 

equilibrium position. Consequently, the complete displacements of this neighboring state are given 

by 

,uuu 1
0

0
00 += 𝑣0 = 𝑣0

0 + 𝑣0
1, ,www 1

b
0
bb += 𝑤𝑠 = 𝑤𝑠

0 + 𝑤𝑠
1
                         (15) 

The superscript ‘1’ denotes the stable state, and the superscript ‘0’ represents the equilibrium 

condition. 

By inserting Eqs. (2) and (15) into Eq. (9), and subsequently integrating by parts and then 

setting the coefficients of 𝛿𝑢0
1, 𝛿𝑣0

1, 𝛿𝑤𝑏
1, 𝛿𝑤𝑠

1,  to zero independently, the governing stability 
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equations are derived for the theories involving shear deformation in the plate. These equations 

can be expressed as follows 
𝜕𝑁𝑥

1

𝜕𝑥
+
𝜕𝑁𝑥𝑦

1

𝜕𝑦
= 0  

 
𝜕𝑁𝑥𝑦

1

𝜕𝑥
+
𝜕𝑁𝑦

1

𝜕𝑦
= 0  

  
𝜕2𝑀𝑥

𝑏1

𝜕𝑥2
+ 2

𝜕2𝑀𝑥𝑦
𝑏1

𝜕𝑥𝜕𝑦
+
𝜕2𝑀𝑦

𝑏1

𝜕𝑦2
+ 𝑁 = 0  

𝜕2𝑀𝑥
𝑠1

𝜕𝑥2
+ 2

𝜕2𝑀𝑥𝑦
𝑠1

𝜕𝑥𝜕𝑦
+
𝜕2𝑀𝑦

𝑠1

𝜕𝑦2
+
𝜕𝑆𝑥𝑧

𝑠1

𝜕𝑥
+
𝜕𝑆𝑦𝑧

𝑠1

𝜕𝑦
+ 𝑁 = 0

                                  

(16) 

With 

𝑁 = [𝑁𝑥
0 𝜕

2(𝑤𝑏
1+𝑤𝑠

1)

𝜕𝑥2
+ 𝑁𝑦

0 𝜕
2(𝑤𝑏

1+𝑤𝑠
1)

𝜕𝑦2
+ 2𝑁𝑥𝑦

0 𝜕2(𝑤𝑏
1+𝑤𝑠

1)

𝜕𝑥𝜕𝑦
]

                           

(17) 

The terms 𝑁𝑥
0 and 𝑁𝑦

0 represent the pre-buckling force resultants, which are determined as 

𝑁𝑥
0 = 𝑁𝑦

0 = −∫
𝛼(𝑧)𝐸(𝑧)𝑇

1−𝜈

ℎ/2

−ℎ/2
𝑑𝑧.

                                             

(18) 

 

 

3. Exact solutıon for a sımply-supported FGM plate 
 

Rectangular plates are typically categorized based on the type of support employed. In this 

context, our focus lies on obtaining the precise solution of Eq. (16) for a simply supported 

functionally graded (FG) plate. The subsequent boundary conditions are enforced at the lateral 

edges for the current four-variable refined plate theory 

𝑣0
1 = 𝑤𝑏

1 = 𝑤𝑠
1 =

𝜕𝑤𝑠
1

𝜕𝑦
= 𝑁𝑥

1 = 𝑀𝑥
𝑏1 = 𝑀𝑥

𝑠1 = 0at𝑥 = 0, 𝑎,                           (19a) 

𝑢0
1 = 𝑤𝑏

1 = 𝑤𝑠
1 =

𝜕𝑤𝑠
1

𝜕𝑥
= 𝑁𝑦

1 = 𝑀𝑦
𝑏1 = 𝑀𝑦

𝑠1 = 0at𝑦 = 0, 𝑏.                          (19b) 

The subsequent approximate solution is observed to fulfill both the differential equation and the 

specified boundary conditions 

{
 
 

 
 𝑢0

1

𝑣0
1

𝑤𝑏
1

𝑤𝑠
1
}
 
 

 
 

= ∑ ∑

{
 
 

 
 𝑈𝑚𝑛

1 𝑐𝑜𝑠(𝜆𝑥) 𝑠𝑖𝑛(𝜇𝑦)

𝑉𝑚𝑛
1 𝑠𝑖𝑛(𝜆𝑥) 𝑐𝑜𝑠(𝜇𝑦)

𝑊𝑏𝑚𝑛
1 𝑠𝑖𝑛(𝜆𝑥) 𝑠𝑖𝑛(𝜇𝑦)

𝑊𝑠𝑚𝑛
1 𝑠𝑖𝑛(𝜆𝑥) 𝑠𝑖𝑛(𝜇𝑦)}

 
 

 
 

∞
𝑛=1

∞
𝑚=1

                                    

(20) 

Where 𝑈𝑚𝑛
1 , ,1

mnV 𝑊𝑏𝑚𝑛
1  and 𝑊𝑠𝑚𝑛

1  are arbitrary parameters to be determined, 𝜆 = 𝑚𝜋/𝑎 and 

𝜇 = 𝑛𝜋/𝑏 and 𝑚 and 𝑛 are mode numbers. Substituting Eq. (20) into Eq. (16), one obtains 

         
[𝐾]{𝛥} = {𝑃}                                                            (21) 

Where {𝛥} denotes the column 

   {𝛥} = {𝑈𝑚𝑛
1 , 𝑉𝑚𝑛

1 ,𝑊𝑏𝑚𝑛
1 ,𝑊𝑠𝑚𝑛

1 }
𝑡

                                             
(22) 

And [𝐾] is the symmetric matrix given by 
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[𝐾] = [

𝑎11 𝑎12 𝑎13 𝑎14
𝑎12 𝑎22 𝑎23 𝑎24
𝑎13 𝑎23 𝑎33 𝑎34
𝑎14 𝑎24 𝑎34 𝑎44

]

                                                 

(23) 

In order to obtain a nontrivial solution, the determinant of the coefficient matrix in Eq. (21) 

must equate to zero. This condition yields the thermal buckling load. 

 

3.1 Buckling of FG plates under uniform temperature rise 
 

The initial temperature of the plate is denoted as  𝑇𝑖 . The temperature is then uniformly 

elevated to a final value 𝑇𝑓 , at which point the plate undergoes buckling. This change in 

temperature is represented as 𝛥𝑇 = 𝑇𝑓 − 𝑇𝑖. 

 

3.2 Buckling of FG plates subjected to graded temperature change across the 
thickness 

 

It is assumed that the temperature at the upper surface is represented as 𝑇𝑡, and the temperature 

changes through the thickness in accordance with a power law distribution, reaching the lower 

surface temperature 𝑇𝑏 at the point of buckling. In this context, the temperature gradient across the 

thickness is formulated as 

𝑇(𝑧) = 𝛥𝑇 (
𝑧

ℎ
+
1

2
)
𝛾
+ 𝑇𝑡

                                                      

(24) 

Where the buckling temperature difference 𝛥𝑇 = 𝑇𝑡 − 𝑇𝑏  and 𝛾 is the temperature exponent 
(0 ≺ 𝛾 ≺ ∞). Note that the value of 𝛾 equal to unity represents a linear temperature change across 

the thickness. While the value of 𝛾 excluding unity represents a non-linear temperature change 

through-the-thickness. 

Where, 𝛥𝑇 = 𝑇𝑡 − 𝑇𝑏  signifies the temperature difference at buckling, and 𝛾  represents the 

temperature exponent. It’s noteworthy that a value of 𝛾  equal to unity indicates a linear 

temperature variation across the thickness. Conversely, a value of 𝛾 different from unity indicates a 

non-linear temperature change through the thickness. 

 

 

4. Results 
 

This research presents numerical results that illustrate the impact of temperature loads and 

different porosity distribution shapes on the critical loads of functionally graded plates under 

various thermal conditions. The analysis is conducted using the refined higher-order shear 

deformation plate theory. The material composition chosen for this study consists of a mixture of 

alumina (Al2O3) and aluminum (Al). The Young’s modulus for these materials is listed below: 

𝐸𝑚 = 70 GPa, 𝜌𝑚 = 2702 kg/m3( “𝑚”  represents metal phase Al), 

𝐸𝑐 = 380 GPa, 𝜌𝑐 = 3800 kg/m
3( c represents ceramic phase: Al2O3), 

Poisson ratio 𝜈𝑚 = 𝜈𝑐=0.3. 

Tables 1 and 2 provide a comprehensive analysis of the critical buckling load of an FGM plate 

subjected to uniform thermal loading. The power-law index is systematically varied, ranging from  
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Table 1 Effect of uniform porosity distribution on the critical load under uniform temperature variation of an 

FGM plate for different values of the power index and the a/b ratio (a/h=100, n=3) 

k Theories 
𝑇𝑐𝑟 

a/b=1 a/b=2 a/b=3 a/b=5 

0 

Tounsi (2020) β=0 17.08 42.68 85.25 220.67 

Abdelhak (2015) β=0 17.0895 42.6876 85.2551 220.6706 

Present 
β=0.1 21.5075 53.7225 107.2939 277.7147 

β=0.2 29.0051 72.4514 144.6991 374.5327 

1 

Tounsi (2020) β=0 7.94 19.83 39.62 102.63 

Abdelhak (2015) β=0 7.9400 19.8359 39.6248 102.6356 

Present 
β=0.1 8.7063 21.7510 43.4528 112.5694 

β=0.2 9.5975 23.9784 47.9061 124.1350 

5 

Tounsi (2020) β=0 7.26 18.13 36.20 93.60 

Abdelhak (2015) β=0 7.2607 18.1327 36.2025 93.6070 

Present 
β=0.1 7.6555 19.1193 38.1736 98.7150 

β=0.2 7.4320 18.5630 37.0699 95.9169 

10 

Tounsi (2020) β=0 7.46 18.63 37.20 96.12 

Abdelhak (2015) β=0 7.4634 18.6367 37.2006 96.1214 

Present 
β=0.1 8.2195 20.5231 40.9614 105.8006 

β=0.2 8.6722 21.6520 43.2096 111.5673 

 
Table 2 Effect of uniform porosity distribution on the critical load under uniform temperature variation of an 

FGM plate for different values of the power index and the a/h ratio (n=3) 

k Theories 
𝑇𝑐𝑟 

a/h=10 a/h=20 a/h=40 a/h=60 

0 

Tounsi (2020) β=0 1618.68 421.53 106.49 47.42 

Mahmoud et al. (2017) β=0 1618.75 421.54 / / 

Abdelhak (2015) β=0 1618.682 421.535 106.494 47.423 

Refrafi (2020) β=0 1594.16 396.57 / / 

Present 

β=0 1618.682 421.535 106.494 47.423 

β=0.1 2037.117 530.504 134.023 59.682 

β=0.2 2747.304 715.450 180.747 80.489 

1 

Tounsi (2020) β=0 758.39 196.26 49.50 22.03 

Mahmoud et al. (2017) β=0 758.42 196.27 / / 

Abdelhak (2015) β=0 758.396 196.265 49.502 49.502 

Refrafi (2020) β=0 733.58 171.28 / / 

Present 

β=0 758.396 196.265 49.502 22.037 

β=0.1 833.237 215.314 54.285 24.165 

β=0.2 921.074 237.518 59.851 26.640 

5 

Tounsi (2020) β=0 679.31 178.53 45.21 20.14 

Mahmoud et al. (2017) β=0 679.72 178.56 / / 

Abdelhak (2015) β=0 679.3104 178.535 45.214 20.144 

Refrafi (2020) β=0 653.77 153.50 / / 

Present 

β=0 679.3104 178.535 45.214 20.144 

β=0.1 717.2268215 188.310 47.677 21.240 

β=0.2 701.1042513 183.132 46.302 20.622 
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Table 2 Continued 

10 

Tounsi (2020) β=0 692.69 183.14 46.45 20.70 

Mahmoud et al. (2017) β=0 692.96 183.16 / / 

Abdelhak (2015) β=0 692.695 183.144 46.455 20.703 

Refrafi (2020) β=0 667.57 158.14 / / 

Present 

β=0 692.695 183.144 46.455 20.703 

β=0.1 759.669 201.479 51.149 22.798 

β=0.2 798.197 212.348 53.953 24.052 

 
Table 3 Effect of different forms of porosity distributions on the critical load of a square FGM plate under 

uniform temperature variation (a/h=10, k=5, a/b=1) 

 Porosity 

𝑇𝑐𝑟 

Distribution shape of porosity 

Uniform Distribution O Distribution V Distribution Ʌ Distribution X Distribution 

n=3 

β=0 679,3104 679,3104 679,3104 679,3104 679,3104 

β=0.1 717,2268 575,8735 744,5300 650,1290 742,1081 

β=0.2 701,1043 93,3162 823,8759 575,8735 782,3254 

n=5 

β=0 682,0146 682,0146 682,0146 682,0146 682,0146 

β=0.1 720,6190 577,9548 747,9908 652,7078 745,3811 

β=0.2 704,9511 93,2501 828,4844 577,9548 786,0169 

n=7 

β=0 684,1093 684,1093 684,1093 684,1093 684,1093 

β=0.1 723,0714 579,4928 750,5764 654,6541 747,9038 

β=0.2 707,4836 93,2316 831,7854 579,4928 788,8582 

n=9 

β=0 685,5861 685,5861 685,5861 685,5861 685,5861 

β=0.1 724,7623 580,5619 752,3784 656,0152 749,6794 

β=0.2 709,1732 93,2275 834,0538 580,5619 790,8576 

 
Table 4 Effect of different forms of porosity distribution on the critical load Tcr of a square plate under three 

types of temperature variation (a/h=10, k=5, n=3) 

Distribution shape of 

porosity 
Porosity 

𝑇𝑐𝑟 

TemperatureUniform TemperatureLinear Temperature nonLinear 

Uniform Distribution 

β=0 679,3104 1159,9571 1595,4122 

β=0.1 717,2268 1170,4545 1575,1300 

β=0.2 701,1043 1056,1555 1372,9721 

O-Distribution 

β=0 679,3104 1159,9571 1595,4122 

β=0.1 575,8735 855,2427 1113,9740 

β=0.2 93,3162 110,0448 134,7991 

V-Distribution 

β=0 679,3104 1159,9571 1595,4122 

β=0.1 744,5300 1307,5459 1814,0381 

β=0.2 823,8759 1498,8965 2101,9707 

Ʌ-Distribution 

β=0 679,3104 1159,9571 1595,4122 

β=0.1 650,1290 1040,4240 1393,7500 

β=0.2 575,8735 855,2427 1113,9740 

X-Distribution 

β=0 679,3104 1159,9571 1595,4122 

β=0.1 742,1081 1387,4803 1979,8573 

β=0.2 782,3254 1615,9818 2410,6365 
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Fig. 2 Effect of porosity distribution shape on the critical load as a function of the power law index, a/b and 

a/h ratios for different porosity shapes under a uniform temperature variation (𝑘 = 5, a/b=1, a/h=10, β=0.2) 

 

 

k=0 to 10, allowing for a thorough investigation of its influence. Additionally, the tables present 

the impact of the a/b and a/h ratios on the critical buckling load. The results clearly demonstrate a 

notable trend: an increasing a/b ratio leads to an enhanced critical buckling load. This finding 

underscores the importance of considering the geometric aspect ratio in optimizing the structural 

performance of FGM plates. However, it should be noted that as the FGM plate becomes thinner, 

the critical buckling load decreases. This observation emphasizes the need to carefully assess and 

balance the trade-off between plate thickness and buckling behavior when designing FGM 

structures. 

The effect of variation in the pore distribution shape on the critical buckling load of a porous 

FGM plate for different values of n and different types of temperature loading is shown in Tables 3 

and 4, respectively. The following parameters are considered: a/b=1, a/h=10, and k=5. The 

volumetric fraction of porosity is set as follows: β=0, 0.1, and 0.2. From these results, it can be 

concluded that the variation in pore distribution shape has a significant effect on the critical 

buckling load. It can also be noted that a non-linear variation in temperature has a greater effect on 

the critical load compared to other types of variation. 

Fig. 2 present the effect of porosity distribution shape on the critical load as a function of the 

power law index, a/b and a/h ratios for different porosity shapes under a uniform temperature 

variation. The volume fraction of porosity is taken β=0.2. Through this figure, it can be seen that 

the variation in the shape of the porosity distribution significantly influences the critical buckling 

load. The influence of the porosity distribution shape becomes more pronounced with increasing 

power index k and a/b ratio. However, it diminishes as the thickness ratio a/h increases. 
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Fig. 3 Effect of porosity distribution shape on the critical load as a function of the power law index, a/b and 

a/h ratios for different porosity shapes under a linear temperature variation (𝑘 = 5, a/b=1, a/h=10, β=0.2) 

 

 

Figs. 3 and 4 present analyses on the impact of porosity distribution shape and thermal 

variations on the critical load of a Functionally Graded Material plate. 

In Fig. 3, the research delves into the impact of porosity distribution shape on the critical load 

of the FGM plate, specifically under the influence of linear thermal loading. The analysis 

considers variations in the power index, as well as the ratios of a/b and a/h, while keeping the 

porosity ratio constant at a value of 0.2. The results of this analysis suggest that the porosity 

distribution has a notable influence on the behavior of the FGM plate under critical buckling 

conditions, especially when subjected to linear thermal loading. Variations in the power index, a/b 

ratio, and a/h ratio lead to significant fluctuations in the critical buckling load, highlighting the 

importance of considering the porosity distribution to ensure structural stability of the FGM plate 

under different scenarios. In Fig. 4, another analysis is conducted by introducing a non-linear 

thermal distribution. The results show that, in this case, the critical load becomes even more 

significant. This underscores the crucial importance of considering variations in the thermal 

distribution to accurately assess the critical buckling load of the FGM plate in real-world 

applications. By combining the information from both figures, a comprehensive understanding of 

the factors influencing the stability of the FGM plate under varying critical and thermal loads is 

obtained. 
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Fig. 4 Effect of porosity distribution shape on the critical load as a function of the power law index, a/b and 

a/h ratios for different porosity shapes under a non-linear temperature variation (𝑘 = 5,  a/b=1, a/h=10, 

β=0.2) 

 

 

5. Conclusions 
 

The thermal buckling behavior of FGM plates under various thermal loadings has been 

investigated in this study, employing a refined shear deformation plate theory. The material 

properties of the FGM exhibit variation along the thickness according to a modified power law 

formulation based on the volume fractions of the constituents. Additionally, a comprehensive 

parametric analysis of critical loading is conducted, considering factors such as power-law 

indexes, thickness ratios, aspect ratios, and parameters related to the distribution shape of 

porosity.This analysis highlights the following results on the influence of the thermal load: 

1. The numerical results demonstrate that increasing the ratio a/h leads to a reduction in the 

critical load. Moreover, porous FG plates exhibit higher critical loads.  

2. The findings confirm that the variation in the distribution shape of porosity has a significant 

impact on the critical load of the FGM plates. 

3. Variations in power index, a/b ratio, and a/h ratio result in significant fluctuations in critical 

buckling load, highlighting the importance of considering porosity distribution to ensure 

structural stability of the FGM plate, under linear and non-linear thermal loading 

4. The results obtained confirm that the variation in the shape of porosity distribution has a 
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significant impact on the critical load of FGM plates. 

5. Finally, it is very important to emphasize the crucial importance of taking into account 

variations in thermal distribution to accurately evaluate the critical buckling load of the FGM 

plate in real applications. By combining the information from the two figures, a comprehensive 

understanding of the factors influencing the stability of the FGM plate under various critical 

and thermal loads is obtained. 
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