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Abstract. In this paper, we will analyse the thermo-elastic behavior of the plate element of a structure arranged in a
climatically aggressive environment (extreme temperature), we use a refined four-variable thick plate theory to take
the shear effect into consideration, the proposed theory less computationally expensive and more accurate so that it
incorporates the shear effect into the formulation. The plate is assumed to be simply supported on its four edges, so
exact (closed-form) solutions are found according to the Navier expansion, and the governing stability equations and
associated boundary conditions of the problem are obtained via the virtual works principle. The plate studied is made
of laminated composite materials, so a parametric study is needed to see the effect of different types of parameters
and coupling on the critical temperature value causing thermo-elastic instability of the plate and also on the natural
frequency of free vibration, as well as for other parameters such as anisotropy, slendemess and aspect ratio of the
plate and finally the lamination angle. Numerical results are obtained for specially orthotropic and antisymmetrical
plates and are compared with those obtained by other theories in the literature to validate the analysis approach used.

Keywords: buckling; composite material; free vibration; instability; laminated plate; Navier series; thermal
load

1. Introduction

Industrial technological developments, especially in the field of material construction, have
been implemented to have new generation materials to overcome limitations in use and meet
contemporary challenges in the field of industry, such as space structures for example. For this
purpose, composite materials have been introduced for the fabrication of smart laminated
composite structures, which are both strong and lightweight as presented by Eswara and Wanhill
(2017), Randall and Brian (2012). If these structures are arranged in a climatically aggressive
environment (extreme temperature), then, thermal instability is the undesirable phenomenon for
these structures, this phenomenon has long been attracting more attention from the researchers
Leissa (1987), Majeed and Sadiq (2022).
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1.1 Review of the literature

By consulting the literature, the elastic instability or in vibration, is a subject that was treated by
researchers in multitudes situations and by the inclusion of different parameters, geometric related
to the geometry of the plate or the effect of the distribution of the properties of the materials
constituting this plate, where we found studies of the bonds at the boundary of the plate in relation
with the instability of the plate. JEYARAJ (2013), Shinde et al. (2013), SHINDE et al. (2013),
Sayyad et al. (2014) have dealt with the thermal effect on the dynamic behaviour and elastic
instability of isotropic plates, the analysis of the instability of laminated plates made of composite
materials in a thermal environment is a subject dealt with by Wen-Chen and Yi-Chen (1989),
Also, the stability analysis of a symmetric laminated composite plate has been done by Owhadi
and Shariat (2009) and many other researchers have done the same type of work, Ounis et al.
(2014), Subrata et al. (2015), Sayyad et al. (2016), Yusuf and Seref (2018), Madenci et al. (2020),
Yang et al. (2020), Farah et al. (2020). Sun (2021) investigated the buckling and vibration
performance of a composite laminated plate for elastic connections, Javier Gutiérrez and Chiara
(2021) analyse the thermal buckling and mode hopping of metal plates while Rostamijavanani et
al. (2020) perform thermo-elastic analysis of memory fibre reinforced laminated composite plates
and many other studies of similar nature like Bouazza et al. (2016), Patro et al. (2018), Hammed
and Majeed (2019), Farzad_et al. (2019), Foroutan and Ahmadi (2019). The analysis of thermal
instability of functionally graded plates is a topic that was analyzed by Tung (2015), Rasid and
Yahaya (2014), Zenkour and Sobhy (2010), Trabelsi et al. (2020), Sobhy (2016). Even beams are
analysed with the same principles, Zhao et al. (2020) presented a thermo-elastic analysis of forced
vibrations of a beam, Kobayashi and Sonoda (1991) use a power series expansion method to study
the free vibration and buckling of an isotropic plate of conical shape.

2. Study problem

In this paper, we will analyse the thermo-elastic behaviour of the plate element of a structure
arranged in a climatically aggressive environment (extreme temperature), thus, its free vibration.
In this study we use a refined four-variable thick plate theory to take the shear effect into
consideration.

2.1 Geometric properties of the plate

Let us consider a composite laminated plate of rectangular shape of width a and length b with a
uniform height h, this plate consists of N, layers, in fact, each layer is the result of reinforcement
of a first material (called matrix) by a second one of different properties in the form of fibres, these
fibres are arranged, with directions (of angle 6%), uniformly as it is presented in Fig. 1. The local
coordinates of the material (x*, y*, z"*) related to the k™ layer are oriented at an angle 6 to the
axes of the reference frame (%, , 2) The positive ordinate axis z is fixed downwards such that the
ordinates of the two interfaces of the k-layer are z = z,, and z = z;,,; as shown in Fig. 2.

2.2 Thermal load

The only external load applied on the plate is a thermal load, this load is the resultant of a
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Fig. 2 Coordinate system and layer numbering used for a laminated sheet

temperature field, we assume that its general form according to the Navier development is
T(x,y,2) = Lin=12m=1T(2) sin(ax)sin(By) 1)
In this study we will consider three cases of distribution of this field through the thickness:
» Steady rise in temperature (UTR): T(z) = AT = (T — T;)
* Linear Temperature Rise (LTR): T(z) =T; + AT(1/2 + z/h)
« Exponential temperature increase (ETR): T(z) = T; + AT[1 — cos(n/4 + zrm/h)]
With, the distribution of the thermal field across the thickness is T (z), T; the initial temperature
and Ty the final temperature and AT = (Tf - Tl-) the change in temperature, to simplify the

nm

expressions of the equations we put a = % and § = >

3. Mathematical formulation of the study problem
3.1 Assumptions

In order to remain in the small deformation range, we consider that the displacements are small
in relation to the thickness h. The displacements in the median plane xy are uy(x,y) + u?(x, y) +
us(x,y) in the direction of the x-axis and vy (x, y) + v?(x,y) + v5(x, y) in the direction of the y-
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axis are the displacements due to the extension wuy(x,y); vo(x,y) bending u’(x,y) =
—zwly; vP(xy) =—z wgy and shear displacements u®(x,y) = —f(2) w§,; v°(x,y) =
—f(z) wg,, transversally the displacement is wl(xy) + wi(xy) is the result of two
components, shear wg and bending wg. The axial stress along the z-axis, o, is very small

compared to g, and o,
3.2 Displacement and deformation fields
We will grant a point M(x, y, z) of the plate before deformation, after the deformation of the

plate, under the temperature field, the point M(x,y,z) will move according to the following
displacement field, according to the study by Alvarez et al. (2022)

u(x,y,z,t) = uylxyt) —zwl (xy,t) — fF(@W§(x, y,1)
V(X, Yz, t) = Vo(x' Y, t) - ZW(I)),y(X' Yy t) —f(Z)Wg'y(X, Y, t) (2)
w(x,v,z,t) = wl(xyt)+wi(xyt)

According to the theory used, {u(x,y,z) v(x,y,z) w(x,y,2)}" is the displacement field in
the global reference frame of the laminate (X,9,2). The function f(z) is the model for the
development of the shear effect through the thickness, we will base on our proposed model and to
validate we use a first model of third order shear deformations of Reddy (HPT), Belkacem et al.

(2016), the second model is that of sinusoidal deformations of Touratier (SPT), Yang et al. (2020)
(Present): f(z) = hsin (sin (nz/h))/m
(HPT) : f(z) = —(4z3/3h?) -z 3)
(SPT) ¢ f(z) = (h/m)sin(mz/h)

Without taking into account the second-order (Von Karman) or higher deformation terms, then
the linear deformation field takes the following form for the k™ layer

gx(k) = Uy — ZW(?,xx - f(Z)Wg'xx = &+ Zkglc, + f(2)kz

g, = vy, — 2wl — F(DWEy = & +zkb + f(D)k;

Yoy = gy +Vox — 22W0ay — 2((DIWSxy = iy + 2Kk, + f(DKS, (4)
yyz(k) = (1 —_ f(Z),z)Wg,y = (1 - f(Z),Z)Y;Z

sz(k) = (1 - f(Z),Z)Wg,x = (1 - f(Z)’Z)y;Z

Under the above assumptions in this methodology {ex,sy,yxy,yyz,yxz}(k)T is the deformation
field related to the point M(x,y, z) of the k™ layer.

3.3 Constitutive equations, stress-strain

We apply Hooke’s law to the case of a linear and orthotropic elastic material. In the presence of
a thermal load and for each layer, the stress field takes the following form

(k)

Oy =012 Q22 0 &y ayT(Z)

{Ux f(k) Q11 Q12 Qus 0 { Ex }(k) a,T(z)
Q16 Q26 Q¢ Vxy 20, T(2)

Txy
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Table 1 Values of the undesigned engineering constants of the materials used
Material Properties E;(GPa) E,(GPa) Gy, (GPa) G5 (GPa) G,3 (GPa) wv;, a,(1/°C) a,(1/°C)
Graphite-Epoxy  40.E; 6.92 0.6.E; 0.6.E; 05E, 025 1,14.10% 1,14.10°

and {Tyz}(k) = (‘244 (‘245](@ {yyz}(") (5)

xz Qas  COss Vxz

The stress field {o,, Ty Txys Tyz) rxz}T in the k™ layer will be determined using the transformed
stiffnesses Eq. (8) of the material

0% = Q11c05*0® + 2(Qy, + 2Q46)c0s20®sin26® + Q,,sin*6®
(k) Q cos*0 + (Q11 + Qu3 — 4Q¢6)c0s20®sinZ20™®) + Q,,sin*9 )
= Q,,c05*0®) + 2(Q4, + 2Q46)c0s20®sin?0*) + Q,,sin*6 ")

0 = (Q11 Q12 — 2Qg6)c0s30®sing ) + (ZQé’é) +Qy; — sz) cosf®sin39 ()
(”—wn Q12 = 2Q66)c0s8Msin?0®) + (2Qg6 + Q12 — Q22)cos*0 Wsing ®
(k) = (Q11 + Q22 — 2Q12 — 2Q46)c0s20®sin20®) + Q46 (cos*0™ + sin*o ™)

( ) = Q440520 + Q55sin?0 k)
39 = Qs — Qur)cost®sing® 0 = Qezcos6® 4 Qysine®  (6)
The coefficient of thermal expansion a,, a,, and a,., transformed into the global axis system,
with
o = a;c0520® + a,sin?20® ag,k) = a,5in20 % + a,cos26®)
(k) = (a; — a,)sin@® coss @)

The laws of elasticity allow the material stiffnesses to be related to ijk), i,j =1,2,4,56t10 the
engineering constants as presented in the following formulas

E. E,
Qi1 = P Q2= 0y = ; Qo6 = G125 Qua = Ga3; Q55 = G13 (8)
In the case of plane stress, the reduced stiffnesses require the following independent
engineering constants:
The resultant forces and moments are found by integrating, through the thickness of the plate,
the stresses taking into account the adopted theory, as follows

1-v 12V21 1- —V12V21 1-v 12V21

Ny Ny Ny N¢ . 1
b b b fert ()
My My Mp,|= Z z (O'x,O'y,Txy) dz
My My Ms,| =i\ f(2)
S Ty, K
yz | _ yvN¢ Ziyr (4 Af (@) (tyz
and {S,iy} =5 (fzk (1 — ){sz} dz) 9)

Similarly, to find the field of thermal forces and moments, but in this case using the thermal
properties of the plate and the expression for the temperature distribution
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NI=Nj Nj=Nj N, =0 1

(k)
MET = MET MIT =MET M =0|=XN, N :v(k)T(x,y, z){ z }{ao,ao,o}(k)dz
M =MT MST =M ML =0 f(2)

(10)

N.B.: From the data in Table 1, we have a; = a, and from the transformations in Eq. (5) the
transformed thermal expansion coefficients are: ay = a,, = ag and ayx = 0

After doing the integrations Eq. (9) and Eq. (10) we get eleven resultant forces and moments,

as a function of eleven membrane deformations and curvatures, these results are organized in the
following matrices Eq. (11) and Eqg.

Ny [[A11 A1z Aws] [Bin Bz Bis] [Bii Bi Bis|] s’é ( (NG

Ny A, Az Az Biz By B Bf, B3 B &y N7

Ny (A1 Aze Agel LBis Bzs Besl |[Big B3s B Yoy 0

My [Bi11 Biz Bis] [P11 D1z Dis] (D, Di, D Ky M(I)’T

Mglz) * =||[B1z B2z Bz Di; Dy Dye sz Dzsz Dfe ] Kg =3 Mé’T

M2, [Bis Bzs Besl D16 Das Desl |Diy D3s Dgsl K2y 0

M3 [Bf1 Bi, Bis| [Dii Di» Dis| [Hir Hi His Ky MgT

M Bi, Bj, Bjs| |[Diz D3, Di¢| |Hiz Hzz Hie K5 MT

Mz, [[Bis B3 Bssl |[Die Die Dssl |Hie Hie Hgell x5y ) ) 0 )/

(11)

{Sﬁz}z Ada is]{y;z} (12)
S;z AASLS 1535 yfcgz

The normal and coupling stiffnesses {Ai]-,Bi]-,Dij,Bisj,Dg, Hisj,Afj} and coupling stiffnesses are
calculated taking into account the layering of each layer and the properties of the materials used, as
follows

N, k ..
{4y, By, Dy, BS, D, Hi} = T, [74 Q7 (1,2, 2% f(2),2f (2), f2(2)}dz i, = 1,26 (13)

_ wNg (z (k) af\% ;. . _
A?j - Zkil zkk+1 Qii (1 T dz ) dz; 1] =45 (14)
3.4 Stability governing equations

To find the equilibrium equations of the plate we can express them using the principle of virtual
works in its dynamic version, as, Yang et al. (2020)

[6(U+V —E)dt=0 (15)

Where, the internal strain energy dUthe virtual work 6V done by the thermal forces caused by the
thermal stresses applied in the plane and §E is the kinetic energy, these quantities are integrated as
follows:
* The deformation energy
+h/2
U= J][J50r [Nee® + Ny + Nyyyy + M2 -+ MBIk -+ M2y s, + Mic§ + M3ic5 + )
M3y K3y + S3,Yy, + S,Sczy,fz]dz] dxdy
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» The work of the forces caused by the thermal field in the

V=~ [[[E(WExx + W3xx) + 2Fy Wy + Wi xy) + B, (W8 + W5y, ) |dxdy  (17)
» The kinetic energy of the plate

E = 3 [ (8u(hit = Lk, — 18,) + Sv(1yD — ik, — Lvs,) + 6w [L (W +g) +
Ly + By) = (Whax + WE ) — Is(We xx + Wiy )] + Sws[L (W8 + W) + (18)
iy +Dy) = Is(Weax + Woyy) — I (Wi xx + W3 yy) |} dxdy
We substitute equations Eqg. (16), Eq. (17) and Eqg. (18) into equation (15) and integrate through
the thickness, the latter equation Eq. (15) can be rewritten as
JI[{NeSed + NySe) + Ny Sely, + MPSKD + MESKD + M2, 6k, + MiSks + M5Sks +
M3, 6k, + S5,6vy, + 5,525)/,?2} — {Fx(wé’,xx + ngxx) + Zny(ngy + wg,xy) +
F,(Weyy + W)} + {Sulyii + 8vL v + Sw[L (WE + Wws) — LL(Weax + Woyy) —  (19)
L3 (W8 e + WS )] + SWE[I (W8 + 5 — I (Wl + W) — L (W +
W3 yy)]}] dxdx =0

The thermal compression forces in the plane F, and F, plane now represent loads instead of
reaction forces

g
{Fo B By} = 30 1 [, T(@)dz {ag, ao, 03 (20)

The inertias of the plate are defined as (21), where p is the mass per unit volume for the k™"
layer.

N, Z
{1, 13,14, 15, 16} = X2y zi’;; p® 1,222 f(2), zf (2), f (2)*)dz (21)
The governing equilibrium equations can be determined from Eq. (19) by integration by parts,
SO

Su # 0: Nyx + Nyyy = Ll — g — 1,5
517 * 0: ny,x + Ny,y = Ilv - IZW(?,y - I4W05,y

Sw. 0. M2+ 2M2, oy + ME, + EWE o + Wl = LG, + By) + L (WE + W) — (22)
I3(Whx + Wg,yy) — Is(Wixx + Wg,yy)

Sw. = 0: M3 yxe + 2M3y, vy + M3y + BEWG gy + 2FE0y Wi oy + B,WG yy, + 8325 + 552 =
S :

(i, + D) + L(WE + W) — Is(WE o + WE ) — I (WS x + WS,

3.5 Stability governing equations in terms of displacement

Based on the stability equations Eq. (22) found in the previous section, we substitute the
resultant forces and resultant moments from the expressions in Eq. (11), and then exploit the
expressions for deformations found in Eq. (4), we finally arrive at four stability equations in terms
of displacements, as follows
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AqqUgyx T 2A16U0xy T AseUo,yy T A16V0xx T (A12 + A66)Voxy T A26V0.yy —
b b b b s N s
B11W0,xxx - (312 + 2366)W0,xyy - 3Bl6W0,xxy - BZGWO,yyy - Bllwo,xxx - (Blz + (23)
s S s S S S . b s _ nNT
2366)W0,xyy - 3Bl6wo,xxy - BZ6W0,yyy - Ilu + IZWO,x + I4W0,x - NO,x

AgeUoyx t (A12 + Age)Uoxy T Azelloyy T A22V0.yy + 2426V0 5y + As6Voxx —
b b b b S S s
BZZWO,yyy — (B2 + 2366)W0,xxy - 3BZ6W0,xyy — Bi6Woxx — BZZWO,yyy — (Biz + (24)
s S S S s S . b s __ NT
2866)W0,xxy - 3BZ6WO,xyy - Bl6W0,xxx —NLv+ IZWO,y + I4W0,y - NO,y

—B11Ugxxx — (Byz + 2366)u0,xyy — 3B16Uo,xxy — B2sUo,yyy — B22V0yyy — (Byz +
2B66)170,xxy - 3BZGVO,xyy - Bl6v0,xxx + D11W(l)),xxxx + 2(D12 + 2D66)W(l)),xxyy +
4D16WE rxxy + 4D26W8xyyy + D2aWhyyyy + FWl iy + EWEyy + DS iWS vaex + (25)
Z(sz + 2Dg6)Wg,xxyy + 4‘D156Wg,xxxy + 4‘DZS6W(§,xyyy + DZSZWg,yyyy + Fng,xx + Fng,yy +
Iz(ﬁ,x + vy) +1 (Wé’ + Wg) — I3 (Wg.xx + W(l)).yy) —1Is (ngx + Wg,yy) = —Mé’};x o Mgg'y

_Bfluo,xxx - (3152 + ZBgG)uO,xyy - 33156u0,xxy - Bg6u0,yyy - B;zvo,yyy - (sz +
2Bg6)vo,xxy - 3B§6v0,xyy - Bls6v0,xxx + Dlslw(l)),xxxx + 2(D152 + 2Dg6)W(l)),xxyy +
4'D156W(l)),xxxy + 4DEGW(I)),xyyy + DZSZW(I)),yyyy + FxW(I)),xx + FyW(l)),yy + Hlslwg,xxxx +

Z(Hfz + 2Hg6)Wg,xxyy + 4Hf6Wg,xxxy + 41'1236‘/"'3,953/3/3/ + stzwg,yyyy + Af‘»swg,xx +

2A55W5 xy + A5aWSyy + EeWiax + E,Wiy, + Li(iiy + D) + L (WE +W5) —

. b . b s s _ ST ST
I (WO.xx + WO.yy) — s (WO.xx + WO,yy) = —Mgx — Mgy

(26)

4. Analytical solutions to the problem
4.1 Matrix writing of the problem
In the case of specially orthotropic or antisymmetric layering, we use the Navier

approximations given in Eq. (27) for the displacement field, for further details and clarification of
the boundary conditions please see reference Shiau and Wu (1997).

Antisymmetrical cross-pleated Antisymmetrical with angular folds
uy(x,y) = up(x,y) =
Yim=12n=1 e]thmn- cos(ax)sin(By). Yim=12n=1 e]thmn- cos(ax)sin(By).
vo(x,y) = vo(x,y) =
Ym=12n=1€’“Vnn.sin(ax)cos(By). Ym=12n=1€’“Vnn.sin(ax)cos(By).

And for all stratifications
wg (0, y) = Zimet Tzt €/ WE, sin(ax)sin(By)
wi (6, y) = Xin=1 =1 €’ Wy . sin(ax)sin(By)
We substitute the field (27) in the stability equations Eq. (23)-Eq. (26), the resulting
expressions are organized in a matrix writing in the form

[R]{dmn} - wZ [M]{dmn} = {an} (28)

mm

n
fora = —
a

and f =% (27)
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In this writing, [R] is the symmetric matrix of modified rigidities, [M] is the symmetric mass
matrix, {d,} the vector of unknown displacements and the vector of thermal forces acting on the
plate is {F,,,,} with

Rll R12 R13 R14 M11 M12 M13 M14
[R] — R12 R22 R23 R24 [M] — M12 MZZ M23 M24
R13 R23 R33 —F R34 —F| M13 M23 M33 M34
R14- R24 R34- —F R44 —F M14- M24- M34- M4-4-

and {dmn} = {Umn: |/ Wrgn: erm}T {an} = {Fnlm' Fnzm' anm'F#m}T
The rigidities (Rl-j) are determined after substituting the field Eq. (27) into Eqg. (23) to Eq. (26),
then
Ri1 = Aj1a? + 24160 + AgeB?
Rip = A1a® + (Aqz + Age)aP + Az
Ri3 = —B11a® — (Biz + 2Bgg)aB? — 3B;4a*B — B>
Ri4 = —Bi a® — (Bf, + 2B{s)aB? — 3Bfsa’B — B34 f3°
Ryy = Ay B2 + 24560 + Age?
Ry3 = —B328° — (Biz + 2Bgg)a’B — 3Bygaf* — Byga®
Rp4 = —B35,B° — (B, + 2B¢)a*B — 3B3saf* — Biga®
Rss = Dyja* 4 2(Dyy + 2Dgg)a?B? + 4D16aB + 4D,6a > + D,y f*
Rgy = Dija* + 2(D5, + 2D3g)a?B? + 4D5¢aB + 4D5gaf3® + D3, B*
Ry = Hija* + 2(HS, + 2HS)a?B? + 4H5ea®B + 4Hsca B3 + H3,B* + Afca?
+2A5:ap + A54B2 (29)
In order for us to develop closed form Navier solutions, we need to have a zero thermal shear
residual stress Fy, = 0 (this condition is verified by the numerical values in Table 1). Due to
simplification of the parametric study, we set F, = ¢F,,. In order to have a uni-axial thermal effect,
we will take ¢ = 0 and ¢ = 1 for a bi-axial effect, then

F = F,a® + F,B* = E(a* + %) (30)

The coefficients (M;;) are determined after applying the field Eq. (27) in Eq. (23) to Eq. (26),
then

Mll == _Il Mlz == 0 M13 == alz M14, = al4 MZZ = _Il
Mys =Bl Myy=ply Mz =1 —I3(a® + %) Mz, =1 —Is(a® + %)
Ms, =1, — Is(a? + B?) My, =1 — Ig(a? + B?) (31)

The terms of the thermal force vector are determined as follows

Table 2 Expression of the thermal load according to the temperature distribution through the thickness

Temperature distribution Thermal load
Regular increase (UTR) F, = AT IEZZ" _hr{/zz dz.
—Vi12
Linear increase (LTR) E = 1E_2:1°2 T; f_h,:/zz dz + ATlE_z—Zl‘)2 f_h}{/zz G + % dz.
Exponential increase (ETR) F = 5250 T, f_h,:/zz dz + AT 152:0 f_hff/zz [1 — cos G + %)] dz.
—Vi12 —Vi12
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Table 3 Expression of critical thermal change according to temperature distribution across the thickness

Temperature distribution Thermal load
; 1 R34R43—R33R44
AT,, = :
Regular increase (UTR) T (@®+&BMrutr (R3a+Raz—R33—Raa)
. . 1 R34R43—R33R44 Kutr
AT,, = Haates Hosfes _ Kutr
Linear increase (LTR) T (a?+EBKity (Rsa+Raz—R33—Raa)  Kir
R . 1 R34R43—R33R K
Exponential increase (STR) AT,, = =2 SIS LT,

;-
(@?+&BD)kstr (R3a+Raz—R33—Ras)  Kstr

N z E® N 7 E®
Fin = a ¥y [, o T(@)dz Fin =B Xkl ), " om T(2)dz
N, (z e® N. rz gk
Fan=—(@*+ B L1 [, w2l (@dz By = —(a® + AL, [, " om f (DT (2)dz

(32)

But we do not need these terms since we are looking for critical values for the elastic stability
and natural frequency in the case of free plate vibrations.

4.2 Critical buckling temperature of laminated composite plates

The solution of the buckling problem requires a time fixation, i.e., the time must be constant,
furthermore, the governing equations of the plate under static buckling are obtained by eliminating
the thermal loads Eq. (10) and the inertia terms (I4,1,,13,1,) in Eqg. (23) to Eq. (26), then the
system Eq. (28) simplifies to

[RI{dmn} = {0} (33)

We use condensation techniques to decouple the movements in the plane uy(x,y) and vy (x, y)

to the transverse displacements wg (x, y) and w§ (x, y) Then Eq. (33) reduces to
Rss — F(a® +§B%) Rsy— F(a? +§B%) {W,f{n} _ {0}
343 - Fx(az + fﬁz) 544» - Fx(az + fﬁz) Wrrsm - 0

Then the critical thermal change AT, that causes the plate to buckle is obtained according to
the type of temperature distribution across the thickness, as shown in Table 3:

With R;; are the new terms after condensation such that:

Ri3Rz; — RiRz3 _ Ri1Rz3 — RipRy3
Ri1Ry; — RizRi; P RisRy; — RipRyp
334 — R34 — Ry, R13R22 - R12R23 _ R24 R11R23 - R12R13

R11R22 - R12R12 R11R22 - R12R12
R14R22 - R12R24- _ R11R24- - R12R14
Ri1Ry; = RizRiz  * RirRaa — RipRy;
R14R22 - R12R24 —R R11R24 - R12R14
Ri1Ry2 = RizRiz ~ ** RisRaa — RizRy;

_ Exay ch/2 (1 z _ Eay ch/2 _
dz, Ky = - f—h/z (5 + ﬁ) dz and kg, = oo f—h/z [1

(34)

R33 = R33 — Ry3

R4z = R34 — Ry3

Rus = Rys — Ryy

Eyay h/2

And the terms ey = ==,
V12
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cos G + %)] dz.
4.3 Free vibration analysis of laminated composite plates

According to the Navier technique adopted in this study, the system of equations Eq. (28) in the
case of free vibration analysis is simplified by eliminating any transverse and thermal loading, in
which case the problem will turn into an eigenvalue problem ([R] — w?[M]){dmn} = {0}. In order
to have another solution than the trivial one {d,,,} = 0, it is necessary to cancel the determinant

det([R] — w?[M]) = 0 (35)

The solution of the eigenvalue problem Eq. (35) gives for each free vibration mode (m,n) a
natural frequency of transverse vibration of the laminated composite plate under study. These
natural frequencies are given in the following non-dimensional form

W = wmn(bz/nz)\/ ph/Dy; (36)

5. Numerical results and interpretations

To handle the proposed methodology, a plate made of laminated composite materials is
considered. The Young’s moduli, Poisson’s ratios and thermal expansion coefficients are given in
Table 1. The general approaches presented in the previous sections for the analysis of the thermal
stability of the plate and their free vibration under uniform, linear and sinusoidal temperature
variations through the thickness are illustrated in this section using numerical manipulations. The
initial temperature will be setat7; = 25 C.

5.1 Validation of the theoretical approach adopted

In this section, we will compare the critical thermal loads AT,,- and the fundamental natural
frequency of vibration, w,; . The laminations studied are specially orthotropic, cross-ply
antisymmetric and angle-ply antisymmetric. The only external load applied is a thermal load. The
results obtained are compared with existing results in the literature to determine the accuracy of
the proposed model. The verification is done for an increasing number of layers N, = 2,8 and 12
layers.

All the results in Table 4 are compared with those found by Reddy’s third order shear
deformation plate theory HPT (Reddy 1984) and Touratier’s sinusoidal shear deformation plate
theory (SPT) (Touratier 1991). So, from this survey we observe that there is a similarity or almost
similarity of the model proposed in this study and those existing in the literature. With a numerical
comparison in terms of error, we can conclude from Table 4 that: The critical buckling
temperatures found, using the proposed model, are scattered author of Reddy’s model (HPT) with
an average relative error of A(AT,,.) = 3.99% and with an error of A(AT,,) = 3.64% for the
results returned by the Touratier model (SPT). While, the fundamental pulses are found with an
accuracy with respect to the (HPT) and (SPT) models successively of A(wqq) =
1.03% and A(wq;) = 0.97%.
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Table 4 Validation of the methodology adopted in this study (E,/E, = 40, a/h = 10 and a/b = 1)

Especially orthotropic Antisymmetric crosses Antisymmetrical angular
N.=2 N.=8 N,=12 N.=2 N.=8 N,=12 N.=2 N, =8 N, =12
Present 1.2583 1.1965 1.2584 0.8785 1.1582 1.1154 1.0254 15692 1.5895

HPT 11868 1.1868 1.1868 0.8536 1.1051 1.1778 1.0671 1.5173 1.6421

AT..  Error%. 5,68 0,81 5,69 2,83 4,58 5,59 4,07 3,31 3,31
SPT 1.2847 1.1847 1.1847 0.8524 11033 1.1757 1.0680 15151 1.6381

Error%. 2,10 0,99 5,86 2,97 4,74 5,41 4,15 3,45 3,06

Present 84.265 80.695 80.253 31.985 41.325 42986 47.325 65.369 71.123

HPT 84511 80.511 81.048 32903 41.527 43.752 47.636 66.144 70.575

wy,  Error%. 0,29 0,23 0,99 2,87 0,49 1,78 0,66 1,19 0,77
SPT  84.003 80.945 80.945 32.824 41.463 43.693 47.683 66.238 70.694

Error%. 0,31 0,31 0,86 2,62 0,33 1,64 0,76 1,33 0,60

Size  Theory

Table 5 The non-dimensional critical thermal loading AT, of an antisymmetric plate with angular folds 6

N, = 2 nappies N, = 8 nappies N, = 12 nappies
Bo1 Bop0 Bogo B-q B0 B0 B=1 Bop0 2=20
E. E. E. E. E. E. E.

E3 2 2 2 2 2 2 E3

e
h

2
2 15.3934 32.6073 39.1100 21.5943 36.4349 52.3728 23.0038 37.1694 54.4296
4 41859 95968 12.2988 5.9058 10.7326 16.4568 6.3785 11.0224 17.4483
20 0.1616  0.3974 05284 0.2330  0.4459 0.7114 0.2539  0.4597  0.7632

5.2 Parametric study

A parametric study is needed to see the effect of different types of coupling on the critical
temperature value causing the thermo-elastic instability of the plate, as well as on the fundamental
free vibration frequency. Similarly, for other parameters such as anisotropy, slenderness and aspect
ratio of the plate and finally the lamination angle. This study also compares the responses of plates
with specially orthotropic and antisymmetric lamination, and finally we will conclude this
parametric study by extracting the effect of the temperature distribution through the plate
thickness.

5.2.1 The critical buckling temperature of laminated composite plates

In this first manipulation (Table 5), the thermal behaviour (critical thermal load AT,,) of an
antisymmetric, square simply supported laminated composite plate is studied, we will consider
three different plate schemes: (N, = 2 layers: —30/30), (N, = 8 layers : (—30/30)445)
and (N, = 12 layers : (—30/30)¢,,)(the subscript 4as means that the plate consists of 4 pairs of
layers (—30/30) symmetrically arranged), these patterns are studied in terms of the anisotropy
ratio E; /E, and the slenderness ratio a/has presented in Table 5.

In Table 6, the thermal behaviour (critical thermal load AT..) of a simply supported
antisymmetric cross-ply composite plate with square layers will be studied. N, simply supported,
will be studied. The study has been done for the three temperature distributions through the
thickness of the plate (UTR: uniform distribution, LTR: linear distribution and STR: sinusoidal
distribution). These case studies are manipulated for anisotropy E;/E, and slenderness
ratioa/h = 20.



Analysis of the thermal instability of laminated composite plates

Table 6 The non-dimensional critical thermal loading AT,,. of an antisymmetric two-ply plate
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By Uniform distribution Linear distribution Sinusoidal distribution
Ez a=b=1 a=b=4 a=b=1 a=b=4 a=b=1 a=b=4
1 38.6552 3.8665 77.2990 7.7216 70.2920 7.0217
20 45.6409 4.9789 91.2704 9.9464 82.9969 9.0448
40 56.1980 6.8620 112.3845 13.7127 102.1971 12.4696

Table 6 The non-dimensional critical thermal loading AT, of an antisymmetric cross-ply plate

Heat Number of Uni-axial thermal effect Bi-axial thermal effect
distribution layersN. a/b=1 a/b=2 a/b=4 a/b=1 a/b=2 a/b=4
. 2 2.2237 1.0760 0.8624 1.1118 0.8608 0.8117
U”U'?Fgm 8 27877 14153 11817 13939 11322 11122
12 2.8099 1.4382 1.2040 1.4049 1.1506 1.1331
. 2 44471 2.1518 1.7246 2.2235 1.7214 1.6231
LL"}eF";“ 8 55752  2.8303  2.3631 27875 22642 22241
12 5.6196 2.8763 2.4077 2.8097 2.3010 2.2661
. 2 4.0440 1.9567 1.5683 2.0219 1.5653 1.4760
S'“SeT"éa"e 8 50699 25737 21489 25348 20589 20225
12 5.1102 2.6155 2.1895 2.5550 2.0924 2.0606
5 50
E s, L Nehiees  Unioil ot T; Initial temperature
2 a0t} T e 2ty i e N, Number of layers making up the plate
§ i MNc =4 layers : Biaxial effect
g Ne =12 layers : Biaxial effect Hlnt for Figure 4:
§ UTR: Uniform temperature rise
8 LTR: Linear temperature increase
E STR: Sinusoidal temperature increase
2 Hint for Figure 9:
% SO: Specially orthotropic
57 ThmSslee._ SC : Antisymmetrical with cross folds
S SA: Antisymmetric with angular folds
2 4 53 8 10 12 14 16 18 20

Slenderness ratio a/h

Fig. 3 Variation of the critical temperature AT, as a function of the ratio a/h with N, and the direction of

thermal loading as parameters

The parametric study of the thermoelastic instability (determination of the critical thermal
loading AT,,) as a function of the aspect ratio of the plate a/b the number of layers N, constituting
an antisymmetric cross-ply plate and the direction of the thermal field effect. This study is done
for all three types of temperature distribution through the thickness of the plate. The results in
Table 6 show some of the results of this study. In this case we will set the anisotropy of the plate to
E,/E, = 40 and a slenderness of a/h = 20.

The graphical illustrations of the non-dimensional critical thermal loading AT, as a function of
slenderness a/h or anisotropy E, /E, of a plate with different laminations are presented in Figs. 3,
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or
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1
! — — —Nc=2layers : Uniaxial effect
i — — —Nc=4layers : Uniaxial effect
35 ';‘ — — — Ne =12 layers : Uniaxial effect
1
i

Ne=2 layers : Biaxial effect
Ne=4 layers : Biaxial effect
Ne =12 layers : Biaxial effect

25

UTR:a=b=1
LTR:a=b=1
STR:a=b=1
—— ~UTR:a=b=10
—— —LTR:a=b=10
— — —S8TR:a=b=10

15

Mon-dimensional critical thermal change AT _
Non-dimensional critical thermal change AT _

-1 L
10 0 5 10 18 20 25 30 35 40 10 5 10 15 20
Anisotropy ratio E1/E2 Aspect ratio alb
Fig. 4 Variation of the critical temperature AT,,. as a Fig. 5 Variation of the critical temperature AT, as a
function of the ratio E;/E, with plate size and function of the ratio a/b with N, and the direction

temperature distribution as parameters of thermal loading as parameters

4 and 5. The study parameters are the number of layers N.. the temperature distribution through
the thickness or the uni-axial or bi-axial temperature direction T'(2).

The influence of the considered thermal field on the thermoelastic instability of a laminated
composite plate is shown in Fig. 3. AT,, decreases exponentially with increasing ratio a/h. These
curves show that the critical temperature difference decreases exponentially with increasing ratio,
S0 we can say that the thermal shear stresses have the effect of increasing the critical buckling
temperature of the plate (i.e., in the case of N, decreases). Also, we notice that the difference in the
critical temperature AT, increases if we replace the uni-axial effect of the thermal field by the bi-
axial one.

From Fig. 4, we observe a significant difference between the critical buckling temperature
difference of an antisymmetric cross-ply plate if the dimensions of the sides of the square plate are
increased by a factor of 10. Similarly, this difference increases with increasing anisotropy
ratio £, /E,.

In Fig. 5 we have drawn representative curves of the thermoelastic instability of a laminated
composite plate as a function of the aspect ratio of the plate, thus the difference in the critical
temperature AT, decreases exponentially as the ratio increases a/b. If we take into account the
number of layers N, we notice that the critical buckling temperature increases with the increase of
the number of layers, i.e., the different types of couplings are causes that accelerate the
thermoelastic instability of a laminated composite material plate.

5.2.2 Free vibration analysis of laminated composite plates

The results obtained for the natural fundamental free vibration frequency of a laminated
composite plate are given in Tables 7 and 8, the plate is assumed to be square and single supported
under a linearly distributed thermal load. In Table 7, we have recorded the non-dimensional free
vibration pulsation w;; of an antisymmetric plate with two angular plies, the study parameters are
the number of layers N, the anisotropy ratio E; /E, and the lamination angle 6. Table 8 shows a
comparison of the non-dimensional free vibration pulsation w;; for the three types of lamination
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Table 7 The non-dimensional free vibration pulsation w;, of an antisymmetric square plate with two angular
folds of angle 6 with a/h = 20 and N, = 8 layers

N, = 2 nappies N, = 8 nappies N, = 12 nappies
Angle =1 £=20 2=40 Z=1 £=20 2=40 2=1 £=20 £=40
6 =45° 11673 27969 29956 1.7253 34178 4.2351 1.8836 3.5940 4.5865
6 =30° 16868 23544 23436 2.3238 2.7707 3.1462 25051 2.8899 3.3762
6 =75° 33502 21467 21133 3.8966 2.2847 2.3889 4.0546 2.2847 2.3889

Table 8 Comparison of non-dimensional free vibration pulsation w,, for the three types of plate laminations
with eight layers

Especially Anti-symmetrical cross-ply Antisymmetrical plate with
~ Heat. a orthotropic plate plate angular folds § = 45°
distribution B _ 5t Ei _ 40 Er_ 95 E1 _ 40 Er _ 95 E1_ g0
E, Ep E, Ep Ep E

Uniform 5 1.0445 1.1451 0.6007 0.5193 0.6526 0.5870
UTR 10 4.1925 4.6060 2.3965 8.6644 2.5904 2.3227
Linear 5 1.0444 1.1450 0.6006 0.5192 0.6525 0.5869
LTR 10 4.1920 4.6054 2.3961 8.6644 2.5900 2.3224
Sine wave 5 1.0444 1.1450 0.6006 0.5192 0.6525 0.5869
STR 10 4.1920 4.6055 2.3962 8.6644 2.5900 2.3224

Non-dimensional free vibration pulse wy,

E1E2=25and Nc=2
E1E2=25and Nc=4
E1/E2=25and Nc= 12
E1E2=40and Nc=2
E1E2=40and Nc=4
E1/E2=40and Nc=12

15
Slenderness ratio a’h

20 25

[
[+

[}
o

32

30

Mon-dimensional free vibration pulse W,y

o
s

MNe =2 layers and 4 = 30°

— — — Nc=2layers and &= 45" -~ T
MNc =8 layers and &= 30° . -
287 — — — Nc=8layers and 4= 45 -

Nec =12 layers and & = 30°
— — —Nc=12 layers and & = 45°

26
0

15 20 25 30 35 40

Anisotropy ratio E1/E2

5 10

Fig. 6 Variation of the natural frequency w;; as a Fig. 7 Variation of the natural frequency w;, as a
function of the ratio a/h with N, and the anisotropy function of the ratio E,/E, with N, and the
ratio E, /E, as parameters stratification angle 6 as parameters

(especially orthotropic, antisymmetric cross-ply and antisymmetric angle-ply) of plates with eight
layers. 8 = 45°) of plates with eight layers.

The graphical illustrations of the non-dimensional free vibration pulsation w,; as a function of
the slenderness ratio a/h, anisotropy E; /E, or aspect ratio a/b of an antisymmetric plate with
angular folds are presented successively in Figs. 6, 7 and 8. The study parameters are the number
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— — —E1EZ2=25and Nc=2 layers [
— — —E1E2=25and Nc=4 layers

25 — — —E1/E2=25and Nc = 12 layers # =
‘ E1/E2Z=40 and Nc= 2 layers e 8
E1/E2 =40 and Nc= 4 layers 3 -
2 E1/E2 =40 and Nc = 12 layers ;}/ ?'_“‘—“--;::___H__h

-

Non-dimensional free vibration pulse why
o

Mon-dimensional free vibration pulse Wy
(%]

2 — — — SO + Biaxial effect S0 + Uniaxial effect
0.5 — — — AC + Biaxial effect AG + Uniaxial effect
1 — — — AA + Biaxial effect ——— AA+ Uniaxial effect
0 \ \ 0 \
1 2 3 4 5 6 7 8 9 10 10 15 20 25 30

Aspect ratio a/b Anisotropy ratio E1/E2
Fig. 8 Variation of the natural frequency w,; as a Fig. 9 Variation of w,; as a function of the ratio
function of the ratio a/b with N, and the anisotropy E, /E, with the direction of thermal loading and the
ratio E, /E, as parameters type of stratification as parameters

of layers N, the anisotropy ratio E; /E, or the lamination angle 6.

Fig. 6 shows the effects of the slenderness ratio a/h on the free vibration pulsation of the plates
for linear thermal loading. It can be seen that, irrespective of the number of layers and also for
different anisotropy ratios, the pulsation for the (1,1) mode decreases exponentially with
increasing ratio a/h for all types of thermal loading. It can also be seen from Fig. 7 that
wqqincreases with increasing ratio E; /E, in the case of stratification angle 8 = 30° and decreases
in the case of 6 = 45°.

From the curves in Fig. 6 we also notice that plates with a larger anisotropy ratio vibrate with
larger pulsations, so couplings in the plate have an effect of decreasing the free vibration
frequency of the plate. w;;. Also the couplings in the plate have an effect of decreasing the free
vibration frequency of the plate. While in Fig. 7, the free pulsations of the plate are smallest for
6 = 45° and start to increase as 6 away from 45°.,

Fig. 8 shows the variation of the fundamental free vibration pulsation of an antisymmetric
cross-ply plate as a function of the a/b for two values of anisotropy E; /E, = 25,40 and different
layering schemes (different number of layers), this study shows that the pulsation becomes larger
if the length of the plate becomes greater than its width, furthermore, coupling has an effect of
decreasing this pulsation.

It can be seen from the curves in Fig. 9 that specially orthotropic laminated plates have the
highest pulsations, while the antisymmetric cross-ply laminated plates vibrate with the lowest
frequencies. For all types of laminations the free vibration pulsations are small in the uni-axial
thermal loading case compared to the bi-axial cases.

6. Conclusions

The critical temperature difference triggering buckling and free vibration of simply supported
laminated plates was analyzed by running a refined four-variable plate theory. This study analyzed
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the effect of different types of thermal loading on a laminated composite plate in terms of thermo-
elastic stability and free vibration pulsation, and showed, firstly, that the plate is susceptible to
buckling under the action of this thermal field, whereas, its free vibration is not much affected in
the same temperature range. From these activities we can conclude that: The critical buckling
temperature difference obtained increases with the presence of different types of coupling, and
also decreases with increasing slenderness ratio a/h and aspect ratio a/b. The free vibration
pulsation is little influenced by the thermal field, so it decreases with increasing slenderness ratio
a/h while it increases with aspect ratio a/b. In the case of especially orthotropic laminations, the
free pulsation of the (1,1) mode is greater than in antisymmetrical laminations.
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