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Abstract.  This study seeks to develop analytical solutions for the biothermoelastic model without accounting for 
energy dissipation. These solutions are then applied to estimate the temperature changes induced by external heating 
sources by integrating relevant empirical data characterizing the biological tissue of interest. The distributions of 
temperature, displacement, and strain were obtained by utilizing the eigenvalues approach with the Laplace 
transforms and numerical inverse transforms method. The impacts of the rate of blood perfusion and the metabolic 
activity parameter on thermoelastic behaviors were discussed specifically. The temperature, displacement, and 
thermal strain results are visually represented through graphical representations. 
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1. Introduction 
 

There are several methods available to measure the thermal properties of living organisms, but 

the outcomes can differ. Achieving accurate measurements of the temperature characteristics of 

tissues within a living organism is still challenging. The complete understanding of temperature 

properties in living tissues remains incomplete due to the complexities involved in measuring them 

in vivo. This complexity arises from the potential alterations to tissue temperature caused by 

postmortem conditions, as well as the absence of the perfusion effect when examining tissue 

outside of the body. In recent research, the complexity of heat transfer in skin tissues has been 

recognized as a significant challenge. Therapeutic procedures such as laser tissue welding (Gabay 
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et al. 2011), hyperthermia (Mahjoob and Vafai 2009), and laser surgeries (Zhou et al. 2009) have 

become commonplace in modern medicine.  

The impact of diseases is influenced by the blood flow reaching the affected region. Accurate 

monitoring of thermal properties in damaged tissue can aid in the timely and effective application 

of appropriate therapies. Analyzing heat transfer within living tissues is a complex and demanding 

task due to the diverse internal structures they possess. To describe heat transfer in living tissues, 

Pennes’ bioheat model (Pennes 1948) is employed, which is based on Fourier’s law of thermal 

conduction. Phase change phenomena are observed across a wide range of biological tissues. To 

address this, researchers have developed adjusted versions of Penne’s bioheat models using 

various numerical techniques found in the literature. Three models, namely GN-III, GN-II, and 

GN-I, were introduced by Green and Naghdi (Green and Naghdi 1991, Green and Naghdi 1992, 

Green and Naghdi 1993). The constitutive formulations of the G-N theories have been linearized. 

GN-I closely resembles the classical coupled thermoelastic theory, while GN-II exhibits the 

propagation of thermal signals at a finite velocity without energy dissipations. On the other hand, 

GN-III suggests finite speed propagation with energy dissipations.  

 The temperature distribution within skin tissues is subject to intricate phenomena, such as 

blood circulation and metabolic heating generation. As a result, researchers have extended 

fundamental relationships to incorporate these complexities. These relationships encompass 

diverse phenomenological mechanisms, including metabolic heat production, thermal conduction, 

blood perfusion, radiation, and phase changes. The transformation stages of biological tissue can 

manifest in various forms. The relevant literature offers modified versions of Penne’s bioheat 

models that employ a variety of numerical approaches. Multiple numerical methods are utilized to 

solve these models, which include the homotopy perturbation technique  (Gupta et al. 2010), 

Legendre wavelets Galerkin approaches  (Yadav et al. 2014, Kumar et al. 2015), and the finite 

element methods (Gupta et al. 2013). In their study, Esneault and Dillenseger (2010) utilized finite 

difference methods to examine the progression of temperature improvement over time, specifically 

focusing on cases with abnormally low body temperatures. Ghanmi and Abbas (Ghanmi and 

Abbas 2019) conducted an analytical investigation into the fractional time derivative within skin 

tissues through thermal therapy. Marin et al. (2021) employed the finite element method to analyze 

the non-linear bio-heat model in skin tissues induced by an external heating source. Hobiny and 

Abbas (2021) performed an analytical study on the fractional bioheat model in spherical tissues.  

  To understand the interactions between heat and mechanical effects in anisotropic laser-

induced tissue hyperthermia, Fahmy (2019) proposed a novel boundary element model. Diaz et al. 

(2002) utilized the finite element approach to address the thermo-diffusion problem in biological 

tissues, aiming to model thermal damage. The thermo-elastic behaviors of tissues are governed by 

generalized thermo-elastic models, such as the G-N model, G-NII model, DPL, and fractional 

model. Li et al. (2018, 2018, 2019) further studied the impact of heat-induced mechanical 

responses in skin tissues, taking into account temperature-dependent properties. Youssef and 

Alghamdi (2020) focused on modeling the thermoelastic dual-phase-lag behavior of living tissues 

exposed to various thermal loads in a one-dimensional setting. Shen et al. (2005) employed a 

thermo-mechanical model to investigate the interactions between skin tissues and high 

temperatures, examining both thermal and mechanical effects. Kim et al. (2016) focused on 

studying the mechanical and thermal consequences resulting from the absorption of pulsed laser in 

human skin. In a recent study, (Lata 2019) examined thermomechanical interactions in a 

transversely isotropic magneto-thermoelastic solid where two different temperatures were 

considered without factoring in energy dissipation. (Lata and Kaur 2022) examined the effects of 
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two temperatures and energy dissipation within an axisymmetric isotropic thermoelastic solid 

modeled using modified couple stress theory. In one study, (Singh and Lata 2023) examined the 

impact of two temperatures and nonlocal effects on an isotropic thermoelastic thick circular plate, 

without considering energy dissipation. Xu et al. (2008a, 2008b, 2008c, Marin 2010, Othman 

2020, Marin 2021, Marin et al. 2022) developed a theoretical framework for understanding the 

interconnected thermomechanical behaviors of the skin, considering it as a layered material. They 

emphasized that heat-induced stress can contribute to thermal discomfort and adopted a 

sequentially coupled approach for ease of solution. Zhu et al. (2002) explored rate process models 

of thermal damage and light energy deposition in tissue using diffusion theory. Numerous 

researchers have attempted to find numerical or analytical solutions to address the challenges 

posed by linear and nonlinear models of heat transfer when investigating thermal phenomena in 

finite media (Zenkour and Abbas 2014, Abbas and Kumar 2016, Li et al. 2019, Naik and Sayyad 

2020, Mohammed and Ismael 2022, Sobhy and Zenkour 2022). 

The objective of this study is to develop an analytical methodology to investigate the thermo-

mechanical interactions in living tissue without energy dispassion when subjected to rapid heating 

and exhibiting varying thermal and mechanical properties. By employing the eigenvalues approach 

with Laplace transform, precise solutions can be obtained for each physical field, enabling the 

calculation of thermo-elastic responses in living tissues that experience instantaneous heating. The 

temperature, displacement, and strain changes are depicted through graphical representations. 

 

 

2. Statement of the problem  
 

In this study, we assume that the skin tissues are uniform, exhibiting linear, isotropic and 

homogeneous thermoelastic properties. Consequently, the thermoelastic equations governing the 

behavior of the skin tissue, considering varying thermal properties according to the bioheat 

conduction model, can be represented as follows (Li et al. 2018), assuming the absence of 

anybody force 

𝜇𝑢𝑖,𝑗𝑗 + (𝜆 + 𝜇)𝑢𝑗,𝑖𝑗 − 𝛾𝑇,𝑖 = 𝜌
𝜕2𝑢𝑖

𝜕𝑡2
,                                                (1) 

𝑘∗∇2𝑇 =
𝜕

𝜕𝑡
(𝜌𝑐𝑒

𝜕𝑇

𝜕𝑡
+ 𝜌𝑏𝜔𝑏𝑐𝑏(𝑇 − 𝑇𝑏) + 𝛾𝑇𝑜

𝜕𝑢𝑖,𝑖

𝜕𝑥
− 𝑄𝑚),                              (2) 

𝜎𝑖𝑗 = (𝜆𝑢𝑘,𝑘 − 𝛾(𝑇 − 𝑇𝑜)) 𝛿𝑖𝑗 + 𝜇(𝑢𝑖,𝑗 + 𝑢𝑗,𝑖),                                      (3) 

where 𝑇𝑜 the initial temperature of the local tissues, 𝑇 is the tissues temperature, 𝜌 is the tissue 

mass density, 𝜆, 𝜇  refer to the Lame’s constants, 𝑇𝑏  is the blood temperature, 𝜔𝑏  is the blood 

perfusion rate, 𝜌𝑏 is the blood mass density, 𝑐𝑏 is the blood specific heat, 𝑐𝑒 refer to the specific 

heat at constant strain, 𝑢𝑖  are the displacement components, 𝛾 = (3𝜆 + 2𝜇)𝛼𝑡 , 𝛼𝑡  refer to the 

linear thermal  expansion coefficient, 𝑘∗ is the rate of thermal conductivity in these models, 𝑒𝑖𝑗 are 

the strain components, 𝑡 is the time, 𝜎𝑖𝑗  are the components of the stress, 𝛿𝑖𝑗  is the Kronecker 

symbol and 𝑄𝑚 is the metabolic heat generation in skin tissue. According to Mitchell et al. (1970), 

it was observed that the production of metabolic heat relies on the temperature of nearby tissues 

and can be represented as follows 

𝑄𝑚 = 𝑄𝑚𝑜 × 2
𝛼(
𝑇−𝑇𝑜
10

)
 ,                                                        (4) 
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where 𝑄𝑚𝑜  denotes the reference metabolic heat source and 𝛼  is a constant that pertains to 

metabolic activity. In practical situations, it is commonly acceptable to approximate the generation 

of metabolic heat as a linear function of the temperature of the surrounding tissues. This can be 

expressed as 

𝑄𝑚 = 𝑄𝑚𝑜 (1 + 𝛼 (
𝑇−𝑇𝑜

10
)).                                                      (5) 

Within this context, we assume that the skin tissue in a confined domain, with a thickness of ℎ, 

possesses surface and bottom boundaries. As a result, the displacement components and strain can 

be given by 

𝑢𝑥 = 𝑢(𝑥, 𝑡), 𝑢𝑦 = 0, 𝑢𝑧 = 0, 𝑒 =
𝜕𝑢

𝜕𝑥
.                                                (6) 

Hence, the model can be presented as follows 

(𝜆 + 2𝜇)
𝜕2𝑢

𝜕𝑥2
− 𝛾

𝜕𝑇

𝜕𝑥
= 𝜌

𝜕2𝑢

𝜕𝑡2
,                                                    (7) 

𝑘∗
𝜕2𝑇

𝜕𝑥2
= 𝜌𝑐

𝜕2𝑇

𝜕𝑡2
+ 𝜌𝑏𝜔𝑏𝑐𝑏

𝜕𝑇

𝜕𝑡
+ 𝛾𝑇𝑜

𝜕3𝑢

𝜕𝑡2𝜕𝑥
−

𝛼

10
𝑄𝑚𝑜

𝜕𝑇

𝜕𝑡
,                                   (8) 

𝜎 = (𝜆 + 2𝜇)
𝜕𝑢

𝜕𝑥
− 𝛾(𝑇 − 𝑇𝑜).                                                  (9) 

 

 

3. Initial and boundary conditions  
 

To obtain solutions to the equations, it is essential to establish two sets of initial and boundary 

conditions that correspond to the specifications of the physical model 

𝜎(𝑥, 0) = 0  ,
𝜕𝑢(𝑥,𝑡)

𝜕𝑡
|
𝑡=0

= 0, 𝑇(𝑥, 0) = 𝑇𝑏   ,
𝜕𝑇(𝑥,𝑡)

𝜕𝑡
|
𝑡=0

= 0,                        (10) 

𝜎(0, 𝑡) = 0, 𝑘∗
𝜕𝑇(𝑥,𝑡)

𝜕𝑥
|
𝑥=0

= −𝑞𝑜
𝑡(2𝑡𝑝−𝑡)𝑒

−
𝑡
𝑡𝑝

16𝑡𝑝
3 , 𝑢(ℎ, 𝑡) = 0, 𝑇(ℎ, 𝑡) = 0,               (11) 

where 𝑞𝑜 is constant and the parameter 𝑡𝑝 represents the characteristic time associated with the 

pulsating heat flux. To streamline the governing equations, we will employ the subsequent non-

dimensional variables to facilitate the computations 

(𝑥′, 𝑢′) =
(𝑥,𝑢)

𝐿
, 𝑇′ =

𝑇−𝑇𝑜

𝑇𝑜
, 𝜎′ =

 𝜎

𝜆+2𝜇
, (𝑡′, 𝑡𝑝

′ ) =
𝑣

𝐿
(𝑡, 𝑡𝑝),                       (12) 

where 𝑣 = √
𝑘∗

𝜌𝑐
. The governing equations can be expressed using non-dimensional parameters (12) 

in their dimensionless form after removing the dashes 

𝜕2𝑢

𝜕𝑥2
=∈1

𝜕2𝑢

𝜕𝑡2
+∈2

𝜕𝑇

𝜕𝑥
,                                                       (13) 

𝜕2𝑇

𝜕𝑥2
=
𝜕2𝑇

𝜕𝑡2
+∈3

𝜕𝑇

𝜕𝑡
+∈4

𝜕3𝑢

𝜕𝑡2𝜕𝑥
,                                                (14) 

𝜎 =
𝜕𝑢

𝜕𝑥
− 𝑏2𝑇,                                                             (15) 
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𝑢(𝑥, 0) = 0  ,
𝜕𝑢(𝑥,𝑡)

𝜕𝑡
|
𝑡=0

= 0, 𝑇(𝑥, 0) = 0  ,
𝜕𝑇(𝑥,𝑡)

𝜕𝑡
|
𝑡=0

= 0,                     (16) 

𝜎(0, 𝑡) = 0 ,
𝜕𝑇(𝑥,𝑡)

𝜕𝑥
|
𝑥=0

= −
𝑞𝑜𝑣

𝑇𝑜𝑘
∗

𝑡(2𝑡𝑝−𝑡)𝑒
−
𝑡
𝑡𝑝

16𝑡𝑝
3  , 𝑢(ℎ, 𝑡) = 0, 𝑇(ℎ, 𝑡) = 0,             (17) 

where ∈1=
𝜌𝑣2

𝜆+2𝜇
, ∈2=

𝑇𝑜𝛾𝑒

𝜆+2𝜇
, ∈3=

𝐿𝑣

𝑘∗
(𝜌𝑏𝜔𝑏𝑐𝑏 −

𝛼

10
𝑄𝑚𝑜), ∈4=

𝛾𝑒

𝜌𝑐𝑒
. 

Through the utilization of Laplace transforms, Eqs. (13) to (17) can be transformed 

𝑔̅(𝑥, 𝑠) = 𝐿[𝑔(𝑥, 𝑡)] = ∫ 𝑔(𝑥, 𝑡)𝑒−𝑠𝑡𝑑𝑡
∞

0
.                                        (18) 

Hence, we can obtain the following equations 

𝑑2𝑢

𝑑𝑥2
= 𝑠2 ∈1 𝑢̅ +∈2

𝑑𝑇̅

𝑑𝑥
,                                                        (19) 

𝑑2𝑇̅

𝑑𝑥2
= 𝑠(𝑠 +∈3)𝑇̅ + 𝑠

2 ∈4
𝑑𝑢

𝑑𝑥
,                                                    (20) 

𝜎̅ =
𝑑𝑢

𝑑𝑥
−∈2 𝑇̅,                                                                (21) 

𝜎̅(0, 𝑠) = 0,
𝑑𝑇̅(𝑥,𝑠)

𝑑𝑥
|
𝑥=0

= −
𝑞𝑜𝑣𝑠𝑡𝑝

8𝑇𝑜𝑘
∗(1+𝑠𝑡𝑝)

3  , 𝑢̅(𝐿, 𝑠) = 0, 𝑇̅(𝐿, 𝑠) = 0.             (22) 

Using Eqs. (19) and (20), we can express the vector-matrix differential equation by 

𝑑V

𝑑𝑥
= 𝐵𝑉,                                                                    (23)  

where 𝑉 =

(

 
 

𝑢̅
𝑇̅
𝑑𝑢

𝑑𝑥
𝑑𝑇̅

𝑑𝑥)

 
 

 and 𝐵 = (

0 0 1 0
0 0 0 1

𝑠2 ∈1 0 0 ∈2
0 𝑠(𝑠 +∈3) 𝑠2 ∈4 0

). 

To solve Eq. (23), we can utilize the eigenvalue techniques outlined in (Das et al. 1997, Baksi 

et al. 2006, Santra et al. 2014, Abbas et al. 2016, Gupta and Das 2016, Kumar et al. 2016, Kumar 

et al. 2017, Hobiny and Abbas 2019, Abbas et al. 2020) to obtain the characteristic relation of 

matrix 𝐵. 

𝜔4 − (𝑠2 ∈1+ 𝑠(𝑠 +∈3) + 𝑠
2 ∈2∈4)𝜔

2 + 𝑠3 ∈1 (𝑠 +∈3) = 0,                      (24) 

The roots of Eq. (24), denoted as  ±𝜔1 and  ±𝜔2, correspond to the eigenvalues of matrix 𝐵. It 

is worth noting that the terms in Eq. (24) consist of function of the Laplace parameters 𝑠 . 

Consequently, the general solution can be written as follows 

V(𝑥, 𝑠) = 𝐴1𝑋1𝑒
−𝜔1𝑥 + 𝐴2𝑋2𝑒

𝜔1𝑥 + 𝐴3𝑋3𝑒
−𝜔2𝑥 + 𝐴4𝑋4𝑒

𝜔2𝑥.                   (25) 

Therefore, within the Laplace domain, the overall solutions for displacement, temperature, and 

strain can be described as follows 

𝑢̅(𝑥, 𝑠) = 𝐵1𝑈1𝑒
−𝜔1𝑥 + 𝐵2𝑈2𝑒

𝜔1𝑥 + 𝐵3𝑈3𝑒
−𝜔2𝑥 + 𝐵4𝑈4𝑒

𝜔2𝑥.                   (26) 

𝑇̅(𝑥, 𝑠) = 𝐵1𝑇1𝑒
−𝜔1𝑥 + 𝐵2𝑇2𝑒

𝜔1𝑥 + 𝐵3𝑇3𝑒
−𝜔2𝑥 + 𝐵4𝑇4𝑒

𝜔2𝑥.                    (27) 

𝑒̅ = −𝜔1𝑈1𝐵1𝑒
−𝜔1𝑥 + 𝜔1𝑈2𝐵2𝑒

𝜔1𝑥 − 𝜔2𝑈3𝐵3𝑒
−𝜔2𝑥 + 𝜔2𝑈4𝐵4𝑒

𝜔2𝑥,             (28) 

here, 𝑇𝑖 and 𝑈𝑖 represent the eigenvector of temperature and displacement, respectively. The values  
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Fig. 1 The effect of blood perfusion rate 𝜔𝑏 in the temperature variations 𝑇 when 𝑡𝑝 = 32 s 

 

 

of 𝐵1, 𝐵2, 𝐵3 and 𝐵4 can be determined by utilizing the boundary conditions of the problem. To 

obtain the final solutions for temperature, displacement and strain distribution, the Stehfest method 

(Stehfest 1970) is employed as a numerical inversion strategy. 

 

 

4. Numerical results and discussions 
 

In order to illustrate the theoretical outcomes discussed in the preceding parts, we present the 

calculated numerical values of the physical constants. The material constants for skin tissue at the 

reference temperature are computed as demonstrated below (Li et al. 2018) 

𝜌𝑏 = 1060 (kg)(m
−3),  𝑐𝑏 = 3770 (J)(kg

−1)(k−1), 𝜇 = 3.446 × 107(N) (m−2), 
𝐾 = 0.235 (W)(m−1)(k−1), 𝜌 = 1190 (kg)(m−3), 𝑐𝑒 = 3600 (J)(kg

−1)(k−1), 
𝜆 = 8.27 × 108(N)(m−2), 𝑄𝑚 = 1.19 × 10

3(W)(m−3), 𝛼𝑡 = 1 × 10
−4(k−1), 𝑇𝑜 = 310 (k). 

Using the same set of parameters as before, the computed numerical values for physical 

quantities under the generalized biothermoelastic model without energy dispassion are presented 

below. These results are illustrated in Fig. 1-6. At time 𝑡 = 40 s, numerical computations were 

conducted to determine the variations in displacement, temperature and strain along the distance 𝑥. 

These quantities were evaluated for several values of the studied parameters, as illustrated in Figs. 

1-6. The temperature variation in relation to the distance 𝑥 are depicted in Figs. 1 and 4. The 

results demonstrate that the temperature initially peaks at the skin surface (𝑥 = 0) as a result of the 

exponentially diminishing pulse boundary heating flux. As the distance 𝑥 continues to increase, the 

temperature gradually diminishes until it reaches nearly zero. Figs. 2 and 5 show the displacement 

variations in relation to the distance 𝑥. The data clearly shows that the displacement magnitudes 

begin at their maximum values and progressively diminish as the distance 𝑥 increases, eventually  
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Fig. 2 The effect of blood perfusion rate 𝜔𝑏 in the displacement variation 𝑢 when 𝑡𝑝 = 32 s 

 

 
Fig. 3 The effect of blood perfusion rate 𝜔𝑏 in the strain variations 𝑒 when 𝑡𝑝 = 32 s 

 

 

approaching zero. The variations of strain with respect to the distance 𝑥 are illustrated in Figs. 3 

and 6. It is clear from the data that the strain initially reaches its maximum values and then 

gradually decreases until it approaches zero. The first group of Figures, namely Figs. 1, 2, and 3, 

portray the variations of temperature, displacement, and strain, respectively, under different blood 

perfusion rates. The data clearly demonstrates that the blood perfusion rate has a notable impact on  

67



 

 

 

 

 

 

Ibrahim Abbas, M. Saif AlDien, Mawahib Elamin and Alaa El-Bary 

 
Fig. 4 The temperature variations 𝑇 for different values of characteristic time of pulsing heat flux 𝑡𝑝 

 

 
Fig. 5 The displacement variation 𝑢 for various values of characteristic time of pulsing heat flux 𝑡𝑝 

 

 

the studied variables. With an increase in the blood perfusion rate, the maximum amplitudes of 

temperature, displacement, and strain decrease. This suggests that higher blood perfusion rates 

facilitate greater convective heat loss due to faster blood flow, leading to reduced magnitudes of 

temperature, displacement, and strain. The second group of Figures, namely Figs. 4, 5, and 6,  
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Fig. 6 The strain variation 𝑒 for various values of characteristic time of pulsing heat flux 𝑡𝑝 

 

 

depict the variations of temperature, displacement, and strain, respectively, under different 

characteristic times of pulsing heat flux. The data clearly shows that the characteristic time of the 

pulsing heat flux has a significant influence on the studied variables. As the characteristic time 

increases, the maximum amplitudes of temperature, displacement, and strain decrease. This 

suggests that the characteristic time of the pulsing heat flux tends to attenuate the effects of 

thermomechanical propagation. 
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