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Abstract.  This work presents an analytical approach to investigate wave propagation in bi-directional functionally 
graded cantilever porous beam. The formulations are based on Touratier’s higher-order shear deformation beam 
theory. The physical properties of the porous functionally graded material beam are graded through the width and 
thickness using a power law distribution. Two porosities models approximating the even and uneven porosity 
distributions are considered. The governing equations of the wave propagation in the porous functionally graded 
beam are derived by employing the Hamilton’s principle. Closed-form solutions for various parameters and porosity 
types are obtained, and the numerical results are compared with those available in the literature. The numerical results 
show the power law index, number of wave, geometrical parameters and porosity distribution models affect the 
dynamic of the FG beam significantly. 
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1. Introduction 
 

Functionally graded material (FGM), this mineral is getting attention many researchers for its 

advanced nature eristic. This is due to its distinctive texture by the continuous contrast between 

metallic and ceramic constituents through the beam’s thickness direction with a specific volume 

fraction index, functionally graded constructions are adopted because of their advantages and very 

high mechanical performance (rigidity), increase the bond strength, and reduce the thermal 

stresses. FGMs is developed for specific applications in aircraft engines, nuclear power, military 

industries, nuclear reactors, civil structures, and in some medical materials, etc. (Reddy and Chin 

1998, Reddy 2000, Muller et al. 2003, Aliaga and Reddy 2004, Lu et al. 2009, Houari et al. 2013, 
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Sayyad and Ghugal 2017, Slimane et al. 2021). Many studies have been performed on FG beams 

and FG plates to analyse the static, dynamic and thermo-mechanical behaviors. Ding et al. (2007) 

obtained elasticity solutions for anisotropic FG beams using the Airy stress function. Zhong et al. 

(2007) developed an analytical method for FG cantilever beams subjected to various types of 

mechanical loadings. In Daouadji et al. (2013) developed elasticity solutions to analyse 

functionally graded fixed-free beams subjected to different loads using the semi inverse method. 

Bouremana et al. (2013) presented an efficient a new first shear deformation FG beam theory 

based on neutral surface position. Xu et al. (2014) presented the two-dimensional elasticity 

solutions of FG beams with varying thickness. Sayyad and Ghugal (2017) developed a theory 

involving shear deformation to bending functionally graded beams and plates. 

The higher order shear deformation theory has been applied to study the dynamic behavior of 

functionally graded beams, plates and Nano-plates (Aydogdu and Taskin 2007, Sina et al. 2009, 

Koochaki 2011, Larbi et al. 2015, Hadji et al. 2016, Sayyad and Ghugal 2017b, Benadouda et al. 

2017, Shahsavari et al. 2018, Hadji et al. 2022, Adıyaman 2022.).  

Alshorbagy et al. (2011) studied free vibration characteristics of a FG beams by a finite 

element technique based on Euler-Bernoulli beam theory. Bouzidi et al. (2020) studied the 

vibrational behavior of FG rotary blade system, material properties gradation of the blade and the 

shaft is described using the power law distribution, and a new expression of power law distribution 

is developed to express the gradation of the material properties of the blade in the direction of the 

thickness and display direction at the same time. Using the same mechanical distribution of the 

material, Hassaine et al. (2022), analysed the effect of transverse cracks on the natural frequencies 

of Euler-Bernoulli FG beam via classical finite elements method. Saimi et al. (2023) investigated 

the dynamic and buckling response of bi-directional graded material beams (BDFB) with 

transverse cracks, using the differential quadrature finite elements method with considering 

different boundary conditions. 

The thermos-mechanical behavior of FG beams and plates has attracted attention many 

researches in various engineering, (Abdelhak et al. 2015, El-Sayed Habib et al. (2019), Lan 

(2020), Roodgar and Suphanut (2023), Eiadtrong et al. (2023).  

Some previous studies have included the problem of porosity and its effect on the structures 

behavior, as porosities-model may appear within functionally graded structures during the 

production progress. Da Chen et al. (2016) investigated the free and forced vibrations of shear 

deformable porous FG beams. Benadouda et al. (2017) has investigated the influence of many 

parameters on the wave propagation of a FG beam having porosities. The governing equations of 

the wave propagation in the FG beam are derived by using the Hamilton’s principle, and the 

analytic dispersion relations of the FG beam are obtained by solving an eigenvalue problem. 

Belaid Batou et al. (2019), studied wave propagations in sigmoid functionally graded (S-FG) 

plates, using new Higher Shear Deformation Theory (HSDT) based on two-dimensional (2D) 

elasticity theory. The higher order theory has only four unknowns, which mean that few numbers 

of unknowns, compared with first shear deformations and others higher shear deformations 

theories and without needing shear corrector. The material properties of sigmoid functionally 

graded are assumed to vary through thickness according sigmoid model. The (S-FG) plates are 

supposed to be imperfect, which means that they have a porous distribution (even and uneven) 

through the thickness of these plates. Extensive results are presented to check the efficient of 

present methods to predict wave dispersion and velocity wave in S-FG plates. An analytical 

analysis for the study of vibratory behavior and wave propagation of FG plates is presented by 

Bennai et al. (2019), based on a high order shear deformation theory. The field of displacement of 
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theory is present of indeterminate integral variables. Equations of motion are derived by the 

principle of minimization of energies. Analytical solutions of free vibration and wave propagation 

are obtained for FGM plates simply supported by integrating the analytic dispersion relation. 

Illustrative examples are given to show the effects porosity parameter, material graduation, 

thickness-to-length ratio and porosity distribution on the vibration and wave propagation of FG 

plates. 

Hadji et al. (2022) considered the effect of evenly and unevenly distributed porosity on the 

bending and free vibration of porous FG beams resting on elastic foundations. The hyperbolic 

shear deformation theory is applied for the kinematic relations, the study showed that the effect of 

porosity on the bending of imperfect beams with even porosity distribution and the uneven 

distribution of porosity is very obvious, and the even porosity distribution gives the highest shear 

stress value compared to the other distributions porosity. Several models-porosity have been 

introduced recently with different distributions (Gökhan Adıyaman 2022, Amoozgar and Gelman 

2022, Al-Itbi and Noori 2023, Saffari 2023, Wattanasakulpong et al. 2023, Medjdoubi et al. 2023, 

Dahmane et al. 2023, Mellal et al. 2023). 

It is clear from the literature discussed above that there is a lack of studies on wave propagation 

in the FGMs beam containing porosities and with different distribution in thickness and width. The 

objective of this work is to investigate the wave propagation of bidirectional porous FG beam 

using Touratier’s Higher-order shear deformation theory, according to the power law distribution 

and wave number. The material properties of the beam are supposed to be dependent on the 

gradation pattern through the width and thickness directions via power-law form. The distribution 

of porosity through the cross sections to two distribution functions, namely Even and Uneven-O. 

The governing equations of the wave propagation in the bidirectional porous FG cantilevered-

beam are derived by using the Hamilton’s principle. The numerical results are evaluated with those 

from earlier studies. several studies cases were done to examine the influence of the power-law 

gradation index, porosity models, geometrical parameters and wave number on the first natural 

frequencies of FG fixed-free beam. 

 

 

2. Mathematical formulation and theories 
 

Consider a porous FG beam with a width b, thickness h, and length L; a porous functionally 

graded beam, composed of metal (SUS304) and ceramic (Si3N4) materials, is considered. In this 

investigation, two forms of porosity are considered, evenly distribution as seen in Fig. 1, whereas 

the other one are characterized by an Unevenly-O distribution, see the Fig. 2. 

The general material properties of an FGM beam with evenly (uniformly) distributed porosity 

can be written as (Wattanasakulpong et al. 2014, Cong et al. 2018, Dahmane et al. 2023) 

( ) ( ) ( ) ( )
2 2

m m p c c pP z P V z f P V z f z
    

= − + −   
   

                                   (1) 

𝑓𝑝 is a function that shows the distribution of the porosities through the cross-section of the 

beam, 𝑓𝑝 = 1 for even-porous FG beam. 

( ) ( ) ( )
2 2

m m c cP z P V z P V z
    

= − + −   
   

                                         (2) 
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Fig. 1 Bidirectional even-porous FG beam (Dahmane et al. 2023) 

 

 

Fig. 2 Bidirectional uneven-porous FG beam 

 

 

The material properties P of FG beam can be written as vary continuously along the width y-

axis and the thickness z-axis according to the following relation (Hassaine et al. 2022) 

( ) ( ) ( )m m c cP y,z P V y,z PV y,z= +                                                  (3) 

In our study, the material properties P of even-porous FG beam can be written as (Dahmane et 

al. 2023) 

( ) ( ) ( ) ( )
2 2

m m p c c pP y,z P V y,z f P V y,z f y,z
    

= − + −   
   

                            (4) 

Where 𝑃(𝑦 , 𝑧) denotes either the density 𝜌(𝑦 , 𝑧) and the Young’s modulus 𝐸(𝑦 , 𝑧).  

The volume fractions of ceramic 𝑉𝑐(𝑦, 𝑧) and metal 𝑉𝑚(𝑦, 𝑧)  are considered to be distributed 

along the width and thickness as follows 
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1 1

2 2

k n

c

y z
V

b h

   
= + +   
   

                                                          (5) 

1 1
1

2 2

k n

m

y z
V

b h

   
= − + +   

   
                                                      (6) 

Where,  

k: the FG power-law index along the width direction y-axis, 0 ≤ k ≤ ∞.  

n: the FG power-law index along the width direction z-axis, 0 ≤ n ≤ ∞.  

Properties of the even-porous FG beam can be obtained as 

( ) ( ) ( ) ( )
1 1

2 2 2

k n

c m m c m p

y z
P y,z P P P P P f y,z

b h

   
= − + + + − −   

   
                        (7) 

The Young’s modulus and material density can be obtained from Eq. (7) as 

( ) ( ) ( ) ( )
1 1

2 2 2

k n

c m m c m p

y z
E y,z E E E E E f y,z

b h

   
= − + + + − −   

   
                      (8) 

  ( ) ( ) ( ) ( )
1 1

2 2 2

k n

c m m c m p

y z
y,z f y,z

b h


     

   
= − + + + − −   

   
                      (9) 

The beam is described by two-dimensional plane stress problem, the kinematic strain-

displacement relations are described (Dahmane et al. 2023) 

( )

( )

0

0

xx

zz

xz

x

u x,z,t

w x,z,tz

x z







 
 

  
      =             

   

                                                (10) 

In which u, w are the displacements in x and z directions (Mellal et al. 2023) 

0
b sw w

u( x,z,t ) u ( x,t ) z f ( z )
x x

 
= − −

 
                                              (11) 

b sw( x,z,t ) w ( x,t ) w ( x,t )= +                                                         (12) 

Where 𝑢0  is the mid-plane displacement of the beam in the x direction, 𝑤𝑏  and 𝑤𝑠  are the 

bending and shear components of transverse displacement, respectively. 

The various expressions of the unidirectional and bi-directional uneven porosity distribution are 

presented in the following functions, respectively (Benadouda et al. 2017) 

( )
2

1p

z
f z

h

 
= − 
 

                                                                 (13) 
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( )
2 2

1 1p

y z
f y,z

b h

  
= − −  
  

                                                (14) 

Our choice of shear shape function is determined based on sinusoidal shear deformation theory 

(SSDT) of Touratier’s (1991) 

h z
f ( z ) z sin

h





 
= −  

 
                                                    (15) 

And 

z
g( z ) cos

h

 
=  

 
                                                          (16) 

 

2.1 Kinematics and constitutive equations  
 

Hamilton’s principle is used herein to derive the equations of motion. The principle can be 

stated in analytical form as (Mellal et al. 2023) 

( )
2

1

  0
t

t
U K dt − =                                                       (17) 

Where 𝛿𝑈 is the variation of strain energy; and 𝛿𝐾 is the variation of kinetic energy. 

The constitutive stress-strain equation, in a case of FG porous beam, can be represented as 

( )
2

1 0

1 0
1

1
0 0

2

xx xx

zz zz

xz xz

E y,z
  

  


  

 
    
    

     −     −    
 

                                             (18) 

The non-zero strains components are obtained as (Dahmane et al. 2023) 

0 b s

xx xx xx xxzk f ( z )k = + + , 0

xz xzg( z ) =                                         (19) 

The stress resultants are obtained as 

0

11 11 11

11 11 11

11 11 11

s

xx xx

b s b

xx xx

s s s s s

xx xx

N A B B

M B D D k

M B D H k

    
    

    
        

                                               (20) 

Where the cross-sectional stiffness is expressed as 

{𝐴11 𝐵11 𝐷11 𝐵11
𝑠 𝐷11

𝑠 𝐻11
𝑠 } = ∫

𝐸(𝑦,𝑧)

1−𝜈2

ℎ

2
−ℎ

2

(1, 𝑧, 𝑧², 𝑓(𝑧), 𝑧𝑓(𝑧), 𝑓(𝑧)²)𝑑𝑧          (21) 

And 
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( )
( )

2 2

55
2 2 1

h /
s

h /

E( z )
A g z dz

−

=    +
                                                 (22)  

The equations of motion can be expressed in terms of displacements (𝑢0 , 𝑤𝑏 , 𝑤𝑠 ) and the 

appropriate equations take the form 

2 3 3

0
11 11 11 0 0 1 22 3 3

sb s b su w w w w
A B B J u J J

x x x x x

    
− − = − −

    
                                (23) 

( )
3 4 4

2 20 0
311 11 11 0 1 43 4 4

  sb s
b s b s

u w w u
B D D J w w J J w J w

x x x x

   
− − = + + −  − 

   
             (24) 

The inertia coefficients are defined as follows 

( ) ( )
2

2 2

0 1 2 3 4 5
2

1  
h/

h /

J ,J ,J ,J ,J ,J ,z, f ,z ,z f , f ( z )dz
−

=                                    (25) 

 

2.2 Analytical solution 
 

We assume solutions for 𝑢0, 𝑤𝑏, and 𝑤𝑠 representing propagating waves in the x-direction with 

the form 

 
 
 

0  

 

 

b b

s s

u ( x,t ) U exp i( x t

w ( x,y,t ) W exp i( x t

w ( x,y,t ) W exp i( x t

 

 

 

 − 
   

= −   
   −   

                                               (26) 

Where 𝑈, 𝑊𝑏, and 𝑊𝑠 are the coefficients of the wave amplitude, 𝜆 is the wave number of wave 

propagation along x-axis direction, ω is the Eigen-frequency. The analytical solutions can be 

obtained by 

     ( )  2K - ω M 0b

s

U

W

W

 
 

= 
 
 

                                                       (27) 

Where 

 
11 12 13

21 22 23

31 32 33

a a a

K a a a

a a a

 
 

=
 
  

,  
11 12 13

21 22 23

31 32 33

m m m

M m m m

m m m

 
 

=
 
  

                                        (28) 

Where 

2

11 11a -A = , 3

12 11a =i λ B ,  3

21 11a =-i B , s 3

13 11a =i B  , s 3

31 11a =-i B  ,  4

22 11a =-D  ,  s 4

23 11a =-D  , 

( )s 4 s 2

33 11 1 55 1a =- H K +A K                                                        (29) 

11 0m =-J , 12 1m =i J  , 21 1m =-i J  , 2

22 0 3m =-J -J  , 13 2m =i J  , 31 4m =-i J  2

23 32 0 4m =m =-J -J  , 
2

33 0 5m =-J -J                                                               (30) 
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Fig. 3 First natural frequency of porous FG beam according to the wave number for α=0.1, and the 

power index n=k=2 
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Fig. 4 Second natural frequency of porous FG beam according to the wave number for α=0.1, and the 

power index n=k=2 

 

 

For non-trivial solutions of Eq. (27) the following determinants should be zero 

   2 K - ω M  =0                                                          (31)
 

The roots of Eq. (29) can be expressed as (Benadouda et al. 2017) 

1 1ω =W (λ), 2 2ω =W (λ) , 3 3ω =W (λ)                                                (32) 

They correspond to the wave modes 𝑀0, 𝑀1 and 𝑀2 respectively, Benadouda et al. (2017). 
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Fig. 5 First natural frequency of porous FG beam according to the power index for different coefficient 

porosity, wave number is 10 

 

 

The phase velocity of wave propagation in the FG beam can be expressed as (Batou et al. 2019) 

i
i

W ( )
C = ,   (i=1,2,3)




                                                    (33) 

 

2.3 Numerical results and discussion 
 

The material characteristics of the two constitutes phases, which form the FG beam are given 

as: 

Ceramic (Si3N4): Young’s modulus is 348.43 GPa, the density is 2370 (kg m-3); 

Metal (SUS304): Young’s modulus is 201.04 GPa, the density is 8166 (kg m-3);  

Poisson coefficient is 0.3 for both. 

Firstly, the second natural frequencies of even and uneven porosity FG beam for various wave 

number propagation, and for power indices is 2, are determined and compared with Benadouda et 

al. (2017) for the unidirectional FG fixed-free beam, using an analytical solution based on a Reddy 

higher order shear theory, where the porosity coefficient is 0.1. The very good agreement is 

observed, see Figs. 3 and 4. The biggest change in values is 15.91% for uniform porosity, while it 

is 14.81% for the second type of porosity, these changes in values correspond to the first mode. 

The results illustrate that the porosity has a very important effect on the frequency values, an 

increase in the porosity coefficient in solids leads to a decrease in their rigidity, and that is through 

a decrease in the value of the natural frequencies. The results show that the porosity of the uniform 

distribution has the greatest effect in reducing the frequencies compared to the irregular 

distribution, especially with the increase in wave number. The results illustrate that the second 

adopted method (bi-directional) shows a wider difference between uniform and no-uniform 

porosity values, especially in the mode two, where the value of the largest change is estimated at a 

3.57%. 
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Fig. 6 Second natural frequency of porous FG beam according to the power index for different 

coefficient porosity, wave number is 10 
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Fig. 7 Natural frequency (mode two) of porous FG beam according to the power index for different 

coefficient porosity, wave number is 10 

 

 

Figs. 5, 6, and 7 represents the variation of the natural frequencies of the first three modes for 

unidirectional and bi-directional even and uneven-porous FG beam as function to the power law 

index for different coefficient porosity, where the wave number is 10. It is clear that both 

porosities, coefficient porosity and power law index affect the frequency values. These figures 

demonstrate that the fundamental frequencies of the FG beam decrease when the power indices 

increase, the decrease is due to the passage from alumina (Si3N4) which has a higher elastic 

modulus with lower density to steel (SUS304) which has lower elastic modulus with higher 

density. There is a consistent contrast in the results between the unidirectional results and  
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Wave propagation of bi-directional porous FG beams using Touratier’s higher-order… 
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Fig. 8 Natural frequency (mode zero) of porous FG beam according to the power index for different 

geometrical parameters, wave number is 10 
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Fig. 9 Phase velocity (mode zero) of porous FG beam according to the power index for different 

geometrical parameters, wave number is 10 

 

 

bidirectional results.  

The Figs. 8-9 represent a comparison of the first frequency variation and the associated wave 

velocity (mode zero) of bi-directional FG porous beam, in term of power law index and for 

different geometrical parameters b/h, where wave number 10. The results showed that the 

frequency values decrease with decreasing cross-sectional area, and the values do not differ 

significantly in the presence of both types of porosity in this topic. 

Figs. 10-12 show the variation of the first three frequencies of bi-directional FG porous beam 

with even distribution, and from 13-18 with Uneven-O distribution as a function of the wave 

number for various power-law index and coefficient porosity. The results show that there is a large  
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Fig. 10 Natural frequency-M0 of uniform-porous FG beam according to the wave number propagation 

for different power index, and different coefficient porosity where wave number is 10 
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Fig. 11 Natural frequency-M1 of uniform-porous FG beam according to the wave number propagation 

for different power index, and with different coefficient porosity 

 

 

variation in the values, especially the last mode. Also, all values take the same upward trend and 

decrease in the same pattern. The results show that the concentration of the irregular substance 

distribution in both axes affects the values of the expected frequencies. 

 

 

5. Conclusions 
 

In the present work, the wave propagation issue in porous, bi-directional functionally graded  
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Fig. 12 Natural frequency-M2 of uniform-porous FG beam according to the wave number propagation 

for different power index, and with different coefficient porosity where 
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Fig. 13 Natural frequency-M0 of uneven-porous FG beam according to the wave number propagation 

for different power index, and with different coefficient porosity 

 

 

cantilevered beam was studied using Touratier’s higher-order shear theory. Two models of porosity 

were considered, uniform distribution called even and no-uniform distribution called uneven. 

According to the power law index, the material’s characteristics are dependent change gradually 

through the width y-direction and thickness z-direction. The governing equations of the wave 

propagation dispersion in the porous FG beam are derived by employing the Hamilton’s principle. 

The analytical solution of the porous FG cantilever beam is obtained by solving an eigenvalue 

problem. the natural frequencies of the first three modes, phase velocity were obtained. The results  
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Fig. 14 Natural frequency-M1 of uneven-porous FG beam according to the wave number propagation 

for different power index, and with different coefficient porosity 
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Fig. 15 Natural frequency-M2 of uneven-porous FG beam according to the wave number propagation 

for different power index, and with different coefficient porosity 

 

 

obtained for bi-directional porous FG beam were compared with those reported in the literature, 

and the results were very agreement. The effects of the volume fraction distributions, the wave 

number of propagation, and the porosity types on dynamic of FG beam are discussed in details:  

• The power index, wave number, and porosity types affect the wave propagation of the beam 

significantly;  

• The porosity has a very important effect on the frequency values, an increase in the porosity 

coefficient in solids leads to a decrease in their stiffness, and that is through a decrease in the  
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Fig. 16 First natural frequency-M0 of uneven-porous FG beam according to the wave number 

propagation for different power index, and different coefficient porosity 
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Fig. 17 Second natural frequency-M1 of uneven-porous FG beam according to the wave number 

propagation for different power index, and different coefficient porosity 

 

 

value of the fundamental frequencies;  

• The porosity of the even distribution has the greatest effect in reducing the natural frequencies 

compared to the uneven distribution;  

• The uneven porosity predicts higher fundamental frequencies than the even porosity;  

• The concentration of the asymmetrical substance distribution of FG in both axes affects the 

values of the expected frequencies;  

• The current model presented bi-directional porous FG beam is more appropriate analytical 

approach for using then unidirectional porous FG beam. 
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Fig. 18 Third natural frequency-M2 of uneven-porous FG beam according to the wave number 

propagation for different power index, and with different coefficient porosity 
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