
 

 

 

 

 

 

 

Coupled Systems Mechanics, Vol. 13, No. 1 (2024) 21-41 

https://doi.org/10.12989/csm.2024.13.1.021                                                                                                   21 

Copyright © 2024 Techno-Press, Ltd. 
http://www.techno-press.org/?journal=csm&subpage=8               ISSN: 2234-2184 (Print), 2234-2192 (Online) 
 
 
 

 

 
 
 

Interactions in transversely isotropic new modified couple 
stress solid due to Hall current, rotation, inclined load 

with energy dissipation 
 

Parveen Lataa and Harpreet Kaur 
 

Department of Basic and Applied Sciences, Punjabi University, Patiala, Punjab, India 

 
(Received August 22, 2023, Revised October 9, 2023, Accepted October 10, 2023) 

 
Abstract.  This paper is concerned with the disturbances in a transversely isotropic new modified couple stress 
homogeneous thermoelastic rotating medium under the combined influence of Hall currents, magnetic fields, and 
mechanical sources represented by inclined loads. The application of Laplace and Fourier transform techniques are 
used for the derivation of analytical expressions for various physical quantities. As an application, the bounding surface 
is subjected to uniformly and linearly distributed force (mechanical force). Present model contains length scale 
parameters that can capture the size effects. Numerical inversion techniques has been used to provide insights into the 
system's behavior in the physical domain. The graphical representation of numerical simulated results has been 
presented to emphasize the impact of rotation and inclined line loads on the system, enhancing our understanding of 
the studied phenomena. Further research can extend this study to investigate additional complexities and real-world 
applications. 
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1. Introduction 
 

A macro-scale analysis of materials can be made with the help of classical continuum mechanics 

theory, which ignores the microstructure size-dependency. For a more complete continuum theory, 

new deformation measures are needed. This implies that couple stresses must also be introduced 

into such a theory. Firstly, Voigt (1887) proposed the asymmetric theory of elasticity, and afterward 

in 1909, a couple stress theory was presented by Cosserat and Cosserat (1909), but examiners 

deemed the theory not important due to its failure to establishing the constitutive relations. Mindlin 

(1963) introduced a standard couple stress theory for isotropic materials with constitutive relation 
𝜎𝑖𝑗 = 𝜆𝑒𝑘𝑘𝛿𝑖𝑗 + 2𝐺𝜀𝑖𝑗 

𝑚𝑖𝑗 = 4𝑙2𝐺𝜒𝑖𝑗 where 𝜒𝑖𝑗 = 𝜔𝑖,𝑗 

𝑒𝑖𝑗 =
1

2
(𝑢𝑖,𝑗 + 𝑢𝑗,𝑖) 
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𝜔𝑖 =
1

2
𝑒𝑖𝑗𝑘𝑢𝑘,𝑗 

Due to the asymmetric nature of the couple and curvature stress tensors, this theory is also 

designated as asymmetric couple stress theory. In addition, Koiter (1969) introduced constitutive 

relationships for anisotropic materials based on Cosserat couple stress theory. 

𝜎𝑖𝑗 = 𝑐𝑖𝑗𝑘𝑙𝑒𝑘𝑙 

                                    𝑚𝑖𝑗 = 𝑙𝑖
2𝐺𝑖𝜒𝑖𝑗 , 𝑙𝑖(𝑖 =  1,2,3) are length scale parameters 

Employing the balance law for moments of couple besides the balance laws for forces and 

moment of forces a modified couple stress theory (M-CST) with one length scale parameter was 

offered by Yang et al. (2002). Application of this equilibrium equation leads to a symmetric couple-

stress tensor. In M-CST 

𝜒𝑖𝑗 =
1

2
(𝜔𝑖,𝑗 + 𝜔𝑗,𝑖), 

𝜎𝑖𝑗 = 𝜆𝜀𝑘𝑘𝛿𝑖𝑗 + 2𝐺𝜀𝑖𝑗 

𝑚𝑖𝑗 = 2𝑙2𝐺𝜒𝑖𝑗̂ 

Chen et al. (2012) extended the modified couple stress theory to anisotropic elasticity namely 

new modified couple stress theory (newMCST) containing three length scale parameters. For 

newMCST, 

𝜎𝑖𝑗 = 𝑐𝑖𝑗𝑘𝑙𝜀𝑘𝑙 

𝜒𝑖𝑗 = 𝜔𝑖,𝑗 

𝑚𝑖𝑗 = 𝑙𝑖
2𝐺𝑖𝜒𝑖𝑗 + 𝑙𝑗

2𝐺𝑗𝜒𝑗𝑖 

Abbas (2007) studied the thermoelastic interactions in an infinite homogeneous elastic medium 

with a spherical or cylindrical cavity, using Green-Lindsay and Lord-Shulman theory. The cavity 

surface is subjected to a ramp-type heating of its internal boundary which is assumed to be traction 

free. The effect of rotation in generalized thermoelastic solid under the influence of gravity with an 

overlying infinite thermoelastic fluid was analyzed by Ailawalia and Narah (2009).  

Kumar and Gupta (2010) investigated the deformation in an orthotropic micropolar thermoelastic 

solid with two relaxation times as a result of inclined load. 

Large deflection thermoelastic analysis of functionally graded (FG) solid and hollow rotating 

axisymmetric disk with uniform and variable thickness subjected to thermo-mechanical loading is 

studied by Golmakani (2013), using first order shear deformation theory. Abouelregal and Zenkour 

(2013) used fractional order theory of thermoelasticity to study the effect of angular velocity on 

fiber-reinforced generalized thermoelastic medium whose surface is subjected to a Mode-I crack 

problem.7 

Othman et al. (2014) considered the dual-phase lag model to study the influence of the rotation 

on a two-dimensional problem of micropolar thermoelastic isotropic medium with two temperatures. 

Zenkour and Abbas (2014) analyzed the nonlinear transient thermal stress conducted for 

temperature-dependent hollow cylinders subjected to a decaying-with-time thermal field Numerical 

results obtained with the assumptions of temperature-dependent and temperature-independent of the 

material properties are compared. 

Sharma et al. (2015) investigated the two dimensional deformation in a homogeneous, 

transversely isotropic thermoelastic solids with two temperatures in context of Green-Naghdi theory 

of type-II as a result of an inclined load. Lou and He (2015) studied the nonlinear bending and free 

vibration responses of a simply supported functionally graded (FG) microplate lying on an elastic 

foundation within the context of the modified couple stress theory and the Kirchhoff/Mindlin plate 
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theory in combination with the von Karman’s geometric nonlinearity. 

Abbas and Kumar (2016) studied the plane problem in initially stressed thermoelastic half-space 

with voids due to thermal source. Lord-Shulman theory of thermoelasticity with one relaxation time 

has been used to investigate the problem. Dai and Dai (2016) studied the displacement and stress 

fields in a functionally graded material (FGM) hollow circular disk, rotating with an angular 

acceleration under a changing temperature field, by using a semi-analytical approach.  Keivani et al. 

(2016) investigated the impacts of the vdW force and centrifugal force on the static behavior of the 

U-shaped and double sided nano-actuators. They applied the modified couple-stress theory (MCST) 

for deriving the governing equations and demonstrated that the vdW force decreases the external 

pull-in voltage of the system. 

Kumar (2017) dealt with two dimensional problem in magneto-microstretch thermoelastic 

medium in the presence of combined effects of Hall current and rotation. The microstretch theory 

of thermoelasticity with two relaxation times derived by Eringen has been used to investigate the 

problem. Said et al. (2017) used normal mode technique to study thermodynamical interactions in 

amicropolar magneto-elastic medium with rotation and two-temperature. Abouelregal and Abo-

Dahab (2018) researched a two-dimensional problem in the context of dual-phase-lag model with 

fiber-reinforcement and rotation using normal mode analysis. 

Fard et al. (2018) studied the dynamical instability of three-layer micro-switch under DC voltage 

actuation using modified couple stress theory. Dynamic response of micro switch has been 

investigated with and without considering the damping effects. Ashraf (2018) presented a refined 

two-temperature multi-phase-lags thermoelasticity theory for the thermomechanical response of 

microbeams subjected to inclined load applying modified couple stress theory. Keivani et al. (2018) 

developed a mathematical model to study the effects of the electrostatic, Casimir and centrifugal 

forces on the static behaviors of the two U-shaped NEMS with rectangular and circular geometries.  

The size-dependent equations are obtained by employing the consistent couple stress theory (CCST). 

The D’Alembert principle is used to transform the angular speed into an equivalent static centrifugal 

force. 

Rahi (2019) used the modified couple stress theory to capture size effect on dynamic behavior in 

a micro drill subjected to an axial load and a concentrated mass which is attached at its free end.  

Gunghas et al. (2019) investigated the two-dimensional deformations in a nonhomogeneous, 

isotropic, rotating, magneto-thermoelastic medium in the context of Green-Naghdi model III. Lata 

and Kaur (2019) dealt with the time harmonic interactions in transversely isotropic magneto 

thermoelastic solid with two temperatures (2T), rotation and without energy dissipation due to 

inclined load. Lord-Shulman theory has been formulated for this mathematical model. Lata and 

Harpreet (2019) studied the deformity in a homogeneous isotropic thermoelastic solid using 

modified couple stress theory subjected to inclined load with two temperatures with multi-dual-

phase-lag heat transfer. Lata and kaur (2019) have considered transversely isotropic magneto 

thermoelastic solid with two temperature and without energy dissipation due to inclined load. The 

mathematical model has been formulated using Lord-Shulman theory. Size effective theories 

considered are modified couple stress theory (MCST), modified strain gradient theory (MSGT), 

nonlocal elasticity theory (NET), surface elasticity theory (SET), nonlocal surface elasticity theory 

(NSET). Kumar et al. (2019) studied the thermoelastic thin beam in a modified couple stress with 

three-phase-lag thermoelastic diffusion model subjected to thermal and chemical potential sources. 

Abbas et al. (2020) investigated the photo-thermo-elastic interaction in an infinite semi-

conductor material with cylindrical cavities loaded by a thermal shock varying heat. The effect of 

variable thermal conductivity through the photo-thermo-elastic transport process is studied using the 
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coupled models of thermo-elasticity and plasma waves. Alzahrani et al. (2020) investigated of a 

two-dimensional porous material under weak, strong and normal conductivity, using the eigenvalues 

method. Comparisons are made among the outcomes obtained under weak, normal and strong 

conductivity. Said (2020) investigated plane waves and the fundamental solution in rotating 

modified couple stress generalized thermoelastic solid with two-temperatures.  

Hongwei et al. (2021) studied the amplitude motion and frequency simulation of a thick annular 

microsystem with graphene nanoplatelets (GPL) reinforcement in the framework of the modified 

couple stress theory (MCST). Marin et al. (2021) presented a model for porothermoelastic waves 

under a fractional time derivative and two times delays to study temperature increments, stress and 

the displacement components of the solid and fluid phases in porothermoelastic media. The 

governing equations are presented under Lord-Shulman theory with thermal relaxation time. Sharma 

et al. (2021) presented the rotating FGM disk with variable thickness by using finite element method 

(FEM). Thermo-elastic material properties and thickness of FGM disk continuously vary as 

exponential and power law function in radial direction along radius of disk.  A comparative study of 

energy dissipation and quality factor evaluation in thin and thick beams pertaining to stress and 

strain conditions are done for diamond based microbeams by Resmi et al. (2021). 

Based on the modified couple stress theory (MCST), the free vibration and buckling 

characteristics of porous functionally graded materials micro-beams (P-FGMs) are studied by Teng 

et al.(2022). Chang and Lee (2022) presented a general finite element formulation based on a six-

field variational principle that incorporating the consistent couple stress theory. A simple, efficient 

and local iteration free solving procedure that covers both elastic and inelastic materials is derived 

to minimise computation cost. Esen (2022) presented a modified continuum mathematical model 

capable on investigation of dynamic behavior and response of perforated microbeam under the effect 

of moving mass/load based on modified couple stress theory and Timoshenko first-order shear beam 

theory. 

Abouelregal et al. (2023) studied the effects of an axial heat supply on the thermomechanical 

behavior of an FG Piezoelectric thermally isolated rod using a modified Lord-Shulman model with 

the concept of a memory-dependent derivative (MDD). The exponential change of physical 

properties in the direction of the axis of the flexible rod is taken into account. It is assumed that there 

is no electric potential between the two ends of the rod. 

The microstructure-dependent size effects have been exhibited by many micro- and nano-scale 

components and devices. Due to increase in the use of NEMS/MEMS transversely isotropic 

materials gain importance. And theories related to transversely isotropic media should be developed. 

Present model is capable to predict size effect at nano/macro scale. Rotating blades of wind mill are 

made up of fibre composites which show transversely isotropic properties. Water rotater is made up 

of timber, which is transversely isotropic. Nowadays pultruded Fiber Reinforced Polymer (FRP) 

thinwalled beams are usually employed in pedestrian bridges and bridge decks, as well as, more 

recently, in building structures. uniformly distributed load on the bridge deck an essential type of 

load that we must apply to the design. Also Bridge legs are build with the incline and decline. 

Titanium and its alloys are commonly used in the construction of aircraft due to its high strength 

properties, high-temperature resistance and high corrosion resistance. Also transversely isotropic 

aluminium is used in aircraft system. Thus present model a realistic model to study the deformation 

pattern in bridges and aircrafts, and also to capture size effects. 

Objective of this paper is to study the homogeneous, new modifiedcouple stress thermoelastic 

medium medium under the combined effects of Hall currents, magnetic fields, and mechanical 

sources represented by inclined loads. The application of Laplace and Fourier transform techniques 
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are used for the derivation of analytical expressions for various physical quantities. As an 

application, the boundary surface is subjected to uniformly and linearly distributed force 

(mechanical forces). Numerical inversion techniques has been used to obtain the solution in the 

physical domain. The graphical representation of numerical simulated results has been presented to 

emphasize the effect of rotation and inclined line loads on the resulted quantities.  

 The advantage of use of integral transform technique is that manipulating and solving the 

equation is much easier in the transformed domain than in the original domain. The solution can 

then be mapped back to the original domain with the inverse of the integral transform. 

  

 

2. Basic equations 
 

Following Chen and Li (2012) and Devi (2017) the constitutive relations for a transversely 

isotropic new modified couple stress thermoelastic medium are given by                                     

𝜎𝑖𝑗 = 𝑐𝑖𝑗𝑘𝑙𝑒𝑘𝑙 +
1

2
𝑒𝑖𝑗𝑘𝑚𝑙𝑘,𝑙 − 𝛽𝑖𝑗𝑇, (1) 

Equation of motion for a transversely isotropic thermoelastic medium rotating uniformly with an 

angular velocity 𝛀 = Ω𝑛, where n is a unit vector representing the direction of axis of rotation and 

taking into account Lorentz force 

 𝜎𝑖𝑗,𝑗 + 𝐹𝑖  =  𝜌 {𝑢̈𝑖 + (Ω × (Ω × 𝑢))
𝑖

+ (2Ω × 𝑢̇)𝑖}, (2) 

Following Chandrasekharaiah (1998) and Youssef (2007), The heat conduction equation with 

two temperature and with and without energy dissipation is given by  

𝐾𝑖𝑗𝑇,𝑖𝑗 + 𝐾𝑖𝑗
∗ 𝑇̇𝑖𝑗 = 𝛽𝑖𝑗𝑇0𝑒𝑖𝑗̈ + 𝜌𝐶𝐸𝑇̈, (3) 

The above equations are supplemented by generalized Ohm's law for media with finite 

conductivity and including the Hall current effect 

𝑱 =
𝜎0

1 + 𝑚2
 (𝑬 + 𝜇0 ( 𝒖̇ × 𝑯 −

1

𝑒𝑛𝑒
𝑱 × 𝑯0)), (4) 

where 

𝛽𝑖𝑗 = 𝑐𝑖𝑗𝑘𝑙𝛼𝑖𝑗, (5) 

𝑒𝑖𝑗 =
1

2
(𝑢𝑖,𝑗 + 𝑢𝑗,𝑖), (6) 

𝑚𝑖𝑗 = 𝑙𝑖
2𝐺𝑖𝜒𝑖𝑗 + 𝑙𝑗

2𝐺𝑗𝜒𝑗𝑖 , (7) 

𝜒𝑖𝑗 = 𝜔𝑖,𝑗, (8) 

𝜔𝑖 =
1

2
𝑒𝑖𝑗𝑘𝑢𝑘,𝑗. (9) 

Here 

𝐹𝑖 = 𝜇0(𝑱 × 𝑯0)𝑖  , are the components of Lorentz force. 
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𝛽𝑖𝑗 = 𝛽𝑖𝛿𝑖𝑗,  𝐾𝑖𝑗 = 𝐾𝑖𝛿𝑖𝑗 ,  𝐾𝑖𝑗
∗ = 𝐾𝑖

∗𝛿𝑖𝑗 ,  𝑖 is not summed 

Here 𝒖 = (𝑢1, 𝑢2, 𝑢3)  is the component of displacement vector, 𝑐𝑖𝑗𝑘𝑙(𝑐𝑖𝑗𝑘𝑙 = 𝑐𝑖𝑗𝑙𝑘 = 𝑐𝑗𝑖𝑘𝑙 =

𝑐𝑗𝑖𝑙𝑘) are elastic parameters, 𝜎𝑖𝑗 are the components of stress tensor, 𝜀𝑖𝑗 are the components of strain 

tensor, 𝑒𝑖𝑗𝑘 is alternate tensor, 𝑚𝑖𝑗 are the components of couple-stress, 𝛼𝑖𝑗 are the coefficients of 

linear thermal expansion, 𝛽𝑖𝑗  is thermal tensor, 𝑇  is the temperature change, 𝜑  is the conductive 

temperature, 𝑙𝑖(i = 1,2,3)  are material length scale parameters, 𝜒𝑖𝑗  is curvature tensor, 𝜔𝑖  is the 

rotational vector,  is the density, 𝐾𝑖𝑗 is the materialistic constant, 𝐾𝑖𝑗
∗ is the coefficient of thermal 

conductivity, 𝑐𝐸 is the specific heat at constant strain, 𝑇0 is the reference temperature assumed to be 

such that 𝑇 𝑇0
⁄ ≪ 1, 𝐺𝑖 are the elasticity constants, Ω is the angular velocity of the solid, H is the 

magnetic strength, 𝒖̇ is the velocity vector, E is the intensity vector of the electric field,   𝑱 is the 

current density vector, 𝑚(= 𝜔𝑒𝑡𝑒 =
𝜎0𝜇0𝐻0

𝑒𝑛𝑒 
) is the Hall parameter, 𝑡𝑒 is tee electron collision time, 

𝜔𝑒 =
𝑒𝜇0𝐻0

𝑚𝑒
 is the electronic frequency, e is the charge of an electron,  𝑚𝑒 is the mass  of the electron, 

𝜎0 =
𝑒2𝑡𝑒𝑛𝑒

𝑚𝑒 
, is the electrical conductivity and 𝑛𝑒 is the number of density of electrons.      

 

 

3. Formulation and solution of the problem 
 

We consider a homogeneous perfectly conducting transversely isotropic thermoelastic medium 

which is rotating uniformly with an angular velocity 𝛀  initially at uniform temperature 𝑇0 . The 

rectangular Cartesian co-ordinate system (𝑢1, 𝑢2, 𝑢3) having origin on the surface (𝑥3=0) with 𝑥3-

axis pointing vertically downwards into the medium is introduced. The surface of the half-space is 

subjected to mechanical sources. For two dimensional problem in 𝑥1𝑥3-plane, we take  

𝒖 = (𝑢1, 0, 𝑢3). (10) 

We also assume that  

 E=0 ,   𝛀 = (0, Ω, 0).                              (11) 

The generalized Ohm's law  

𝐽2 = 0.    (12) 

The current density components 𝐽1 and 𝐽3 using (4)  are  given as  

 𝐽1 =
𝜎0𝜇0𝐻0

1 + 𝑚2
 (𝑚

𝜕𝑢1

𝜕𝑡
−

𝜕𝑢3

𝜕𝑡
), (13) 

 𝐽3 =
𝜎0𝜇0𝐻0

1 + 𝑚2
 (

𝜕𝑢1

𝜕𝑡
+ 𝑚

𝜕𝑢3

𝜕𝑡
). (14) 

Following Slaughter (2002), using appropriate transformations, on the set of Eqs. (2) and (3) and 

with the aid of (5)-(10), we obtain the  equations for transversely isotropic thermoelastic solid as 

𝑐11

𝜕2𝑢1

𝜕𝑥1
2 + (𝑐44 −

1

4
𝑙2

2𝐺2∇2)
𝜕2𝑢1

𝜕𝑥3
2 + (𝑐13 + 𝑐44 +

1

4
𝑙2

2𝐺2∇2)
𝜕2𝑢3

𝜕𝑥1𝜕𝑥3
− 𝛽1

𝜕𝑇

𝜕𝑥1
− 𝜇0𝐽3𝐻0

= 𝜌(𝑢1̈ − Ω2𝑢1 + 2Ω𝑢̇3), 

(15) 
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(𝑐44 + 𝑐13 +
1

4
𝑙2

2𝐺2𝛻2)
𝜕2𝑢1

𝜕𝑥1𝜕𝑥3
+ (𝑐44 +

1

4
 𝑙2

2𝐺2𝛻2)
𝜕2𝑢3

𝜕𝑥1
2 + 𝑐33

𝜕2𝑢3

𝜕𝑥3
2 − 𝛽3

𝜕𝑇

𝜕𝑥3
+ 𝜇0𝐽1𝐻0

= 𝜌(𝑢3̈ − Ω2𝑢3 + 2Ω𝑢̇1), 

(16) 

(𝐾1 + 𝐾1
∗ 𝜕

𝜕𝑡
)

𝜕2𝑇

𝜕𝑥1
2 + (𝐾3 + 𝐾3

∗ 𝜕

𝜕𝑡
)

𝜕2𝑇

𝜕𝑥3
2 − 𝜌𝑐𝐸

𝜕2𝑇

𝜕𝑡2
= 𝑇0

𝜕

𝜕𝑡
(𝛽1

𝜕𝑢1

𝜕𝑥1
+ 𝛽3

𝜕𝑢3

𝜕𝑥3
), (17) 

where ∇2= (
𝜕2

𝜕𝑥1
2 +

𝜕2

𝜕𝑥3
2). 

And the force stress constitutive relations, couple stress constitutive relations and strain 

components are 

𝜎11 = 𝑐11

𝜕𝑢1

𝜕𝑥1
+ 𝑐13

𝜕𝑢3

𝜕𝑥3
− 𝛽1𝑇, (18) 

𝜎12 = 0, (19) 

𝜎13 = 𝑐44 (
𝜕𝑢1

𝜕𝑥3
+

𝜕𝑢3

𝜕𝑥1
) −

1

4
𝑙2

2𝐺2 (
𝜕3𝑢1

𝜕𝑥1
2𝜕𝑥3

−
𝜕3𝑢3

𝜕𝑥1
3 +

𝜕3𝑢1

𝜕𝑥3
3 −

𝜕3𝑢3

𝜕𝑥3
2𝜕𝑥1

), (20) 

𝜎22 = 𝑐21

𝜕𝑢1

𝜕𝑥1
+ 𝑐23

𝜕𝑢3

𝜕𝑥3
− 𝛽1𝑇, (21) 

𝜎23 = 0, (22) 

𝜎33 = 𝑐31

𝜕𝑢1

𝜕𝑥1
+ 𝑐33

𝜕𝑢3

𝜕𝑥3
− 𝛽3𝑇, (23) 

𝑚11 = 0, 𝑚22 = 0, 𝑚33 = 0, (24) 

𝑚32 =
1

2
𝑙2

2𝐺2 (
𝜕2𝑢1

𝜕𝑥3
2 −

𝜕2𝑢3

𝜕𝑥1𝜕𝑥3
), (25) 

𝑚13 = 0, (26) 

𝑚12 = −
1

2
𝑙2

2𝐺2 (
𝜕2𝑢1

𝜕𝑥1𝜕𝑥3
−

𝜕2𝑢3

𝜕𝑥1
2 ), (27) 

𝑒11 =
𝜕𝑢1

𝜕𝑥1
, 𝑒22 = 0, 𝑒33 =

𝜕𝑢3

𝜕𝑥3
, 𝑒12 = 0, 𝑒23 = 0 , 𝑒31 =

1

2
(

𝜕𝑢1

𝜕𝑥3
+

𝜕𝑢3

𝜕𝑥1
), (28) 

In the above equations we use the contracting subscript notations (1 → 11,2 → 22,3 → 33,4 →
23,5 → 31,6 → 12) to relate 𝑐𝑖𝑗𝑘𝑙  to 𝑐𝑚𝑛 

We assume that medium is initially at rest. The undisturbed state is maintained at reference 

temperature. Then we have the initial and regularity conditions are given by 

𝑢1(𝑥1, 𝑥3, 0) = 0 =  𝑢1̇(𝑥1, 𝑥3, 0),  

𝑢3(𝑥1, 𝑥3, 0) = 0 =  𝑢3̇(𝑥1, 𝑥3, 0),  
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𝑇(𝑥1, 𝑥3, 0) = 0 =  𝑇̇(𝑥1, 𝑥3, 0)  For  𝑥3 ≥ 0,    − ∞ < 𝑥1 < ∞,  

𝑢1(𝑥1, 𝑥3, 𝑡) = 𝑢3(𝑥1, 𝑥3, 𝑡) = 𝜑(𝑥1, 𝑥3, 𝑡) = 0 for 𝑡 > 0 when 𝑥3 → ∞. (29) 

 To facilitate the solution, following dimensionless quantities are introduced 

𝑥1
, =

𝑥1

𝐿
, 𝑥3

, =
𝑥3

𝐿
, 𝑢1

, =
𝜌𝑐1

2

𝐿𝛽1𝑇0
𝑢1, 𝑢3

, =
𝜌𝑐1

2

𝐿𝛽1𝑇0
𝑢3, 𝑇 , =

𝑇

𝑇0
,  𝑡 , =

𝑐1

𝐿
𝑡, 𝜎𝑖𝑗

, =
𝜎𝑖𝑗

𝛽1𝑇0
,

𝑚𝑖𝑗
, =

𝑚𝑖𝑗

𝐿𝛽1𝑇0
, 𝐽′ =

𝜌𝑐1
2

𝛽1𝑇0
𝐽  , ℎ′ =

ℎ

𝐻0
, 𝑀 =

𝜎0𝜇0𝐻0

𝜌𝑐1𝐿
 , Ω′ =

𝐿

𝑐1
Ω. 

(30) 

Using (29)-(30) on the Eqs. (15)-(17), yields 

𝜕2𝑢1

𝜕𝑥1
2 + (𝛿1 −

1

4𝐿2𝑐11
𝑙2

2𝐺2 (
𝜕2

𝜕𝑥1
,2 +

𝜕2

𝜕𝑥3
,2))

𝜕2𝑢1

𝜕𝑥3
2 + (𝛿2 +

1

4𝐿2𝑐11
𝑙2

2𝐺2 (
𝜕2

𝜕𝑥1
,2 +

𝜕2

𝜕𝑥3
,2))

𝜕2𝑢3

𝜕𝑥1𝜕𝑥3
−

𝑀𝑠𝜇0𝐻0

(1+𝑚2)
(𝑢1 + 𝑚𝑢3) −

𝜕𝑇

𝜕𝑥1
= (

𝜕2𝑢1

𝜕𝑡2 + Ω2𝑢1 + +2𝛺𝑢̇3)  

(31) 

 

𝛿4
𝜕2𝑢3

𝜕𝑥3
2 + (𝛿2 +

1

4𝐿2𝑐11
𝑙2

2𝐺2 (
𝜕2

𝜕𝑥1
,2 +

𝜕2

𝜕𝑥3
,2))

𝜕2𝑢1

𝜕𝑥1𝜕𝑥3
+ (𝛿1 −

1

4𝐿2𝑐11
𝑙2

2𝐺2 (
𝜕2

𝜕𝑥1
,2 +

𝜕2

𝜕𝑥3
,2))

𝜕2𝑢3

𝜕𝑥1
2 +

𝑀𝑠𝜇0𝐻0

(1+𝑚2)
(𝑚𝑢1 + 𝑢3) − 𝑝5

𝜕𝑇

𝜕𝑥3
= (

𝜕2𝑢3

𝜕𝑡2 − Ω2𝑢3 + 2𝛺𝑢̇1)  

(32) 

 

𝜕2𝑇

𝜕𝑥1
2 + 𝑝3

𝜕2𝑇

𝜕𝑥3
2 = 𝜁1𝐿

𝜕2𝑢1

𝜕𝑡𝜕𝑥1
+ 𝜁2𝐿

𝜕2𝑢3

𝜕𝑡𝜕𝑥3
+ 𝜁3

𝜕2𝑇

𝜕𝑡2  (33) 

where 

𝛿1 =
𝑐44

𝑐11
, 𝛿2 =

𝑐13 + 𝑐44

𝑐11
, 𝛿4 =

𝑐33

𝑐11
, 𝑝3 =

𝐾3 + 𝐾3
∗𝑠

𝐾1 + 𝐾1
∗𝑠

, 𝑝5 =
𝛽3

𝛽1
,

𝜁1 =
𝑇0𝛽1

2

(𝐾1 + 𝐾1
∗𝑠)𝜌

,    𝜁2 =
𝑇0𝛽1𝛽3

(𝐾1 + 𝐾1
∗𝑠)𝜌   

, 𝜁3 =
𝑐𝐸𝑐11

𝐾1 + 𝐾1
∗𝑠

. 

Apply Laplace and Fourier transforms defined by  

𝑓̅(𝑥1, 𝑥3, 𝑠) = ∫ 𝑓(
∞

0

𝑥1, 𝑥3, 𝑡)𝑒−𝑠𝑡𝑑𝑡, (34) 

𝑓(ξ, 𝑥3, 𝑠) = ∫ 𝑓̅(𝑥1, 𝑥3, 𝑠)𝑒𝑖ξ𝑥1𝑑𝑥1.
∞

−∞

 (35) 

on Eqs. (31)-(33), we obtain a system of homogeneous equations in terms of  𝑢1̃, 𝑢3̃ and  𝑇̃ which 

yield a non trivial solution if determinant of coefficient { 𝑢1̃, 𝑢3̃, 𝑇̃} 𝑇  vanishes and we obtain the 

following characteristic equation 

(𝑃𝐷8 + 𝑄𝐷6 + 𝑅𝐷4 + 𝑆𝐷2 + 𝑇)(𝑢1̃, 𝑢3̃ , 𝑇̃) = 0,  (36) 

where   

𝑃 = −𝐴𝑝3𝛾6 + 𝜉2𝐴2𝑝3, 

𝑄 = −𝑝3𝛾2𝛾6 − 𝐴(−𝛾5𝑝3 + 𝛾6𝛾9 + 𝑝5𝛾8) + 𝜉2𝐴(−2𝑝3𝛾4 + 𝐴𝛾7), 
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𝑅 = −𝑝3𝛾1𝛾6 + 𝛾2(−𝛾5𝑝3 + 𝛾6𝛾9 + 𝑝5𝛾8) − 𝐴𝛾5𝛾9 − 𝑖ξA(𝑖ξ𝛾4𝛾9 + 𝑝5𝛾7)
− 𝜉2𝛾4(−𝑝3𝛾4 + 𝐴𝛾7), +𝜉2𝐴𝛾8 

𝑆 = −𝛾1(−𝛾5𝑝3 + 𝛾6𝛾9 + 𝑝5𝛾8) + 𝛾2𝛾5𝛾9 − 𝑖ξ𝛾4(𝑖ξ𝛾4𝛾9 + 𝑝5𝛾7) − 𝛾3
2𝑝3 − 𝑖ξ(𝑖ξ𝛾4𝛾8 − 𝛾6𝛾7) 

𝑇 = 𝛾1𝛾5𝛾9 − 𝛾3𝛾9 + 𝛾5𝛾9 + 𝑖ξ𝛾5𝛾7, 

𝛾1 = −(𝜉2 + 𝑠2) −
𝑀𝑠𝜇0𝐻0

(1+𝑚2)
+ Ω2, 𝛾2 = 𝛿1 + 𝐴𝜉2, 𝛾3 =  

𝑀𝑠𝜇0𝐻0

(1+𝑚2)
+ 2Ωs, 𝛾4 = 𝛿2 − 𝐴𝜉2, 𝛾5 =

−𝜉2𝛾2 −
𝑀𝑠𝜇0𝐻0

(1+𝑚2)
+ Ω2 − 𝑠2, 𝛾6 = 𝛿4 − 𝐴𝜉2, 𝛾7 = 𝜄𝜉 𝜁1𝐿𝑠, 𝛾8 =  𝜁2𝐿𝑠, 𝛾9 = 𝜁3𝑠2 − 𝜉2.  

The solution of the Eq. (36) satisfying the radiation condition that 𝑢1̃, 𝑢3̃, 𝑇̃ → 0 as 𝑥3 → ∞, can 

be written as 

𝑢1̃ = 𝐴1𝑒−λ1𝑥3 + 𝐴2𝑒−λ2𝑥3 + 𝐴3𝑒−λ3𝑥3 + 𝐴4𝑒−λ4𝑥4 , (37) 

𝑢3̃ = 𝑅1𝐴1𝑒−λ1𝑥3 + 𝑅2𝐴2𝑒−λ2𝑥3 + 𝑅3𝐴3𝑒−λ3𝑥3 + 𝑅4𝐴4𝑒−λ4𝑥4 , (38) 

𝑇̃ = 𝑆1𝐴1𝑒−λ1𝑥3 + 𝑆2𝐴2𝑒−λ2𝑥3 + 𝑆3𝐴3𝑒−λ3𝑥3 + 𝑆4𝐴4𝑒−λ4𝑥4 . (39) 

where ±λ𝑖, (𝑖 =1,2,3), are the roots of (36) and 𝑅𝑖 and 𝑆𝑖 are given as 

𝑅𝑖 =
𝑝3𝐴λ𝑖

6+(−𝛾2𝑝3−𝐴𝛾9)λ𝑖
4+(−𝛾1𝑝3+𝛾2𝛾9)λ𝑖

2+𝛾1𝛾9

−𝛾6𝑝3λ𝑖
4+(−𝛾5𝑝3+𝛾6𝛾9)λ𝑖

2+𝛾5𝛾9
  

𝑆𝑖 =
(−𝐴𝛾6+𝜉2𝐴2)λ𝑖

6+(−𝛾2𝛾6−𝐴𝛾5+2𝜉2𝛾4𝐴)λ𝑖
4+(𝛾1𝛾6+𝛾2𝛾5+𝜉2𝛾4

2)λ𝑖
2+(𝛾1𝛾5−𝛾3

2)

−𝛾6𝑝3λ𝑖
4+(−𝛾5𝑝3+𝛾6𝛾9)λ𝑖

2+𝛾5𝛾9
, 𝑖 = 1,2,3,4.  

 

 

4. Boundary conditions 
 

We consider a normal line load 𝐹1  per unit length acting in the positive 𝑥3  axis on the plane 

boundary 𝑥3 = 0 along the 𝑥2 axis and a tangential load 𝐹2 per unit length, acting at the origin in 

the positive 𝑥1 axis. The boundary conditions are  

𝑡33(𝑥1, 𝑥3, 𝑡) = −𝐹1𝜓1(𝑥1)𝐻(𝑡), (40) 

𝑡31(𝑥1, 𝑥3, 𝑡) = −𝐹2𝜓2(𝑥1)𝐻(𝑡), (41) 

𝑚32(𝑥1, 𝑥3, 𝑡) = 0, (42) 

𝜕𝑇(𝑥1, 𝑥3, 𝑡)

𝜕𝑧
= 0. (43) 

where 𝐹1 and 𝐹2 are the magnitude of forces applied, 𝜓1(𝑥1) and 𝜓2(𝑥1) specify the vertical and 

horizontal load distribution functions respectively along 𝑥1 -axis, 𝐻(𝑡)  is the Heaviside unit step 

function (Fig. 1).    

Substituting the values of 𝑢1̂, 𝑢3̂, 𝑇̂ from Eqs. (37)-(39) in the boundary conditions (40)-(43) 

and with the aid of (18)-(28), (30), (34)-(35) we obtain the components of displacement, 

thermodynamic temperature, components of stress and components of couple stress as 

𝑢̃ = −
𝐹1𝜓1̂(𝜉)

∆
∑ 𝐵1𝑖

4
𝑖=1 𝑒−𝜆𝑖𝑥3 −

𝐹2𝜓2̂(𝜉)

∆
∑ 𝐵2𝑖

4
𝑖=1 𝑒−𝜆𝑖𝑥3 ,  (44) 
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Fig. 1 Normal and tangential loadings 

 

 

𝑤̃ = −
𝐹1𝜓1̂(𝜉)

∆
∑ 𝑅𝑖𝐵1𝑖

4
𝑖=1 𝑒−𝜆𝑖𝑥3 −

𝐹2𝜓2̂(𝜉)

∆
∑ 𝑅𝑖𝐵2𝑖

4
𝑖=1 𝑒−𝜆𝑖𝑥3 ,  (45) 

𝑇̃ = −
𝐹1𝜓1̂(𝜉)

∆
∑ 𝑆𝑖𝐵1𝑖

4
𝑖=1 𝑒−𝜆𝑖𝑥3 −

𝐹2𝜓2̂(𝜉)

∆
∑ 𝑆𝑖𝐵2𝑖

4
𝑖=1 𝑒−𝜆𝑖𝑥3 ,  (46) 

𝜎33̃ = −
𝐹1𝜓1̂(𝜉)

∆
∑ 𝐴1𝑖𝐵1𝑖

4
𝑖=1 𝑒−𝜆𝑖𝑥3 −

𝐹2𝜓1̂(𝜉)

∆
∑ 𝐴1𝑖𝐵2𝑖

4
𝑖=1 𝑒−𝜆𝑖𝑥3 ,  (47) 

𝜎31̃ = −
𝐹1𝜓1̂(𝜉)

∆
∑ 𝐴2𝑖𝐵1𝑖𝑒−𝜆𝑖𝑥34

𝑖=1 −
𝐹2𝜓2̂(𝜉)

∆
∑ 𝐴2𝑖𝐵2𝑖

4
𝑖=1 𝑒−𝜆𝑖𝑥3 ,  (48) 

𝑚32̃ = −
𝐹1𝜓1̂(𝜉)

∆
∑ 𝐴3𝑖

4
𝑖=1 𝐵1𝑖𝑒−𝜆𝑖𝑥3 −

𝐹2𝜓2̂(𝜉)

∆
∑ 𝐴3𝑖

4
𝑖=1 𝐵2𝑖𝑒−𝜆𝑖𝑥3 .  (49) 

𝜎11̂ = −
1

∆
∑ (𝜄𝜉 −

𝑐13

𝑐11
𝜆𝑖𝑅𝑖 − 𝑆𝑖) (𝐹1𝜓1̂(𝜉)𝐵1𝑖 + 𝐹2𝜓2̂(𝜉)𝐵2𝑖)4

𝑖=1 𝑒−𝜆𝑖𝑥3 ,  (50) 

𝜎22̂ = −
1

∆
∑ (𝜄𝜉

𝑐21

𝑐11
−

𝑐13

𝑐11
𝜆𝑖𝑅𝑖 − 𝑆𝑖) (𝐹1𝜓1̂(𝜉)𝐵1𝑖 + 𝐹2𝜓2̂(𝜉)𝐵2𝑖)4

𝑖=1 𝑒−𝜆𝑖𝑥3 ,  (51) 

𝑚12̂ =
1

2

𝛽1𝑇0

𝐿2𝜌𝑐1
2∆

𝑙2
2𝐺2 ∑ (−𝜄𝜉𝜆𝑖 + 𝜉2𝑅𝑖)(𝐹1𝜓1̂(𝜉)𝐵1𝑖 + 𝐹2𝜓2̂(𝜉)𝐵2𝑖)4

𝑖=1 𝑒−𝜆𝑖𝑥3 ,  (52) 

𝐽1̃ =
𝑐1𝜎0𝐻0𝜇0𝑠

(1+𝑚2)∆
 ∑ (𝑚 − 𝑅𝑖)(𝐹1𝜓1̂(𝜉)𝐵1𝑖 + 𝐹2𝜓2̂(𝜉)𝐵2𝑖)4

𝑖=1 𝑒−𝜆𝑖𝑥3 ,  (53) 

𝐽3̃ =
𝑐1𝜎0𝐻0𝜇0𝑠

(1+𝑚2)∆
 ∑ (1 + 𝑚𝑅𝑖)(𝐹1𝜓1̂(𝜉)𝐵1𝑖 + 𝐹2𝜓2̂(𝜉)𝐵2𝑖)4

𝑖=1 𝑒−𝜆𝑖𝑥3  ,  (54) 

Where 

𝐴1𝑖 =
ἰ𝜉𝑐13

𝑐11
−

𝑐33

𝑐11
𝜆𝑖𝑅𝑖 − 𝑝5𝑆𝑖, 

𝐴2𝑖 =
𝑐44

𝑐11

(−𝜆𝑖 + ἰ𝜉𝑅𝑖) −
1

4

𝛽1𝑇0

𝐿3𝜌𝑐1
2 𝑙2

2𝐺2 ((𝜉2𝜆𝑖 − 𝜆𝑖
3) + (𝜄𝜉3 − 𝜄𝜉𝜆𝑖

2)𝑅𝑖), 

𝐴3𝑖 =
𝛽1𝑇0

2𝑐11𝐿2
𝑙2

2𝐺2(𝜆𝑖
2 + ἰ𝜉𝜆𝑖𝑅𝑖), 
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𝐴4𝑖 = −𝜆𝑖𝑆𝑖, 

∆= ∆1 − ∆2 + ∆3 − ∆4, 
∆1= 𝐴11𝐴22(𝐴33𝐴44 − 𝐴43𝐴34) − 𝐴11𝐴23(𝐴32𝐴44 − 𝐴42𝐴34) + 𝐴11𝐴24(𝐴32𝐴43 − 𝐴42𝐴33), 

∆2= 𝐴12𝐴21(𝐴33𝐴44 − 𝐴43𝐴34) − 𝐴12𝐴23(𝐴31𝐴44 − 𝐴41𝐴34) + 𝐴24𝐴12(𝐴31𝐴43 − 𝐴41𝐴33), 

∆3= 𝐴13𝐴21(𝐴32𝐴44 − 𝐴42𝐴34) − 𝐴22𝐴13(𝐴31𝐴44 − 𝐴41𝐴34) + 𝐴13𝐴24(𝐴31𝐴42 − 𝐴41𝐴32), 

∆4= 𝐴14𝐴21(𝐴32𝐴43 − 𝐴42𝐴33) − 𝐴22𝐴14(𝐴31𝐴43 − 𝐴41𝐴33) + 𝐴14𝐴23(𝐴31𝐴42 − 𝐴41𝐴32), 

𝐵1𝑖 = (−1)1+𝑖∆𝑖/𝐴1𝑖, 

𝐵21 = −𝐴21(𝐴33𝐴44 − 𝐴43𝐴34) + 𝐴23(𝐴31𝐴44 − 𝐴41𝐴34) − 𝐴24(𝐴31𝐴43 − 𝐴41𝐴33), 

𝐵22 = 𝐴11(𝐴33𝐴44 − 𝐴43𝐴34) − 𝐴13(𝐴31𝐴44 − 𝐴41𝐴34) + 𝐴14(𝐴31𝐴43 − 𝐴41𝐴33), 

𝐵23 = −𝐴11(𝐴23𝐴44 − 𝐴43𝐴24) + 𝐴13(𝐴21𝐴44 − 𝐴41𝐴24) − 𝐴14(𝐴21𝐴43 − 𝐴41𝐴23), 

𝐵24 = 𝐴11(𝐴23𝐴34 − 𝐴33𝐴24) − 𝐴13(𝐴21𝐴34 − 𝐴31𝐴24) + 𝐴14(𝐴21𝐴33 − 𝐴31𝐴23). 
 

a) Influence function 

The method to obtain the half-space influence function, i.e., the solution due to uniformly 

distributed force applied on the half space is obtained by setting 

{𝜓1(𝑥1), 𝜓2(𝑥1)} = {
1         𝑖𝑓 | 𝑥 |  ≤ 𝑚 

              0         𝑖𝑓  | 𝑥 |  > 𝑚             
.  (55) 

The Laplace and Fourier transforms of 𝜓1(𝑥1) with respect to the pair (𝑥1, 𝜉) for the case of a 

uniform strip load of non-dimensional width 2 m applied at origin of co-ordinate system 𝑥1= 𝑥3= 0 

in the dimensionless form after suppressing the primes becomes    

{𝜓1̂(𝜉), 𝜓2̂(𝜉)}  =  [ 2 sin ( 𝜉𝑚 ) /𝜉] , 𝜉 ≠ 0. (56) 

The expressions for displacement components, stress components, conductive temperature and 

couple stress can be obtained for uniformly distributed normal force and thermal source by replacing 

𝜓1̂ (𝜉) and 𝜓2̂(𝜉) from (56) respectively in (44)-(54). 

 

b) Linearly distributed Force 

The solution due to linearly distributed force applied on the half space is obtained by setting 

{𝜓1(𝑥1), 𝜓2(𝑥1)} = {
1 −

| 𝑥1 |

𝑚
      𝑖𝑓 | 𝑥 | ≤ 𝑚

                  0             𝑖𝑓    | 𝑥 | > 𝑚             
. (57) 

Here 2 m is the width of the strip load, applying the Fourier transform defined by on (57), we 

obtain 

{𝜓1̂(𝜉), 𝜓2̂(𝜉)} = [
2{1 − cos(𝜉𝑚))

𝜉2𝑚
     

                       
] , 𝜉 ≠ 0. (58) 

Using (58) in the Eqs. (44)-(54), we obtain the components of displacement, stress, conductive 

temperature and components of couple stress. 

 

Applications: 

Inclined line load: Suppose an inclined load 𝐹0, per unit length is acting on the 𝑥2 axis and its 

inclination with 𝑥3 axis is 𝛿, we have (see Fig. (b))   
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Fig. 2 Inclined load over a thermoelastic solid 

 

 

𝐹1 = 𝐹0cos 𝛿,         𝐹2 = 𝐹0sin 𝛿 . (59) 

 

 

5. Inversion of the transformations: 
 

To obtain the solution of the problem in physical domain, we must invert the transforms in Eqs. 

(44)-(54). Here the displacement components, normal and tangential stresses and conductive 

temperature, couple stress are functions of 𝑥3, the parameters of Laplace and Fourier transforms 𝑠 

and 𝜉 respectively and hence are of the form 𝑓 (𝜉 , 𝑥3, 𝑠). To obtain the function 𝑓(𝑥1, 𝑥3, 𝑡) in the 

physical domain, we first invert the Fourier transform using 

𝑓̅(𝑥1, 𝑥3, 𝑡) =
1

2𝜋
∫ 𝑒−ἰ𝜉𝑥𝑓(𝜉 , 𝑥1 , 𝑠)

∞

−∞
𝑑𝜉 =

1

2𝜋
∫  |cos (𝜉𝑥1)𝑓𝑒 −  𝑖sin(𝜉 𝑥1)𝑓0|𝑑𝜉 

∞

−∞
.    (60) 

where 𝑓𝑒  and 𝑓0  are respectively the odd and even parts of 𝑓(𝜉 , 𝑥3 , 𝑠).  Thus the expression (60) 

gives the Laplace transform 𝑓̅(ξ , 𝑥3, s).  of the function 𝑓(𝑥, 𝑥3, 𝑡) . Following Honig and Hirdes 

(1984), the Laplace transform function 𝑓̅(ξ , 𝑥3, s)  can be inverted to 𝑓(𝑥1, 𝑥3, 𝑡).  

The last step is to calculate the integral in Eq. (58). The method for evaluating this integral is 

described in Press et al. (1986). It involves the use of Romberg’s integration with adaptive step size. 

This also uses the results from successive refinements of the extended trapezoidal rule followed by 

extrapolation of the results to the limit when the step size tends to zero. 

 

 

6. Results and discussions 
 

For the purpose of numerical evaluation, cobalt material has been chosen following Dhaliwal 

and Singh (1980) as 

𝑐11 = 3.071 × 1011 Nm−2 , 𝑐12 = 1.650 × 1011 Nm−2, 𝑐33 = 3.581 × 1011 Nm−2 , 𝑐13 =
1.027 × 1011 Nm−2 , 𝑐44 = 1.510 × 1011 Nm−2 , 𝜌 = 8.836 × 103 Kgm−3 , 𝑇0 = 298°K , 𝐶𝐸 =
4.27 × 102 JKg−1deg−1 , 𝐾1 = .690 × 102 wm−1deg−1 , 𝐾3 = .690 × 102 wm−1deg−1 , 𝛽1 =
7.04 × 106 Nm−2deg−1  , 𝛽3 = 6.90 × 106 Nm−2deg−1 , 𝐾1

∗ = 1 × 102 Nsec−2deg−1 , 𝐾3
∗ = 1 ×

102 Nsec−2deg−1 , 𝜇0 = 1.2571 × 10−6 Hm−1 , 𝐻0 = 1 Jm−1nb−1 , 𝜀0 = 8.838 × 10−12 Fm−1 

with non-dimensional parameter L=1 and 𝜎0 = 9.36 × 105 col2

Cal
. cm.sec, 𝑡0 = 0.01, M=3, 𝐹0 = 1 N. 
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Fig. 3 Variation of displacement component 𝑢1 with 

distance 𝑥1 (uniformly distributed force) 

Fig. 4 Variation of displacement component 𝑢3 with 

distance 𝑥1 (uniformly distributed force) 
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Fig. 5 Variation of thermodynamic temperature 𝑇 

with distance 𝑥1 (uniformly distributed force) 

Fig. 6 Variation of stress component 𝜎33  with 

distance 𝑥1 (uniformly distributed force) 

 

 

Using the above values the graphical representation of values of displacement components, 

thermodynamic temperature, stress components, couple stress components, transverse conduction 

current density 𝐽1  and normal conduction current density 𝐽3  for a transversely isotropic new 

modified couple stress have been investigated for uniformly distributed force and linearly distributed 

force to show a comparison of the effect of rotation and inclined load in the Figs. 3-24. The 

computations are carried out in the range 0 ≤ 𝑥1 ≤ 10.  

Solid line in black with centre symbol square corresponds to Ω = 0, 𝜃 = 00, Solid line in red 

with centre symbol circle corresponds to Ω = 0, 𝜃 = 600, Solid line in blue with centre symbol  
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Fig. 7 Variation of stress component 𝜎31  with 

distance 𝑥1 (uniformly distributed force) 

Fig. 8 Variation of couple stress component 𝑚12 with 

distance 𝑥1 (uniformly distributed force) 
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Fig. 9 Variation of stress component 𝜎11  with 

distance 𝑥1 (uniformly distributed force) 

Fig. 10 Variation of stress component 𝜎22  with 

distance 𝑥1(uniformly distributed force) 

 

 

triangle corresponds to Ω = 2.5, 𝜃 = 00  and Solid line in magenta with centre symbol inverted 

tringle corresponds to Ω = 2.5, 𝜃 = 600. 

 

Uniformly distributed force 

In Figs. 3-4 curves depicting the variation of 𝑢1 and  𝑢3 are oscillatory in nature. Fluctuations 

are less for for  Ω = 0 than the Ω = 2.5. Inclination decreases the magnitude of quantity. In Fig. 5 

variations for thermodynamic temperature 𝑇 are smooth. In Figs. 6-8 variations for 𝜎33, 𝜎31 and 

𝑚32 are oscillatory. Inclination does not affect the 𝜎33 for Ω = 0. Rotation increases the oscillations  
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Fig. 11 Variation of couple stress component 𝑚12 

with distance 𝑥1 (uniformly distributed force) 

Fig. 12 Variation of transverse conduction current 

density 𝐽1  with distance 𝑥1  (uniformly distributed 

force) 
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Fig. 13 Variation of normal conduction current 

density 𝐽3  with distance 𝑥1  (uniformly distributed 

force) 

Fig. 14 Variation of displacement component 𝑢1 with 

distance 𝑥1 (linearly distributed force) 

 

 

of 𝜎33 . In Figs. 9-10 variations for 𝜎11, 𝜎22  are S shape for Ω = 0.  For Ω = 2.5  variations are 

oscillatory. In Figs. 11-13 variations corresponding to 𝑚12, 𝐽1   and 𝐽3  are oscillatory in nature. 

Inclination changes the pattern of variation. 

 

Linearly distributed force 

In Figs. 14-15 for displacement components, for the given rotation inclined load decreases the 

amplitude and number of oscillations for the given horizontal range. In Fig. 16 T decreases with  

35



 

 

 

 

 

 

Parveen Lata and Harpreet Kaur 

0 2 4 6 8 10

0

100

200

300

400

500

600

700

800

d
is

p
la

ce
m

en
t 

co
m

p
o

n
en

t 
u

3

distance x1

 W=0,q=00

 W=0,q=600

 W=2.5,q=00

 W=2.5,q=600

 

0 2 4 6 8 10

0

20

40

60

80

100

th
e
rm

o
d

y
n

a
m

ic
 t

e
m

p
e
ra

tu
re

 T
distance x1

 W=0,q=00

 W=0,q=600

 W=2.5,q=00

 W=2.5,q=600

 

Fig. 15 Variation of displacement component 𝑢3 with 

distance 𝑥1 (linearly distributed force) 

Fig. 16 Variation of thermodynamic temperature 𝑇 

with distance 𝑥1 (linearly distributed force) 
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Fig. 17 Variation of stress component 𝜎33  with 

distance 𝑥1 (linearly distributed force) 

Fig. 18 Variation of stress component 𝜎31  with 

distance 𝑥1 (linearly distributed force) 

 

 

increase in horizontal distance. In Fig. 17  𝜎33  for  Ω = 0, 𝜃 = 00 decreases with increase in 𝑥1. In 

the remaining cases variations are oscillatory. In Figs. 18-19,  𝜎31 and 𝑚32 shows oscillatory nature. 

Both roation and inclination change the magnitude and pattern of variation. In Figs. 20-21, pattern 

for 𝜎11  and 𝜎22  is non-uniform. Maximum oscillations are seen for Ω = 2.5, 𝜃 = 00 . For couple 

stress component  𝑚12 variations are oscillatory. In Figs. 20-21, pattern for 𝐽1 and 𝐽3 are similar to 

𝜎11 and 𝜎22. 
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Fig. 19 Variation of couple stress component 𝑚32 

with distance 𝑥1 (linearly distributed force) 

Fig. 20 Variation of stress component 𝜎11  with 

distance 𝑥1 (linearly distributed force) 
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Fig. 21 Variation of stress component 𝜎22  with 

distance 𝑥1 (linearly distributed force) 

Fig. 22 Variation of couple stress component 𝑚12 

with distance 𝑥1 (linearly distributed force) 

 

 

7. Conclusions 
 

From the graphs, it is clear that inclined load and rotation have significant impacts on the 

resulting quantities. For uniformly distributed force and linearly distributed force inclination and 

rotation change the magnitude of oscillation. Inclusion of Inclined load decreases the magnitude of 

displacement components. Non uniform pattern of graphs is observed while applying linearly 

distributed mechanical force. 𝜎11 and 𝜎22 show maximum oscillations for Ω = 2.5, 𝜃 = 00. For 

linearly distributed force. For uniformly distributed source as the rotation changes pattern of  
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Fig. 23 Variation of transverse conduction current 

density 𝐽1 with distance 𝑥1 (linearly distributed force) 

Fig. 24 Variation of normal conduction current 

density 𝐽3  with distance 𝑥1  (linearly distributed 

force) 

 

 

oscillation also changes for 𝜎11 and 𝜎22. Magnitude of current density components decreases as the 

inclination increases for uniformly distributed mechanical source. Reverse is observed in linearly 

distributed force.  Rotation of principle axes and inclination of mechanical load changes the stress 

tensor. All the mentioned physical quantities are dependent upon rotation of principle axes and 

inclination of mechanical load. Consequently, varying rotation and inclination of mechanical load 

changes the pattern of deformation. Researchers working in thermomechanical sensors, resonators, 

medical accelerometers, as well as in future research, should benefit from the results of this research. 
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