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Abstract.  This paper presents a static study of a rectangular functional graded material (FGM) plate, simply 
supported on its four edges, adopting a refined higher order theory that looks for, only, four unknowns, without taking 
into account any corrective factor of the deformation energy with the satisfaction of the zero shear stress conditions 
on the upper and lower faces of the plate. We will have determined the contribution of these stresses in the transverse 
deflection of the plate, as well as their effects on the axial stress within the interfaces between the layers (to avoid any 
problem of imperfections such as delamination) and on the top and bottom edges of the plate in order to take into 
account the fatigue phenomenon when choosing the distribution law of the properties used during the design of the 
plate. A numerical statement, in percentage, of the contribution of the shear effect is made in order to show the 
reliability of the adopted theory. We will also have demonstrated the need to add the shear effect when the aspect ratio 
is small or large. Code routines are programmed to obtain numerical results illustrating the validity of the model 
proposed in the theory compared to those available in the literature. 
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1. Introduction 
 

Composite materials have the ability to combine thermal and mechanical properties within the 
same structure, but from the first composite parts tested, local optimization problems of these 
properties reside at the interfaces between layers, so to overcome the constraint of abrupt change 
in composition between layers of the structure, researchers in modern technology develops new 
materials, the functional graded material (FGM), further information can see Mahamood and 

Akinlabi (2017), Garg et al. (2020). 
FGMs are considered composites at the microscopic scale whose properties may be considered 
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inhomogeneous, but at the macroscopic scale the change in volume fraction continuously in the 
desired direction, to have a tendency to reduce the stress concentration at the transition between 
adjacent layers and also reduces the residual and thermal stresses, making this type of structures as 
homogeneous as it is presented in Jin and Batra (1996), Abdelbaki et al. (2022), Liu et al. (2023), 
Rizov (2021). FGMs have a very crucial role when it comes to civil and aerospace structures that 
are subjected to operating conditions where the temperature is very high. 

In our present study we deal with a type of FGM based on a metal (Aluminium, Al) and a 
ceramic (Alumina, Al2O3) it is the mixture that satisfies the needs for some applications where the 
metal transmits the property of toughness to the structure and the ceramic constituent gives high 
thermal resistance, Rabboh et al. (2013), Arslan and Gunes (2018). 

To have a response (static or dynamic) of a loaded mechanical structure, we can base on 
theoretical methods like Navier techniques, a review is presented by Reddy (1984), Aghababaei 
and Reddy (2009) , Bekki et al. (2021),  Bouhlali et al. (2019),  these techniques are used when the 

boundary conditions are simply supported, on the other hand Levy’s methods, the reader can read 
Bai and Chen (2012), Thai and Kim (2012), these methods have the ability to solve cases where 
two of the edges are simply supported regardless of the others. If the geometry is complicated, 
varied boundary conditions or loads that have random behavior, one should consider using 
numerical methods such as finite elements, Swaminathan and Patil (2008), Rao and Desai (2004), 
Sadeghi (2021), Singh and Harsha (2020), Sahoo et al. (2022) examined a finite element based 
method during the analysis of composite plates and FGM, similarly for Rayleigh-Ritz method as 
presented in the work of Fazzolari and Carrera (2014), Kumar and Lal (2012) or others. 

The analysis of rectangular structures based on functional gradient materials, FGM, relies on 
three groups of theories, depending on the geometry of the plates and the desired accuracy of the 
results, firstly, the classical plate theory (CPT) which is the easiest to handle is that for its neglect 
of the shear effects as it presented in Javaheri and Eslami (2002), Najafizadeh, Hedayati (2004), 
this theory is inaccurate for thick geometry, which pushed the research towards other analysis 
methods such as first order shear deformation theory (FSDT) and that to take into account the 
shear effects to analyze thin and medium thick plates, in this context, Nguyen-Xuan et al. (2011), 

Nguyen-Xuan et al. (2012), Karakoti et al. (2022) have presented examples of the use of FSDT, 
but the accuracy of the results obtained is strongly related to the correct choice of the shear stress 
correction factor in order to regularize the contribution of the shear strain energy in the analysis. 
To overcome the limitations and drawbacks of the previous theories we increase the order of 
development of the displacement field, the higher order models, Bhaskar et al. (2021), Taczala et 
al. (2022), Kablia et al. (2022), Soelarso et al. (2021), include higher order approximations of the 
displacement field give more accurate results than the previous approximations. As well as other 

refined theory have been developed, particularly, the sinusoidal shear deformation theory (SSDT) 
as presented by Zenkour (2006), Liang and Wang (2020) and the hyperbolic shear deformation 
theory (HSDT), an example was presented by Benyoucef et al. (2010), Youcef et al. (2020), 
Belkhodja et al. (2023). 

The present study uses a refined higher order theory that uses only four variables to completely 

determine the displacement field (𝑢𝑥 , 𝑢𝑦, 𝑢𝑧)  of any point (𝑥, 𝑦, 𝑧)  of the FGM plate, 

Ω𝑥(ℎ 2⁄ ,−ℎ 2⁄ ). 
The refined theory adopted respects the nullity of shear stresses at the upper and lower 

interfaces of the plate through a proposed shape function 𝑓(𝑧) see Table 2. 
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(a) Geometric properties (b)Material properties 

Fig. 1 Geometric properties and material properties of the rectangular structure (FGM) 

 
             Table 1 Properties of the materials used in the studied plate 

Properties Aluminium, Al Alumina, Al2O3 

Young’s modulus 𝐸𝑚 = 70.0 MPa 𝐸𝑐 = 380.0 MPa 

Poisson’s ratio 𝜈 = 0.3 𝜈 = 0.3 

 
 
2. Presentation of the problem studied 

 
In this paper we want to make a numerical study to have the effect of transverse shear stresses 

on the deflection as well as the optimal configurations of a rectangular structure with gradually 
changing material properties (FGM plate). 

 

2.1 Geometric properties of the plates 
 

In this study we treat a sandwich plate of rectangular shape composed of three layers of width a 

and length b with uniform thickness h, loaded under a mechanical load 𝑞(𝑥, 𝑦) in the Cartesian 

coordinate system (𝑥, 𝑦, 𝑧) whose surface 𝑧 = 0 coinciding with the neutral surface of the plate, as 
shown in Fig. 1(a). 

The ordinates 𝑧𝑘 in the direction of positive z, the different ordinates limits of the three layers 

are, 𝑧1 = −ℎ 2⁄ , 𝑧2, 𝑧3 and  𝑧4 = +ℎ 2 ⁄  see Fig. 1(b). 
The studied three-layer plates are presented with diagrams [e-f-g], the three numbers e, f and g 

represent the ratio between the layer thickness ℎ𝑘 and the global thickness h. 
Remarks 
◦ In MATLAB we use  𝑧1 = −ℎ 2⁄  and 𝑧𝑘+1 = 𝑧𝑘 + ℎ𝑘  with 𝑘 ∈ {1,2,3,4,… }  which 

represents the layer number and ℎ𝑘 their thickness. 

◦ In MATLAB we use  ℎ1 = 𝑒 ℎ 𝑆⁄ ,  ℎ2 = 𝑓 ℎ 𝑆⁄  and  ℎ3 = 𝑔 ℎ 𝑆⁄ , with 𝑆 = 𝑒 + 𝑓 + 𝑔 
 

2.2 Properties of the materials Al2O3 and Al 
 

The mechanical and thermal properties of the two materials used are presented in Table 1. 
The central layer is entirely made of ceramic while layers 1 and 2 are made of a mixture (FGM) 

of the two materials aluminum Al and ceramic Al2O3 combined together according to a power law, 
whose volume fraction through the z-order is presented as follows 

Vc
(1)
= (

z − z1
z2 − z1

)
p

, z ∈ [z1, z2] 
Vc
(2)
= 1  , z ∈ [z2, z3] 

With Vm
(k)
= 1 −Vc

(k)
 

Vc
(3)
= (

z − z4
z3 − z4

)
p

, z ∈ [z3, z4] (1) 
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The volume fractions of ceramic and aluminum are respectively for the k layer, 𝑉𝑐
(𝑘)

 and 𝑉𝑚
(𝑘)

 

and p indicates the index of the power law used such as (𝑝 ≥ 0) depending on the desired 
optimization of the properties through the thickness. 

The material properties of an FGM configuration that varies only through the thickness h are 
calculated following the rule of Mori and Tanaka (1973). 

𝑃(𝑘)(𝑧) = 𝑉𝑐
(𝑘)
(𝑧). 𝑃𝑐 + [1 − 𝑉𝑐

(𝑘)
(𝑧)] . 𝑃𝑚                                       (2) 

𝑃(𝑘)(𝑧) is the effective property of the k-layer at a point z regardless of x and y in Ω. 

Example: for the Young’s modulus of a layer k of the Al/Al2O3 plate, with 𝐸𝑚 , 𝐸𝑐  the Young’s 
modulus of aluminium and ceramic respectively. 

𝐸(𝑘)(𝑧) = 𝑉𝑐
(𝑘)
(𝑧).𝐸𝑐 + [1 − 𝑉𝑐

(𝑘)
(𝑧)] . 𝐸𝑚                                     (3) 

The curves in Fig. 2 show the variation of Young’s modulus 𝐸(𝑧) through the thickness h of 

the FGM plate for the three layers and three values of the index 𝑝 ∈ {0.05,1,10}.  
N.B.: In this study, it is assumed that the Poisson’s ratio is constant 𝜈 = 𝐶𝑠𝑡, ∀ 𝑧. 
 
 

3. Theory adopted and mathematical formulation of the problem 
 

3.1 Assumptions 
 

• To have infinitesimal deformations we consider that the thickness h of the plate is very large 
compared to the displacements 

• Displacements due to extension effects 𝑢𝑥0(𝑥, 𝑦) - 𝑢𝑦0(𝑥, 𝑦) of flexion 𝑢𝑥
𝑏(𝑥, 𝑦) - 𝑢𝑦

𝑏(𝑥, 𝑦) 

and shear effects 𝑢𝑥
𝑠(𝑥, 𝑦) - 𝑢𝑦

𝑠(𝑥, 𝑦) are accumulated to have the displacements  𝑢𝑥(𝑥, 𝑦, 𝑧), 

𝑢𝑦(𝑥, 𝑦, 𝑧) in the x and y directions respectively, then 

 
 

 

Fig. 2 Variation of Young’s modulus of the three-layer FGM plate 
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Table 2 Proposed model for the shape function 𝑓(𝑧) 

Proposed model Form function 𝑓(𝑧) 𝑓′(𝑧) = 𝑑𝑓(𝑧) 𝑑𝑧⁄  

Proposed model 1 (ℎ 𝜋⁄ )sin (sin (𝜋𝑧 ℎ⁄ )) cos (𝜋𝑧 ℎ⁄ )cos (sin (𝜋𝑧 ℎ⁄ )) 

Proposed model 2 (ℎ 𝜋⁄ )tanh(sin  (𝜋𝑧 ℎ⁄ )) cos(𝜋𝑧 ℎ⁄ )(1 − (tanh(sin (𝜋𝑧 ℎ⁄ )))2) 

Model Arya et al. (ℎ 𝜋⁄ )sin( (𝜋𝑧 ℎ⁄ )) cos(𝜋𝑧 ℎ⁄ ) 

Model Karama et al. z(exp(−2(𝑧 ℎ⁄ )2)) (1 − (4z2 ℎ2⁄ )) 𝑒𝑥𝑝(−2(𝑧 ℎ⁄ )2) 

Reddy model 𝑧 − (4 3⁄ )(𝑧3 ℎ2⁄ ) 1 − (4𝑧2 ℎ2⁄ ) 

 
 

𝑢𝑥(𝑥, 𝑦, 𝑧) = 𝑢𝑥0(𝑥, 𝑦) + 𝑢𝑥
𝑏(𝑥, 𝑦) + 𝑢𝑥

𝑠(𝑥, 𝑦), 
𝑢𝑦(𝑥, 𝑦, 𝑧) = 𝑢𝑦0(𝑥, 𝑦) + 𝑢𝑦

𝑏(𝑥, 𝑦) +  𝑢𝑦
𝑠(𝑥, 𝑦)                                     (4) 

• Taking into account the transverse shear displacements, the global deflection 𝑢𝑧(𝑥, 𝑦, 𝑧) 
contains two components  𝑢𝑧0

𝑠 ,  𝑢𝑧0
𝑏  due to shear and bending respectively, as 

𝑢𝑧(𝑥, 𝑦, 𝑧) =  𝑢𝑧0
𝑏 (𝑥, 𝑦) +  𝑢𝑧0

𝑠 (𝑥, 𝑦)                                            (5) 

• The axial stress along the z axis, 𝜎𝑧 is very small compared to those 𝜎𝑥 and 𝜎𝑦  so we can 

neglect it. 
As the classical plate approach we will note 

𝑢𝑥
𝑏(𝑥, 𝑦) = −𝑧𝜕 𝑢𝑧0

𝑏 𝜕𝑥⁄  and 𝑢𝑦
𝑏(𝑥, 𝑦) = −𝑧 𝜕 𝑢𝑧0

𝑏 𝜕𝑦⁄                              (6) 

Travel 𝑢𝑥
𝑠(𝑥, 𝑦) and  𝑢𝑦

𝑠(𝑥, 𝑦) deformations are derived  𝛾𝑥𝑧  and 𝛾𝑦𝑧  which vary parabolically 

through the thickness h, all respecting the condition of cancelling the transverse stresses  𝜏𝑥𝑧   and 
 𝜏𝑦𝑧 on both sides of the plate. 

𝑢𝑥
𝑠(𝑥, 𝑦) = −𝑓(𝑧) 𝜕 𝑢𝑧0

𝑠 𝜕𝑥⁄  and 𝑢𝑦
𝑠(𝑥, 𝑦) = −𝑓(𝑧) 𝜕 𝑢𝑧0

𝑠 𝜕𝑦⁄                       (7) 

The parabolic variation of the strains and the nullity of the transverse stresses on the two faces 

of the plate is ensured by proposals of two shape functions 𝑓(𝑧) and to validate them we use 
models in the literature, Arya et al. (2002), Karama et al. (2003), Reddy (2000). 

The first comparison of our proposed models (1 and 2) with the literature is made in Fig. 6, are 
models that respect the parabolic variation through the thickness and also the nullity of transverse 
stresses on both the top and bottom faces of the plate. 
 

3.2 Geometric equations, deformation-displacement 
 

Based on the last three assumptions in the previous section, the displacement field of the 
refined theory adopted in this study is as follows 

{

𝑢𝑥(𝑥, 𝑦, 𝑧)

𝑢𝑦(𝑥, 𝑦, 𝑧)

𝑢𝑧(𝑥, 𝑦, 𝑧)

} =

{
 
 

 
 𝑢𝑥0(𝑥, 𝑦) − 𝑧

𝜕𝑢𝑧0
𝑏 (𝑥,𝑦)

𝜕𝑥
−𝑓(𝑧)

𝜕𝑢𝑧0
𝑠 (𝑥,𝑦)

𝜕𝑥

𝑢𝑦0(𝑥, 𝑦) − 𝑧
𝜕𝑢𝑧0

𝑏 (𝑥,𝑦)

𝜕𝑦
−𝑓(𝑧)

𝜕𝑢𝑧0
𝑠 (𝑥,𝑦)

𝜕𝑦

𝑢𝑧0
𝑏 (𝑥, 𝑦) + 𝑢𝑧0

𝑠 (𝑥, 𝑦) }
 
 

 
 

                         (8) 

With 𝑢𝑥(𝑥, 𝑦, 𝑧), 𝑢𝑦(𝑥, 𝑦, 𝑧), 𝑢𝑧(𝑥, 𝑦, 𝑧)  are the elements of the displacement field according to 

the theory used. 
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We neglect the Von Karman or more deformation terms, the linear deformation field is written 
for the k layer as follows 

{
 
 

 
 
휀𝑥
휀𝑦
𝛾𝑥𝑦
𝛾𝑦𝑧
𝛾𝑥𝑧}
 
 

 
 
(𝑘)

=

{
 
 
 
 

 
 
 
 

𝜕𝑢𝑥0

𝜕𝑥
− 𝑧

𝜕2𝑢𝑧0
𝑏

∂𝑥2
− 𝑓(𝑧)

𝜕2𝑢𝑧0
𝑠

𝜕𝑥2

𝜕𝑢𝑦0

𝜕𝑥
− 𝑧

𝜕2𝑢𝑧0
𝑏

∂𝑦2
−𝑓(𝑧)

𝜕2𝑢𝑧0
𝑠

𝜕𝑦2

𝜕𝑢𝑥0

𝜕𝑦
+
𝜕𝑢𝑦0

𝜕𝑥
− 2z

𝜕2𝑢𝑧0
𝑏

𝜕𝑥𝜕𝑦
−2f(z)

𝜕2𝑢𝑧0
𝑠

𝜕𝑥𝜕𝑦

(1−
𝜕𝑓

𝜕𝑧
)
𝜕𝑢𝑧0

𝑠

𝜕𝑦

(1−
𝜕𝑓

𝜕𝑧
)
𝜕𝑢𝑧0

𝑠

𝜕𝑥 }
 
 
 
 

 
 
 
 

(𝑘)

=

{
  
 

  
 
휀𝑥
0 + 𝑧𝜒𝑥

𝑏 + 𝑓(𝑧)𝜒𝑥
𝑠

휀𝑦
0 + 𝑧𝜒𝑦

𝑏 +𝑓(𝑧)𝜒𝑦
𝑠

𝛾𝑥𝑦
0 + 𝑧𝜒𝑥𝑦

𝑏 + 𝑓(𝑧)𝜒𝑥𝑦
𝑠

(1−
𝜕𝑓

𝜕𝑧
) 𝛾𝑦𝑧

𝑠

(1 −
𝜕𝑓

𝜕𝑧
) 𝛾𝑥𝑧

𝑠
}
  
 

  
 
(𝑘)

       (9) 

With 휀𝑥 , 휀𝑦 , 𝛾𝑥𝑦 , 𝛾𝑦𝑧  𝑒𝑡 𝛾𝑥𝑧  the elements of the deformation field. 

 

3.3 Constitutive equations, stress-strain 
 
We apply Hooke’s law for our case of a linear elastic and orthotropic FGM plate, with the 

assumption 𝜎𝑧 = 0. According to the fourth assumption, then for each layer k, the stress field is 

{

𝜎𝑥
𝜎𝑦
𝜏𝑥𝑦

}

(𝑘)

= [

𝑄11(𝑧) 𝑄12(𝑧) 0
𝑄12(𝑧) 𝑄22(𝑧) 0

0 0 𝑄66(𝑧)
]

(𝑘)

{

휀𝑥
휀𝑦
𝛾𝑥𝑦

}

(𝑘)

  

and {
𝜏𝑦𝑧
𝜏𝑥𝑧
}
(𝑘)

= [
𝑄44(𝑧) 0
0 𝑄55(𝑧)

]
(𝑘)

{
𝛾𝑦𝑧
𝛾𝑥𝑧
}
(𝑘)

                                    (10) 

With  𝜎𝑥 , 𝜎𝑦 , 𝜏𝑥𝑦 , 𝜏𝑦𝑧  and 𝜏𝑥𝑧 the elements of the stress field. 

The use of the relation (3) allows us to calculate the stiffnesses of the material as a function of 
the order z for each layer “k”. 

𝑄11
k)
(𝑧) = 𝑄22

(𝑘)(𝑧) =
𝐸(𝑧)

1−𝑣2
,  𝑄12

(𝑘)(𝑧) =
𝑣𝐸(𝑧)

1−𝑣2
 ;  𝑄44

(𝑘)(𝑧) = 𝑄55
(𝑘)
= 𝑄66

(𝑘)
=

𝐸(𝑧)

2(1+𝑣)
  

and  𝑄16
(𝑘)
=  𝑄26

(𝑘)
= 0                                                        (11) 

 
3.4 Governing equations of motion 

 
The principle of virtual work applied in the static case allows us to obtain the governing 

equations of motion: 

∀ 𝛿𝑢𝑥0 ∶  
𝜕𝑁𝑥

𝜕𝑥
+
𝜕𝑁𝑥𝑦

𝜕𝑦
= 0  

∀ 𝛿𝑢𝑦0 ∶  
𝜕𝑁𝑥𝑦

𝜕𝑥
+
𝜕𝑁𝑦

𝜕𝑦
= 0  

∀ 𝛿u𝑧0
𝑏 ∶  

𝜕2𝑀𝑥
𝑏

𝜕𝑥2
+2

𝜕2𝑀𝑥𝑦
𝑏

𝜕𝑥𝜕𝑦
+
𝜕2𝑀𝑦

𝑏

𝜕𝑦2
+ 𝑞 = 0  

∀ 𝛿u𝑧0
𝑠 ∶  

𝜕2𝑀𝑥
𝑠

𝜕𝑥2
+2

𝜕2𝑀𝑥𝑦
𝑠

𝜕𝑥𝜕𝑦
+
𝜕2𝑀𝑦

𝑠

𝜕𝑦2
+
𝜕𝑆𝑥𝑧

𝑠

𝜕𝑥
+
𝜕𝑆𝑦𝑧

𝑠

𝜕𝑦
+ 𝑞 = 0                             (12) 

Geometrically we can write: 
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[

𝑁𝑥 𝑁𝑦 𝑁𝑥𝑦

𝑀𝑥
𝑏 𝑀𝑦

𝑏 𝑀𝑥𝑦
𝑏

𝑀𝑥
𝑠 𝑀𝑦

𝑠 𝑀𝑥𝑦
𝑠

] = ∑ (∫ {
1
𝑧
𝑓(𝑧)

}(𝜎𝑥 , 𝜎𝑦 , 𝜏𝑥𝑦)
(𝑘)𝑧k+1

𝑧𝑘
𝑑𝑧)3

𝑘=1  . 

{
𝑆𝑦𝑧
𝑠

𝑆𝑥𝑦
𝑠 } = ∑ (∫ (1−

𝑑𝑓(𝑧)

𝑑𝑧
) {
𝜏𝑦𝑧
𝜏𝑥𝑧
}
(𝑘)𝑧𝑘+1

𝑧𝑘
𝑑𝑧)3

𝑘=1                                  (13) 

If we integrate these formulas through the thickness we obtain the following stiffnesses (main 
and coupling) 

{
𝑁
𝑀𝑏

𝑀𝑠
} = ∑ [

[A] [B] [𝐵𝑠]
[B] [D] [𝐷𝑠]
[𝐵𝑠] [𝐷𝑠] [𝐻𝑠]

]

(𝑘)

𝑛
𝑘=1 {

휀
𝜅𝑏

𝜅𝑠
}   𝑒𝑡  {

𝑆𝑦𝑧
𝑠

𝑆𝑥𝑧
𝑠 } = ∑ [

𝐴44
𝑠 0

0 𝐴55
𝑠 ]

(𝑘)
𝑛
𝑘=1 {

𝛾𝑦𝑧
𝑠

𝛾𝑥𝑧
𝑠 }    (14) 

Where 𝐴𝑖𝑗,𝐵𝑖𝑗 …etc, are the rigidities of the plate. 

Substituting expressions (14) into Eq. (12) gives us the system of equations in terms of the 

operators applied to the searched displacement field, as 

[𝑂]{𝛿} = {𝑓} ⟹ [

𝑂11 𝑂12 𝑂13 𝑂14
𝑂12 𝑂22 𝑂23 𝑂24
𝑂13
𝑂14

𝑂23
𝑂24

𝑂33
𝑂34

𝑂34
𝑂44

]

{
 

 
𝑢𝑥0
𝑢𝑦0

𝑢𝑧0
𝑏

𝑢𝑧0
𝑠 }
 

 
= {

0
0

𝑞(𝑥, 𝑦)
q(x, y)

}                         (15) 

Where, {𝛿} = {𝑢𝑥0, 𝑢𝑦0, 𝑢𝑧0
𝑏 , 𝑢𝑧0

𝑠 }
𝑇
 is the vector of displacements of a point (x, y) of the median 

plane and {𝑓} = {0,0, 𝑞(𝑥, 𝑦), 𝑞(𝑥, 𝑦)}𝑇 the vector of generalized forces, with [𝑂] the symmetric 
matrix of differential operators such that 

𝑂11 = 𝐴11
𝜕2

𝜕𝑥2
+ 𝐴66

𝜕2

𝜕𝑦2
. 𝑂12 = (𝐴12 +𝐴66)

𝜕2

𝜕𝑥𝜕𝑦
. 

𝑂13 = −𝐵11
𝜕3

∂𝑥3
− (𝐵12 +2𝐵66)

𝜕3

𝜕𝑥𝜕𝑦2
. 𝑂14 = −𝐵11

𝑠 𝜕3

𝜕𝑥3
− (𝐵12

𝑠 +2𝐵66
𝑠 )

𝜕3

𝜕𝑥𝜕𝑦2
. 

𝑂22 = 𝐴66
𝜕2

𝜕𝑥2
+ 𝐴22

𝜕2

𝜕𝑦2
. 𝑂23 = −𝐵22

𝜕3

∂𝑦3
− (𝐵12 +2𝐵66)

𝜕3

𝜕𝑥2𝜕𝑦
. 

𝑂24 = −𝐵22
𝑠 𝜕3

𝜕𝑦3
− (𝐵12

𝑠 + 2𝐵66
𝑠 )

𝜕3

𝜕𝑥2𝜕𝑦
. 𝑂33 = 𝐷11

𝜕4

∂𝑥4
+ 2(𝐷12 +2𝐷66)

𝜕4

𝜕𝑥2𝜕𝑦2
+ 𝐷22

𝜕4

∂𝑦4
. 

𝑂34 = 𝐷11
𝑠 𝜕4

𝜕𝑥4
+ 2(𝐷12

𝑠 +2𝐷66
𝑠 )

𝜕4

𝜕𝑥2𝜕𝑦2
+ 𝐷22

𝑠 𝜕4

𝜕𝑦4
. 

𝑂44 = 𝐻11
𝑠 𝜕4

𝜕𝑥4
+ 2(𝐻12

𝑠 +2𝐻66
𝑠 )

𝜕4

𝜕𝑥2𝜕𝑦2
+𝐻22

𝑠 𝜕4

𝜕𝑦4
− 𝐴44

𝑠 𝜕2

𝜕𝑦2
−𝐴55

𝑠 𝜕2

𝜕𝑥2
. 

 
 

4. Analytical solutions 
 

For a plate simply supported on these four edges, H. Navier presented the external mechanical 
load as a double trigonometric series as 

𝑞(𝑥, 𝑦) = ∑ ∑ 𝑄𝑚𝑛sin(𝜂𝑥)sin(𝜇𝑦)
+∞
𝑛=1

+∞
𝑚=1 , where 𝜂 =

𝑚𝜋

𝑎
 𝑒𝑡 𝜇 =

𝑛𝜋

𝑏
 and that ∀ 𝑚, 𝑛       (16) 

With: a is the width and b is the length of plate 
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• Case of a sinusoidal load 𝑄𝑚𝑛 = 𝑞0 for  𝑚 = 𝑛 = 1 

• Case of a uniformly distributed load 𝑄𝑚𝑛 =
16𝑞0

𝜋2𝑚𝑛
 for 𝑚 = 𝑛 = 1,3,5,… 

And the same development for the travel field 

{
 
 

 
 𝑢x0(𝑥, 𝑦)    = ∑ ∑ U𝑥

𝑚𝑛. cos(𝜂𝑥)sin(𝜇𝑦)∞
𝑛=1

∞
𝑚=1

𝑢y0(𝑥, 𝑦)    = ∑ ∑ U𝑦
𝑚𝑛. sin(𝜂𝑥)cos(𝜇𝑦)∞

𝑛=1
∞
𝑚=1

𝑢z0
𝑏 (𝑥, 𝑦) = ∑ ∑ U𝑏𝑧

𝑚𝑛 . sin(𝜂𝑥)sin(𝜇𝑦)∞
𝑛=1

∞
𝑚=1

𝑢z0
𝑠 (𝑥, 𝑦) = ∑ ∑ U𝑠𝑧

𝑚𝑛 . sin(𝜂𝑥)sin(𝜇𝑦)∞
𝑛=1

∞
𝑚=1

 and that ∀ 𝑚, 𝑛                      (17) 

Now we apply the operator matrix [𝑂] on the displacement vector {𝛿} of a point of the median 

plane we obtain another form of writing the system (15),  [𝑅]{𝑑𝑚𝑛} = {𝑓𝑚𝑛} 

[𝑅]{𝑑𝑚𝑛} = {𝑓} ⟹ [

𝑅11 𝑅12 𝑅13 𝑅14
𝑅12 𝑅22 𝑅23 𝑅24
𝑅13
𝑅14

𝑅23
𝑅24

𝑅33
𝑅34

𝑅34
𝑅44

]

{
 

 
U𝑥
𝑚𝑛

U𝑦
𝑚𝑛

U𝑏𝑧
𝑚𝑛

U𝑠𝑧
𝑚𝑛}
 

 

= {

0
0
𝑄mn
𝑄mn

}                         (18) 

With  𝑅𝑖𝑗 = 𝑅𝑗𝑖  and: 

𝑅11 = −(𝐴11𝜂
2 + 𝐴66𝜇

2) 

𝑅12 = −(𝐴12 + 𝐴66)𝜂𝜇 

𝑅13 = 𝐵11𝜂
3 + (𝐵12 + 2𝐵66)𝜂𝜇

2 

𝑅14 = 𝐵11
𝑠 𝜂3 + (𝐵12

𝑠 + 2𝐵66
𝑠 )𝜂𝜇2 

𝑅22 = −𝐴66𝜂
2 − 𝐴22𝜇

2 

𝑅23 = 𝐵22𝜇
3 + (𝐵12 + 2𝐵66)𝜂

2𝜇 

𝑅24 = 𝐵22
𝑠 𝜇3 + (𝐵12

𝑠 + 2𝐵66
𝑠 )𝜂2𝜇 

𝑅33 = 𝐷11𝜂
4 + 2(𝐷12 + 2𝐷66)𝜂

2𝜇2 + 𝐷22𝜇
4 

𝑅34 = 𝐷11
𝑠 𝜂4 + 2(𝐷12

𝑠 + 2𝐷66
𝑠 )𝜂2𝜇2 + 𝐷22

𝑠 𝜇4 

𝑅44 = 𝐻11
𝑠 𝜂4 +2(𝐻12

𝑠 + 2𝐻66
𝑠 )𝜂2𝜇2 +𝐻22

𝑠 𝜇4 + 𝐴44
𝑠 𝜇2 +𝐴55

𝑠 𝜂2 

The resolution of the system (18) allows us to obtain 𝑑𝑚𝑛 = {U𝑥
𝑚𝑛, U𝑦

𝑚𝑛, U𝑏𝑧
𝑚𝑛, U𝑠𝑧

𝑚𝑛}
𝑇
 and we 

go back to the displacement field (see (8)) and the following stress field (10) 

{

𝜎𝑥
𝜎𝑦
𝜏𝑥𝑦

}

(𝑘)

=

∑ ∑ [Q](𝑘) {

[−𝜂U𝑥
𝑚𝑛 + 𝑧𝜂2U𝑏𝑧

𝑚𝑛 +𝑓(𝑧)𝜂2U𝑠𝑧
𝑚𝑛] sin(𝜂𝑥)sin (𝜇𝑦)

[−𝜇U𝑦
𝑚𝑛 + 𝑧𝜇2U𝑏𝑧

𝑚𝑛 + 𝑓(𝑧)𝜇2U𝑠𝑧
𝑚𝑛] sin(𝜂𝑥) sin (𝜇𝑦)

[(𝜇U𝑥
𝑚𝑛 + 𝜂U𝑦

𝑚𝑛) − (2𝑧𝜂𝜇U𝑏𝑧
𝑚𝑛 +2𝑓(𝑧)𝜂𝜇U𝑠𝑧

𝑚𝑛)] cos(𝜂𝑥) cos(𝜇𝑦)

}

(𝑘)

∞
𝑛=1

∞
𝑚=1 . 

{
𝜏𝑦𝑧
𝜏𝑥𝑧
}
(𝑘)

= ∑ ∑ [
𝑄44 0
0 𝑄55

]
(𝑘)

{
(1−

𝜕𝑓

𝜕𝑧
)𝜇U𝑠𝑧

𝑚𝑛 sin(𝜂𝑥)cos (𝜇𝑦)

(1 −
𝜕𝑓

𝜕𝑧
) 𝜂U𝑠𝑧

𝑚𝑛 cos(𝜂𝑥)sin (𝜇𝑦)
}

(𝑘)

∞
𝑛=1

∞
𝑚=1               (19) 

These developments satisfy the conditions of the k-layer. 
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(a) Deflection 𝑤(𝑥, 𝑦, 𝑧) (b) Constraint 𝜏𝑥𝑧(𝑥, 𝑦, 𝑧) (c) Constraint 𝜏𝑥𝑦(𝑥, 𝑦, 𝑧) 

Fig. 3 Illustration of the maxima of the results for the 𝑚 = 𝑛 = 1 

 
 

5. Numerical results and interpretations 
 

5.1 Let’s normalize the numerical results 
 

The presentation of the numerical results is done in a non-dimensional way in order to 
normalize them and compare them with other results in the literature. 

According to the simulations made with MATLAB for the displacement and stress fields we 
will use the following normalizations: 

Non-dimensional thickness 𝑧̅ =
𝑧

ℎ
 Arrow: �̅�𝑧 =

10ℎ3𝐸

𝑎4𝑞0
𝑤(

𝑎

2
,
𝑏

2
) 

Shear stress �̅�𝑥𝑦 =
ℎ

𝑎𝑞0
𝜏𝑥𝑦(0, 𝑏) Shear stress �̅�𝑥𝑧 =

ℎ

𝑎𝑞0
𝜏𝑥𝑧(0,

𝑏

2
) 

Axial stress 𝜎𝑥 =
ℎ

𝑎𝑞0
𝜎𝑥(

𝑎

2
,
𝑏

2
,
ℎ

2
) Axial stress 𝜎𝑦 =

ℎ

𝑎𝑞0
𝜎𝑦(

𝑎

2
,
𝑏

2
,
ℎ

2
) 

 

5.2 Numerical results and discussion 
 
• Global deflection and shear stress effects 
The validation of the two models proposed in the present refined theory is done (after running 

the MATLAB program) by the models proposed by Arya et al. (2002), Karama et al. (2003), 
Reddy (2000). 

The properties of the plate used in this comparative study are: 
𝑎

ℎ
= 10; 

𝑏

𝑎
= 1; 𝑎 = 10; Diagram [1-2-1]; 𝐸𝑚 = 70 MPa; 𝐸𝑐 = 380 MPa; 𝜈 = 0.3 

During this comparative survey of the overall deflection �̅�𝑧  and axial stresses  𝜎𝑥  and shear 

stresses �̅�𝑥𝑧  of an FGM plate subjected under a sinusoidal load (SL) we observe a kind of 
agreement between the results of our models, 1 and 2, and the models cited in Reddy (2000), 
Zenkour (2009), Mantari et al. (2012). Same remarks regarding the reconciliation of the results 
found for a uniform load between the proposed models and the models in the literature. 

The following part of the study aims to have the bending behavior of the FGM plate to target 

the variation of the aspect ratio 𝑎 ℎ⁄  by applying the proposed model 1. 
The properties of the plate used in this study are: 

𝑏

𝑎
= 1; Diagram [1-2-1]; 𝐸𝑚 = 70 MPa; 𝐸𝑐 = 380 MPa; 𝜈 = 0.3 
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Table 3 Comparison of results for sinusoidal load (SL) 

p Results 
Proposed 

model 1 

Proposed 

model 2 

Mantari et al. 

(2012) 

Zenkour 

(2009) 
Reddy (2000) 

0 

�̅�𝑧 

0.28448783 0.28153878 0.28322178 0.28355310 0.28289095 

1 0.50018398 0.49630778 0.49871718 0.49909829 0.49832686 

10 0.88709997 0.88122531 0.88505559 0.88563658 0.88443569 

0 

�̅�𝒙 

1.96261115 1.98226349 1.97194643 1.96916321 1.97472575 

1 0.80316840 0.81002481 0.80642534 0.80545432 0.80739501 

10 1.13078748 1.14050164 1.13540192 1.13402617 1.13677573 

0 

�̅�𝒙𝒚 

0.15854168 0.15854168 0.15854168 0.15854168 0.15854168 

1 1.03514073 1.03514073 1.03514073 1.03514073 1.03514073 

10 355.462361 355.462361 355.462361 355.462361 355.462361 

0 

�̅�𝒙𝒛  

1.05679062 1.06737265 1.06181731 1.06031865 1.06331386 

1 0.43247529 0.43616721 0.43422903 0.43370617 0.43475116 

10 0.60888557 0.61411627 0.61137026 0.61062947 0.61211001 

 
Table 4 The overall non-dimensional deflection �̅�𝑧 and the contribution of the deflection �̅�𝑧0

𝑠  due to shear as 

a function of the ratio 𝑎 ℎ⁄  

Load p Arrow 
𝑎 ℎ⁄  

1 10 20 30 40 

S
in

u
so

id
al

 l
o

ad
 S

L
 0 

�̅�𝑧 0.00000137 0.00671018 0.10638075 0.53763053 1.69815778 

�̅�𝑧0
𝑠  0.00000222 0.00025419 0.00101789 0.00229073 0.00407270 

% 72.49 % 3.78 % 0.95 % 0.42 % 0.23 % 

1 

�̅�𝑧 0.00000171 0.01175750 0.18740785 0.94808400 2.99567431 

�̅�𝑧0
𝑠  0.00000200 0.00021867 0.00087530 0.00196967 0.00350179 

% 87.23 % 1.85 % 0.46 % 0.20 % 0.11 % 

10 

�̅�𝑧 0.00000253 0.02082845 0.33266472 1.68356122 5.32027200 

�̅�𝑧0
𝑠  0.00000190 0.00020382 0.00081573 0.00183558 0.00326338 

% 75.07 % 0.97 % 0.24 % 0.10 % 0.06 % 

U
L

 U
n
if

o
rm

 L
o

ad
 0 

�̅� 0.00000223 0.01087814 0.17245797 0.87157379 2.75294970 

�̅�𝑧0
𝑠  0.00000359 0.00041208 0.00165015 0.00371360 0.00660242 

% 72.49 % 3.78 % 0.95 % 0.42 % 0.23 % 

1 

�̅�𝑧0
𝑠  0.00000278 0.01906055 0.30381416 1.53697589 4.85640427 

�̅�𝑠 0.00000325 0.00035450 0.00141898 0.00319311 0.00567690 

% 87.23 % 1.85 % 0.46 % 0.20 % 0.11 % 

10 

�̅�𝑧 0.00000411 0.03376581 0.53929574 2.72928665 8.62490010 

�̅�𝑧0
𝑠  0.00000308 0.00033043 0.00132242 0.00297574 0.00529039 

% 75.07 % 0.97 % 0.24 % 0.10 % 0.06 % 

 
 

Table 4 summarizes the variation of the overall deflection �̅�𝑧 and the contribution of the shear 

deflection �̅�𝑧0
𝑠  in terms of percentage, these results are presented in the curves of Fig. 4 (a), (b), 

(c). 

A first analysis of these results indicates that the overall sag �̅�𝑧 (curves (a)) increases with the 

increase of the ratio 𝑎 ℎ⁄  and this is correct because the plate will be thinner and thinner, but we  
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(a) the global arrow �̅�𝑧 (b) the shear deflection �̅�𝑧0

𝑠  

 
(c) the contribution as a percentage of �̅�𝑧0

𝑠  in �̅�𝑧 

Fig. 4 Illustration of the global deflections �̅�𝑧  and the contribution of the shear deflection �̅�𝑧0
𝑠  in the 

deflection of the plate 

 
 

observe a decrease in the contribution of the deflection due to shear �̅�𝑧0
𝑠  (curves (c)) even it (�̅�𝑧0

𝑠 ) 
also increases with the ratio 𝑎 ℎ⁄  (curves (b)), so to explain this problem we say that for small 

ratios of 𝑎 ℎ⁄  (thick plates) the global deflection  �̅�𝑧 is very small while the shear effect will be 

very clear (87.23% the share of �̅�𝑧0
𝑠  in �̅�𝑧) and the opposite will occur for large ratios 𝑎 ℎ⁄  (0.23% 

share of �̅�𝑧0
𝑠  in �̅�𝑧). 

We observe an invariance of the contribution of the shear effect on the overall deflection even 

if we change the load of the FGM plate from uniform to sinusoidal. 

We notice that the ceramic plate (𝑝 = 0) is less flexible under any load compared to the FGM 
plates (see curve a) while the shear stresses if we load the plate sinusoidally has a less important 
effect compared to the case of a uniform load. 

Now we make a small tour on the effect of the shear stresses on the deflection of the FGM plate 
for the different scheme of the plate by applying the proposed model 1. 

The properties of the plates used in this study are: 
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Table 5 The overall non-dimensional deflection �̅�𝑧 and the contribution of the deflection �̅�𝑧0
𝑠  due to shear as 

a function of the layer scheme 

Load p Arrow 
Layering scheme 

[1-1-1] [1-2-1] [2-1-2] [1-1-3] [1-1-0] 

S
in

u
so

id
al

 l
o
ad

 S
L

 0 

�̅�𝑧 0.00671018 0.00671018 0.00671018 0.00671018 0.00671018 

�̅�𝑧0
𝑠  0.00025419 0.00025419 0.00025419 0.00025419 0.00025419 

% 3.78 % 3.78 % 3.78 % 3.78 % 3.78 % 

1 

�̅�𝑧 0.01368947 0.01175750 0.01517274 0.01289900 0.00876338 

�̅�𝑧0
𝑠  0.00022539 0.00021867 0.00023863 0.00026304 0.00027270 

% 1.64 % 1.85 % 1.57 % 2.03 % 3.11 % 

10 

�̅�𝑧 0.02800755 0.02082845 0.03258370 0.01985358 0.00854640 

�̅�𝑧0
𝑠  0.00025649 0.00020382 0.00034484 0.00040519 0.00036076 

% 0.91 % 0.97 % 1.05 % 2.04 % 4.22 % 

 

 
𝑎

ℎ
= 10; 

𝑏

𝑎
= 1; 𝑎 = 10; 𝐸𝑚 = 70 MPa; 𝐸𝑐 = 380 MPa; 𝜈 = 0.3 

According to the general configuration [e-f-g] indicated in the note on page 3, the diagrams 

“[1-1-1]”, “[1-2-1]”, “[2-1-2]”, “[1-0-1]” and “[1-1-3]” represent the ratios of the heights of the 

layers making up the FGM plate to the total height (the ratio of ℎ𝐴𝑙 is e, of ℎ𝐴𝑙2𝑂3 is f and of ℎ𝐴𝑙 is 

g). 
We notice that, even if we change the plate pattern, the global and shear deflection are always 

constant if (𝑝 = 0) and this is because the plate is entirely made of ceramic. 
The deflection increases significantly for the symmetrical schemes with the two extreme layers 

in FGM (layers 1 and 3) being larger (�̅�𝑧 = 0.01517274) but the contribution of the shear stress 

effect is clearer for the non-symmetrical schemes 4.22 % for (𝑝 = 10). 
• Axial and transverse stresses 

Let’s study the behavior of the FGM plate at the axial and transverse stress level 𝜎𝑥  and 
transverse �̅�𝑥𝑧  as a function of the applied power law, by applying the proposed model 1. 

The properties of the plates used in this study are: 
𝑎

ℎ
= 10; 

𝑏

𝑎
= 1; 𝑎 = 10  𝐸𝑚 = 70 MPa; 𝐸𝑐 = 380 MPa; 𝜈 = 0.3 

According to the general configuration [e-f-g] indicated in the note on page 3, the diagrams 
“[1-1-1]”, “[1-2-1]”, “[2-1-2]”, “[1-0-1]” and “[1-1-3]” represent the ratios of the heights of the 

layers making up the FGM plate to the total height (the ratio of ℎ𝐴𝑙 is e, of ℎ𝐴𝑙2𝑂3 is f and of ℎ𝐴𝑙 is 

g). 

Table 6 shows the variation of stresses 𝜎𝑥 and �̅�𝑥𝑧  for the different schemes as a function of the 

index 𝑝 ∈ {0,0.5,1,10} of a plate under sinusoidal and then uniform loading, the leafing of these 
results shows that, passing from the sinusoidal load SL to that uniform, both axial and transverse 
stresses increase, these results are drawn in Fig. 5. 

According to the general configuration [e-f-g] indicated in the note on page 3, the diagram [1-
2-1], [1-1-3] represents the ratios of the heights of the layers making up the FGM plate to the total 

height (the ratio of ℎ𝐴𝑙 is 1, of ℎ𝐴𝑙2𝑂3 is 1 and of ℎ𝐴𝑙 is 3). 

Of the four curves which differ by the material constitution according to the index 𝑝 ∈
{0,0.5,1,10} in the same figure and by the geometrical property (thickness of layers) between the 
two figures, we note the following results: 

402



 

 

 

 

 

 

Effect of shear stresses on the deflection and optimal configuration of a rectangular FGM structure 

Table 6 Maximum axial stress �̅�𝑥  and transverse 𝜏̅𝑥𝑧 as a function of the p-value for different schemes and 

loads 

Result Load p 
Scheme 

[1-1-1] [1-2-1] [2-1-2] [1-0-1] [1-1-3] 

A
x
ia

l 
st

re
ss

 𝜎
𝑥
 

SL 

0 1.96261115 1.96261115 1.96261115 1.96261115 1.96261115 

0.5 0.56510870 0.51608932 0.60102012 0.64830682 0.59913535 

1 0.74229495 0.63721200 0.82287924 0.93019657 0.77820059 

10 1.52089679 1.13078748 1.76977322 1.93232969 1.28606152 

UL 

0 3.18166536 3.18166536 3.18166536 3.18166536 3.18166536 

0.5 0.91611972 0.83665250 0.97433712 1.05099543 0.97128165 

1 1.20336325 1.03300919 1.33400158 1.50797789 1.26157128 

10 2.46558502 1.83316362 2.86904828 3.13257490 2.08488442 

T
ra

n
sv

er
se

 s
tr

es
s 
𝜏̅ 𝑥
𝑧
 

SL 

0 1.05679062 1.05679062 1.05679062 1.05679062 1.05679062 

0.5 0.30428930 0.27789425 0.32362622 0.34908828 0.32261134 

1 0.39969728 0.34311415 0.44308882 0.50087508 0.41903108 

10 0.81894443 0.60888557 0.95295481 1.04048521 0.69249466 

UL 

0 1.71320442 1.71320442 1.71320442 1.71320442 1.71320442 

0.5 0.49329523 0.45050519 0.52464306 0.56592061 0.52299781 

1 0.64796483 0.55623571 0.71830854 0.81198809 0.67930761 

10 1.32762270 0.98708810 1.54487215 1.68677110 1.12263007 

 

  
(a) Diagram [1-2-1] (b) Diagram [1-1-3] 

Fig. 5 Variation of dimensionless axial stresses �̅�𝑥  through the thickness 

 
 
The axial stress is symmetrical with respect to the neutral plane in the case of symmetrical 

schemes, whereas in the case of non-symmetrical schemes the neutral plane changes geometry as 
well, so the stress distribution is not symmetrical. 

In the case of symmetrical patterns the maximum axial stress occurs at the interface between 
the central layer (all-ceramic layer) and the 3ème FGM layer, fortunately the transition between the 
layers is not abrupt, so we do not have delamination problems. 

According to the executions made under MATLAB we have obtained a special behavior of the  
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Fig. 6 Stress comparison 𝜏̅𝑥𝑧  for the different 

models 

Fig. 7 Maximum axial stress a dimensional �̅�𝑥  on 

the upper surface of the FGM plate 

 

  

(a) Diagram [1-2-1] (b) Diagram [1-1-3] 

Fig. 8 Variation of dimensionless transverse stresses 𝜏̅𝑥𝑧 through the thickness 

 
 

axial stress on both the high and low faces of the FGM plate this stress 𝜎𝑥 is always between the 

maximum axial stress of a full ceramic plate 𝜎𝑥(𝑝 = 0) and the stress of an FGM plate whose 

index p takes a particular value between 0 and 1, 𝜎𝑥(𝑝 = 𝑝0) 
In the case where (𝑝 ≠ 0) always the axial stress 𝜎𝑥 is between 𝜎𝑥(𝑝 = 𝑝0) and 𝜎𝑥(𝑝 → +∞) 

this is the case of a metal plate, see Fig. 7. 
After the graphical illustration of the maximum non-dimensional axial stress of an FGM plate 

for different values of the index p, this index has a significant effect on the axial stress supported 
by the FGM plate on the faces. 

According to the general configuration [e-f-g] indicated in the note on page 3, the diagram [1-
2-1], [1-1-3] represents the ratios of the heights of the layers making up the FGM plate to the total 

height (the ratio of ℎ𝐴𝑙 is 1, of ℎ𝐴𝑙2𝑂3 is 1 and of ℎ𝐴𝑙 is 3). 
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According to the approximation made by the proposed shape function 𝑓(𝑧) (proposed model 
1), the maximum non-dimensional shear stress through the plate thickness shows that the effect of 
these stresses becomes increasingly important as the index p increases, this effect is symmetrical 
for geometrically symmetrical plates and non-symmetrical in other cases. 

The shear stress according to the proposed model 1, 𝑓(𝑧) =
ℎ

𝜋
sin (sin 

𝜋

ℎ
𝑧), has a weaker effect 

for shallow depths in the plate from both sides and becomes stronger at the transition between 
layers, see Fig. 8. 

 
 
6. Conclusions 

 

We have studied and determined the effect of shear stresses on the overall deflection of an 

FGM plate constructed of three layers of 𝐴𝑙/𝐴𝑙2𝑂3/Al and so forth as well as on the maximum 
axial stress on both sides of the plate, this study was based on the use of a refined theory with only 
four unknowns and a proposed shape function that satisfies a certain accuracy close to that given 
by very well-known models in the literature we concluded that the contribution of shear effects 

influences the deflection of the plate for small ratios 𝑎 ℎ⁄  but they can be neglected for thin plates. 
Therefore, we can say that this study is correct whatever the adopted scheme. Also the use of the 
power law imposes the correct choice of their index p in order to respect the admissible axial stress 
on the top and bottom faces of the plate. The effect of shear stresses on plate deflection is clear for 
FGM plates and have a low contribution in deflection of all-ceramic plates. 
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