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Abstract.  The Rayleigh wave propagation is considered in the structure of the functionally graded piezoelectric 
material (FGPM) layer over the elastic substrate. The elastic substrate loosely bonds the layer through a corrugated 
interface, whereas its upper boundary is also corrugated but stress-free. Additionally, the solutions for the FGPM 
layer and substrate are derived using the fundamental variable separable approach to convert the partial differential 
equation to an ordinary differential equation. The results with boundary conditions lead to dispersion relations for the 
electrically open and electrically short cases in the determinant form. The outcomes have been numerically analyzed 
using a specific model. The findings were presented in the form of graphs, which were created using Mathematica 7. 
Graphs are plotted for variations in wavenumber and phase velocity. The outcomes may help measure interface 
defects and design Surface Acoustic Wave (SAW) devices. 
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1. Introduction 
 

FGPM (functionally graded piezoelectric materials) is used in signal transmission, information 
storage, and surface acoustic wave (SAW) devices. The fundamental characteristics of Love waves 

and their use in sensor devices were examined by Jakoby et al. (1997). Functionally gradient 
material plates stimulated by plane pressure wavelets were the subject of research by Liu et al. 
(1999) on elastic waves. Wu and Wu (2000) studied the impact of viscous liquid on the 
transmission of acoustic waves in piezoelectric materials. A study by Qian et al. (2004) 
investigated the effect of inhomogeneous initial stress on Love wave dispersion relations and 
phase velocities. Li et al. (2004) encountered the behavior of Love type waves in a multilayer, 
functionally graded piezoelectric structure. Jin et al. (2005) investigated the transmission behavior 
of surface waves in the presence of homogeneous and inhomogeneous initial stress in a 

piezoelectric medium. Several new studies (Du et al. 2007, Hua et al. 2007, Guo and Sun 2008, 
Cao et al. 2009) have been conducted on how Love waves move through a layered composite 
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FGPM system. In an FGPM layer coupled between a piezomagnetic plate and a pre-stressed 
piezoelectric half-space, Singhal et al. (2018) used the WKB approach to explore the propagation 
of a Love-type wave. It is continuous paragraph till Hemalatha et al. (2023). 

Liu et al. (2019) examined the possibility of surface acoustic waves in a piezoelectric layer 
with a half-infinite elastic layer. In piezoelectric helical constructions, Liang et al. (2019) studied 
the dispersion characteristics of wave propagation. The Lamb waves of the FGPM on the pair 

stress theory were studied by Liu et al. (2021).  
Surface acoustic waves, called Rayleigh waves, move along a solid’s surface. They are 

commonly employed in non-destructive testing to find flaws. They can be created in materials in a 
variety of methods, for as by a localized impact or piezoelectric transduction. Rayleigh-type wave 
propagation was studied by Pal et al. (2015) in an anisotropic layer above a semi-infinite sandy 
substrate. Nonhomogeneous Magneto-Electro-Elastic half-spaces complex Rayleigh Waves were 
covered by Li et al. (2021). Saha et al. (2021) evaluated the influence of curved boundaries on the 

propagation properties of Rayleigh-type waves and SH-wave in a pre-stressing monoclinic media. 
Belyankova et al. (2021) investigated how Rayleigh waves propagated through structures with 
different types of FGPM coating. Rayleigh wave propagation in an FGPM layer on top of an 
elastic substrate was studied by Hemalatha et al. (2023). 

The nature of seismic waves shown at the interface of different materials with various 
imperfections is the subject of ongoing research. Corrugated refers to a material or surface formed 
into a groove and a sequence of parallel ridges. Undulation affects the propagation of waves and 
vibrations via these structures. It leads to the investigation of the wave propagation effect of 

corrugated surfaces. The reflection and refraction of elastic waves at the corrugated boundary 
surface were discovered by the papers (Asano 1960, Asano 1961), Abubakar (1962), Bubakar 
(1962), Abubakar (1962). Dunkin and Eringen (1962) investigated the reflection of elastic waves 
from a half-space boundary. Asano (1966) came across the corrugated interface in the elastic 
waves medium. The reflection and refraction of SH waves at a corrugated interface between two 
heterogeneous half-space mediums were discussed by Salvin and Wolf (1970), Sumner and 
Dereisewicz (1972), Gupta (1987), Zhang and Shinozuka (1996), Tomar and Saini (1997), Tomar 

et al. (2002), Kumar et al. (2003), Tomar and Kaur (2003), Kaur et al. (2005), Tomar and Singh 
(2006, 2007). The corrugated interface between two distinct initially strained elastic half-spaces of 
qP-wave was discovered by Singh (2008). Singh (2011) investigated the corrugated interface of 
SH waves with elastic solid or viscoelastic half-spaces. The propagation of a Love wave in a 
corrugated isotropic layered media over a homogeneous isotropic half-space was studied by Singh 
(2011). Kundu (2014) studied the propagation of a Love wave across a porous half-space with 
irregularity in an initially stressed homogeneous layer. The influence of irregularity and 

heterogeneity on the stresses produced by an average moving load on a rough monoclinic half-
space was investigated by Singh et al. (2014). The closed-form formulas of dispersion of Love 
wave propagation in imperfectly-bonded irregular layered FGPM structures were studied by Chaki 
and Singh (2020). Ray and Singh (2021) addressed how the corrugated interface’s imperfections in 
piezoelectric-piezomagnetic composites affect plane wave reflection and refraction. 

The stresses and displacements at the interface of two media are taken to be perfectly bonded 
earlier, which indicates that the stresses and displacements at the interface are the same. However, 
this concept is later generalized as an incomplete interface condition, implying that the 

displacement at the contact does not have to be continuous. The boundary conditions linked to 
stresses and displacements by equalities with transverse and average stiffness coefficients were 
established by Jones and Whittier (1967). At the loosely connected interface of the elastic 
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substrate, Murty (1975) discussed the one transverse condition for solving Stonley wave 
difficulties. The unsatisfactory boundary conditions between two solid elastic half-spaces were 
encountered by Lovrentyev and Rokhlin (1998). 

With the belief that the layers within the earth are not homogeneous, i.e., uneven and loosely 
bonded, a study of Rayleigh wave propagation at corrugated and weakly bonded interfaces has 
been undertaken. An FGPM layer and elastic substrate make up a structure. A layer’s material 

coefficient is exponentially graded. Moreover, the solutions for layer and substrate are obtained 
using the primary variable-separable method to reduce the partial differential equation to the 
ordinary one. The solutions with boundary conditions lead to dispersion relations in the 
determinant form of two cases: electrically open-circuit case (open case) and electrically short-
circuit case (short case). The outcomes have been numerically analyzed using a specific model. 
The results were presented in graphs. The consequences of the study presented here find their 
application in the production and development of SAW devices. Understanding the mechanism 

behind the piezoelectric properties of various building components is essential for the successful 
application of piezoelectric materials for sustainable building development, but it also depends on 
keeping up with the most recent innovations and implementations in the building industry. 

 

Terminology 
 

𝜌 Mass density 

𝑇𝑖𝑗 Stress tensor 

𝑢𝑖 mechanical displacement vector components 

𝐷𝑖 ith-directed electric displacements 

𝜌1 mass density for layer 

𝜌2 mass density for substrate 

𝐶11 , 𝐶13 , 𝐶44 elastic constants 

𝑒15 , 𝑒31, 𝑒33 piezoelectric constants 

𝜅11, 𝜅33 dielectric constants 

𝑆𝑖𝑗 strain tensor 

𝐸𝑖 elastic field intensity 

𝜑 scalar electric potential function 

𝑇11
(1)

, 𝑇13
(1)

, 𝑇33
(1)

 stresses in the layer 

𝑇11
(2)

, 𝑇13
(2)

, 𝑇33
(2)

 elastic substrate stresses 

𝐷3
(0)

 vacuum electric displacements 

𝐷1
(1)

, 𝐷3
(1)

 layer electric displacements 

𝐷1
(2)

, 𝐷3
(2)

 elastic substrate electric displacements 

𝑘 (=
2𝜋

𝜆
)  wave number 

𝜆 wavelength 

𝑐 phase velocity 

𝑢11, 𝑢31 layer’s mechanical displacement components 

𝑢12, 𝑢32 elastic substrate’s mechanical displacement components 

𝜑0 vacuum’s electric potential function 

𝜑1 layer’s electric potential function 
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Fig. 1 Problem geometry 

 

 

𝜑2 elastic substrate’s electric potential function 

휀0 vacuum’s dielectric constant 

𝑎, 𝑏 corrugation amplitudes 

𝛼 functional gradient parameter 

ℎ thickness of the layer 

 

 

2. Formulation of the problem 
 
A multilayer piezoelectric design is depicted in Fig. 1. It comprises a transversely isotropic 

elastic substrate and a functionally graded, h-thickness transversely piezoelectric layer. It is 
thought that the layer’s upper surface lacks traction. 

The uppermost boundary surface of the layer is defined as 𝑥3 = −ℎ + 𝑔2(𝑥1), and the common 

interface of the layer and elastic substrate is 𝑔1(𝑥1), where 𝑔1(𝑥1) and 𝑔2(𝑥1) are continuous 
periodic functions of 𝑥1 and independent of 𝑥2. 

The definition of the Fourier series of 𝑔1(𝑥1)  and 𝑔2(𝑥1) using an appropriate origin of 
coordinates is 

𝑔𝑙 = ∑ [𝑔𝑛
(𝑙)

𝑒𝑖𝑛𝜆𝑥1 + 𝑔−𝑛
(𝑙)

𝑒−𝑖𝑛𝜆𝑥1]

∞

𝑛=1

, 𝑙 = 1,2 (1) 

where n is the order of the series expansion  𝑔𝑛
(𝑙)

 and 𝑔−𝑛
(𝑙)

 are the Fourier expansions coefficients. 

The constants 𝑎, 𝑏, 𝑅𝑛
(𝑙)

, 𝐼𝑛
(𝑙)

 will be introduced as follows 

𝑔±1
(1)

=
𝑎

2
,𝑔±1

(2)
=

𝑏

2
,𝑔±𝑛

(𝑙)
=

𝑅𝑛
(𝑙)

∓ 𝐼𝑛
(𝑙)

2
, 𝑙 = 1,2, 𝑛 = 2,3, . .. (2) 

and 

𝑔1 = 𝑎 cos 𝜆 𝑥 + 𝑅2
(1)

cos 2 𝜆𝑥 + 𝐼2
(1)

sin𝑛 𝜆𝑥+. . . 

+𝑅𝑛
(1)

cos 2 𝜆𝑥 + 𝐼𝑛
(1)

sin𝑛 𝜆𝑥+. . . , 

𝑔2 = 𝑏 cos 𝜆 𝑥 + 𝑅2
(2)

cos 2 𝜆𝑥 + 𝐼2
(2)

sin𝑛 𝜆𝑥+. . . 

+𝑅𝑛
(2)

cos 2 𝜆𝑥 + 𝐼𝑛
(2)

sin𝑛 𝜆𝑥+. . ., 

(3) 
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in which cosine but also sine Fourier coefficients are represented by 𝑅𝑛
(𝑙)

 and 𝐼𝑛
(𝑙)

 correspondingly. 
Cosine can be used to express the top and bottom boundary surfaces of the layer in the situation at 

hand, i.e., 𝑔1 = 𝑎 cos 𝜆 𝑥 and 𝑔2 = 𝑏 cos 𝜆 𝑥. 
Governing equation in functionally graded materials 

𝑇𝑖𝑗,𝑗 = 𝜌�̈�𝑖 , (4) 

𝐷𝑖,𝑖 = 0 (5) 

where (𝑖, 𝑗 = 1,2,3) and the repeating index in the subscript denote summation, whereas the dot 
and comma stand for time differentiation but also space-coordinated differentiation, respectively.  

The 𝑥3 -axis serves as the material’s symmetric axis, and the constitutive relations for an 
isotropic material piezoelectric medium are 

Expressions (6) and (7)’s 𝑆𝑖𝑗 and 𝐸𝑖  were defined by the following expression 

𝑆11 =
𝜕𝑢1

𝜕𝑥1
, 𝑆22 =

𝜕𝑢2

𝜕𝑥2
, 𝑆33 =

𝜕𝑢3

𝜕𝑥3
, 

𝑆23 =
𝜕𝑢3

𝜕𝑥2
+

𝜕𝑢2

𝜕𝑥3
, 𝑆31 =

𝜕𝑢1

𝜕𝑥3
+

𝜕𝑢3

𝜕𝑥1
, 

𝑆12 =
𝜕𝑢1

𝜕𝑥2
+

𝜕𝑢2

𝜕𝑥1
, 

(8) 

𝐸1 = −
𝜕𝜑

𝜕𝑥1
, 𝐸2 = −

𝜕𝜑

𝜕𝑥2
, 𝐸3 = −

𝜕𝜑

𝜕𝑥3
, (9) 

It is assumed that the Rayleigh wave propagation is in the positive direction of the 𝑥1-axis, and 

the mechanical displacement components and 𝜑 are as follows 

𝑢1 = 𝑢1(𝑥1, 𝑥3, 𝑡), 𝑢2 = 0, 
𝑢3 = 𝑢3(𝑥1, 𝑥3, 𝑡), 𝜑 = 𝜑(𝑥1, 𝑥3 , 𝑡), 

(10) 

and independent of 𝑥2-coordinate, i.e., 
𝜕

𝜕𝑥2
≡ 0. 

To differentiate stress components and the electric displacements of the layer, the substrate and 

[
 
 
 
 
 
𝑇11

𝑇22

𝑇33

𝑇23

𝑇31

𝑇12 ]
 
 
 
 
 

=

[
 
 
 
 
 
𝐶11

𝐶12

𝐶13

0
0
0

𝐶12

𝐶11

𝐶13

0
0
0

𝐶13

𝐶13

𝐶33

0
0
0

0
0
0
𝐶44

0
0

0
0
0
0
𝐶44

0

0
0
0
0
0
𝐶66]

 
 
 
 
 

[
 
 
 
 
 
𝑆11

𝑆22

𝑆33

𝑆23

𝑆31

𝑆12]
 
 
 
 
 

−

[
 
 
 
 
 

0
0
0
0
𝑒15

0

0
0
0
𝑒15

0
0

𝑒13

𝑒31

𝑒33

0
0
0 ]

 
 
 
 
 

[
𝐸1

𝐸2

𝐸3

], (6) 

[
𝐷1

𝐷2

𝐷3

] = [
0 0 0
0 0 0

𝑒31 𝑒31 𝑒33

0
𝑒15

0

𝑒15

0
0

0
0
0
]

[
 
 
 
 
 
𝑆11

𝑆22

𝑆33

𝑆23

𝑆31

𝑆12]
 
 
 
 
 

+ [
𝜅11 0 0
0 𝜅11 0
0 0 𝜅33

] [
𝐸1

𝐸2

𝐸3

], (7) 
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the vacuum, the superscript as index “1”, the superscript as index “2”, and the superscript as index 
“0” are used for the piezoelectric layer, elastic substrate, and vacuum, respectively. To differentiate 
the elastic, piezoelectric and dielectric constants of the layer, and the substrate, the superscript as 
index “(10)”, the superscript as index “(20)” are used for the functionally graded piezoelectric 

layer, and elastic substrate, respectively. Henceforth, for sake of clarity, 𝑢𝑖𝑗 is the mechanical 

displacement components, “i” represents direction of displacement component and “j” represents 
the medium. 
 
 

3. The problem’s solution 
 

3.1 FGPM layer solution 
 
By changing conditions (8)-(10), Eqs. (6) and (7), and the equations of motion on Rayleigh 

wave propagation for a FGPM layer, Eqs. (4) and (5) 

𝜕𝑇11
(1)

𝜕𝑥1
+

𝜕𝑇13
(1)

𝜕𝑥3
= 𝜌1

𝜕2𝑢11

𝜕𝑡2
, (11) 

𝜕𝑇31
(1)

𝜕𝑥1
+

𝜕𝑇33
(1)

𝜕𝑥3
= 𝜌1

𝜕2𝑢31

𝜕𝑡2
, (12) 

𝜕𝐷1
(1)

𝜕𝑥1
+

𝜕𝐷3
(1)

𝜕𝑥3
= 0, (13) 

In terms of 𝑢𝑖 and 𝜑𝑖, 𝑇𝑖𝑗 and 𝐷𝑖 is defined as 

𝑇11
(1)

= 𝐶11
(1) 𝜕𝑢11

𝜕𝑥1
+ 𝐶13

(1) 𝜕𝑢31

𝜕𝑥3
+ 𝑒31

(1) 𝜕𝜑1

𝜕𝑥3
, 

𝑇33
(1)

= 𝐶13
(1) 𝜕𝑢11

𝜕𝑥1
+ 𝐶33

(1) 𝜕𝑢31

𝜕𝑥3
+ 𝑒33

(1) 𝜕𝜑1

𝜕𝑥3
, 

𝑇13
(1)

= 𝐶44
(1)

(
𝜕𝑢11

𝜕𝑥3
+

𝜕𝑢31

𝜕𝑥1
) + 𝑒15

(1) 𝜕𝜑1

𝜕𝑥1
, 

(14) 

𝐷1
(1)

= 𝑒15
(1)

(
𝜕𝑢11

𝜕𝑥3
+

𝜕𝑢31

𝜕𝑥1
) − 𝜅11

(1) 𝜕𝜑1

𝜕𝑥1
, 

𝐷3
(1)

= 𝑒31
(1) 𝜕𝑢11

𝜕𝑥1
+ 𝑒33

(1) 𝜕𝑢31

𝜕𝑥3
− 𝜅33

(1) 𝜕𝜑1

𝜕𝑥3
, 

(15) 

The hypothesis is that the material constants change exponentially with thickness, i.e. 

𝐶𝑖𝑗
(1)

(𝑥3) = 𝐶𝑖𝑗
(10)

𝑒𝛼𝑥3 , 𝑒𝑖𝑗
(1)

(𝑥3) = 𝑒𝑖𝑗
(10)

𝑒𝛼𝑥3 , 

𝜅𝑖𝑗
(1)

(𝑥3) = 𝜅𝑖𝑗
(10)

𝑒𝛼𝑥3 , 𝜌1 = 𝜌10𝑒
𝛼𝑥3 . 

(16) 

Eqs. (14)-(16) are substituted into Eqs. (11)-(13) to yield 
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𝐶11
(10) 𝜕

2𝑢11

𝜕𝑥1
2 + 𝐶13

(10) 𝜕2𝑢31

𝜕𝑥1𝜕𝑥3
+ 𝑒31

(10) 𝜕2𝜑1

𝜕𝑥1𝜕𝑥3
 

+𝐶44
(10)

(
𝜕2𝑢11

𝜕𝑥3
2 +

𝜕2𝑢31

𝜕𝑥1𝜕𝑥3
) + 𝑒15

(10) 𝜕2𝜑1

𝜕𝑥1𝜕𝑥3
 

+𝛼𝐶44
(10)

(
𝜕𝑢11

𝜕𝑥3
+

𝜕𝑢31

𝜕𝑥1
) + 𝛼𝑒15

(10) 𝜕𝜑1

𝜕𝑥1
= 𝜌10

𝜕2𝑢11

𝜕𝑡2
, 

(17) 

𝐶44
(10)

(
𝜕2𝑢11

𝜕𝑥1𝜕𝑥3
+

𝜕2𝑢31

𝜕𝑥1
2 )+ 𝑒15

(10) 𝜕
2𝜑1

𝜕𝑥1
2 + 𝐶13

(10) 𝜕2𝑢11

𝜕𝑥1𝜕𝑥3
 

+𝐶33
(10) 𝜕2𝑢31

𝜕𝑥3
2 + 𝑒33

(10) 𝜕2𝜑1

𝜕𝑥3
2 + 𝛼𝐶13

(10) 𝜕𝑢11

𝜕𝑥1
 

+𝛼𝐶33
(10) 𝜕𝑢31

𝜕𝑥3
+ 𝛼𝑒33

(10) 𝜕𝜑1

𝜕𝑥3
= 𝜌10

𝜕2𝑢31

𝜕𝑡2
, 

(18) 

𝑒15
(10)

(
𝜕2𝑢11

𝜕𝑥1𝜕𝑥3
+

𝜕2𝑢31

𝜕𝑥1
2 ) − 𝜅11

(10) 𝜕
2𝜑1

𝜕𝑥1
2 + 𝑒31

(10) 𝜕2𝑢11

𝜕𝑥1𝜕𝑥3
 

+𝑒33
(10) 𝜕

2𝑢31

𝜕𝑥3
2 − 𝜅33

(10) 𝜕
2𝜑1

𝜕𝑥3
2 + 𝛼𝑒31

(10) 𝜕𝑢11

𝜕𝑥1
 

+𝛼𝑒33
(10) 𝜕𝑢31

𝜕𝑥3
− 𝛼𝜅33

(10) 𝜕𝜑1

𝜕𝑥3
= 0, 

(19) 

Eqs. (17)-(19) are considered to have the following solutions 

{𝑢11, 𝑢31, 𝜑1}(𝑥1, 𝑥3, 𝑡) = {𝑈11 , 𝑈31, 𝛷1}(𝑥3)𝑒
𝑖𝑘(𝑥1−𝑐𝑡), (20) 

where, the unidentified functions 𝑈11, 𝑈31 and 𝛷1are engaged. 
Calculations (17), (18), as well as (19) are changed to Eq. (20) purpose of providing 

𝐶44
(10) 𝑑2𝑈11

𝑑𝑥3
2 + 𝛼𝐶44

(10) 𝑑𝑈11

𝑑𝑥3
+ (𝜌10𝑘

2𝑐2 − 𝐶11
(10)

𝑘2)𝑈11 

+(𝑖𝑘) {(𝐶13
(10)

+ 𝐶44
(10)

)
𝑑𝑈31

𝑑𝑥3
+ 𝛼𝐶44

(10)
𝑈31} 

+(𝑖𝑘) {(𝑒31
(10)

+ 𝑒15
(10)

)
𝑑𝛷1

𝑑𝑥3
+ 𝛼𝑒15

(10)
𝛷1} = 0, 

(21) 

(𝑖𝑘) {(𝐶44
(10)

+ 𝐶13
(10)

)
𝑑𝑈11

𝑑𝑥3
+ 𝛼𝐶13

(10)
𝑈11} 

+𝐶33
(10) 𝑑

2𝑈31

𝑑𝑥3
2 + 𝛼𝐶33

(10) 𝑑𝑈31

𝑑𝑥3
+ (𝜌10𝑘

2𝑐2 − 𝐶44
(10)

𝑘2)𝑈31 

+𝑒33
(10) 𝑑

2𝛷1

𝑑𝑥3
2 + 𝛼𝑒33

(10) 𝑑𝛷1

𝑑𝑥3
− 𝑒15

(10)
𝑘2𝛷1 = 0, 

(22) 
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−(𝑖𝑘) {(𝑒15
(10)

+ 𝑒31
(10)

)
𝑑𝑈11

𝑑𝑥3
+ 𝛼𝑒31

(10)
𝑈11} 

−𝑒33
(10) 𝑑

2𝑈31

𝑑𝑥3
2 − 𝛼𝑒33

(10) 𝑑𝑈31

𝑑𝑥3
+ 𝑒15

(10)
𝑘2𝑈31 

+𝜅33
(10) 𝑑

2𝛷1

𝑑𝑥3
2 + 𝛼𝜅33

(10) 𝑑𝛷1

𝑑𝑥3
− 𝜅11

(10)
𝑘2𝛷1 = 0, 

(23) 

The answers to Eqs. (21)-(23) can now be considered to be 

{𝑈11, 𝑈31, 𝛷1}(𝑥3) = {𝐴,𝐵, 𝐶}𝑒−𝑘𝑠𝑥3 , (24) 

wherever unknown variables A, B and C are used.  
Eq. (24) can be substituted for Eqs. (21)-(23) to produce 

{𝐶44
(10)

𝑠2 −
𝛼

𝑘
𝐶44

(10)
𝑠 + (𝜌10𝑐

2 − 𝐶44
(10)

)}𝐴 

+(𝑖) {−(𝐶13
(10)

+ 𝐶44
(10)

) 𝑠 +
𝛼

𝑘
𝐶44

(10)
}𝐵 

+(𝑖) {−(𝑒31
(10)

+ 𝑒15
(10)

) 𝑠 +
𝛼

𝑘
𝑒15

(10)
} 𝐶 = 0, 

(25) 

(𝑖) {−(𝐶44
(10)

+ 𝐶13
(10)

) 𝑠 +
𝛼

𝑘
𝐶13

(10)
}𝐴 

+{𝐶33
(10)

𝑠2 −
𝛼

𝑘
𝐶33

(10)
𝑠 + (𝜌10𝑐

2 − 𝐶44
(10)

)}𝐵 

+{𝑒33
(10)

𝑠2 −
𝛼

𝑘
𝑒33

(10)
𝑠 − 𝑒15

(10)
} 𝐶 = 0, 

(26) 

−(𝑖) {(𝑒15
(10)

+ 𝑒31
(10)

) 𝑠 +
𝛼

𝑘
𝑒31

(10)
}𝐴 

−{𝑒33
(10)

𝑠2 −
𝛼

𝑘
𝑒33

(10)
𝑠 − 𝑒15

(10)
}𝐵 

+{𝜅33
(10)

𝑠2 −
𝛼

𝑘
𝜅33

(10)
𝑠 − 𝜅11

(10)
} 𝐶 = 0, 

(27) 

Eqs. (25)-(27) can be easily solved if the coefficient matrix’s determinant is zero, that is 

|𝑎𝑖𝑗| = 0, (𝑖, 𝑗 = 1,2,3) (28) 

where the coefficient of the preceding Eqs. (25)-(27) as defined in Appendix A is 𝑎𝑖𝑗(𝑖, 𝑗 = 1,2,3). 

The preceding algebraic expression with order 6 in s results from expanding Eq. (28). 

𝑎0𝑠
6 + 𝑎1𝑠

5 + 𝑎2𝑠
4 + 𝑎3𝑠

3 + 𝑎4𝑠
2 + 𝑎5𝑠

1 + 𝑎6 = 0, (29) 

there, according to Appendix B, 𝑎𝑖(𝑖 = 0,1, . . . ,6). 
Let the roots of a components 𝑈31𝑗, 𝑈11𝑗 and 𝑈11𝑗 , 𝛷1𝑗 equivalent to 𝑠 = 𝑠𝑗  be 𝑠𝑗(𝑗 = 1, . . . ,6), 

𝑈31𝑗

𝑈11𝑗
=

𝐵𝑗

𝐴𝑗
=

𝑎13𝑗𝑎21𝑗 − 𝑎11𝑗𝑎23𝑗

𝑎12𝑗𝑎23𝑗 − 𝑎13𝑗𝑎22𝑗
= 𝛿1𝑗, (30) 

𝛷1𝑗

𝑈11𝑗
=

𝐶𝑗

𝐴𝑗
=

𝑎11𝑗𝑎22𝑗 − 𝑎12𝑗𝑎21𝑗

𝑎12𝑗𝑎23𝑗 − 𝑎13𝑗𝑎22𝑗
= 𝛾1𝑗 , (31) 

wherever, 𝑎𝑖𝑗𝑘(𝑖, 𝑗 = 1,2,3; 𝑘=1,2,...,6) as specified in Appendix C. 
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As a result, the final formulation for Eqs. (17)-(19) is 

𝑢11(𝑥1, 𝑥3, 𝑡) = ∑𝐴𝑗𝑒
[−𝑘𝑠𝑗𝑥3+𝑖𝑘(𝑥1−𝑐𝑡)]

6

𝑗=1

, 

𝑢31(𝑥1, 𝑥3, 𝑡) = ∑𝛿1𝑗𝐴𝑗𝑒
[−𝑘𝑠𝑗𝑥3+𝑖𝑘(𝑥1−𝑐𝑡)]

6

𝑗=1

, 

𝜑1(𝑥1, 𝑥3, 𝑡) = ∑𝛾1𝑗𝐴𝑗𝑒
[−𝑘𝑠𝑗𝑥3+𝑖𝑘(𝑥1−𝑐𝑡)]

6

𝑗=1

, 

(32) 

where the constants 𝐴𝑗 are chosen at random. 

 

3.2 Elastic substrate solution 
 
The field equations for propagation of Rayleigh wave the elastic substrate can be obtained as 

𝜕𝑇11
(2)

𝜕𝑥1
+

𝜕𝑇13
(2)

𝜕𝑥3
= 𝜌2

𝜕2𝑢12

𝜕𝑡2
, (33) 

𝜕𝑇31
(2)

𝜕𝑥1
+

𝜕𝑇33
(2)

𝜕𝑥3
= 𝜌2

𝜕2𝑢32

𝜕𝑡2
, (34) 

𝜕𝐷1
(2)

𝜕𝑥1
+

𝜕𝐷3
(2)

𝜕𝑥3
= 0, (35) 

In terms of 𝑢𝑖 and 𝜑𝑖, 𝑇𝑖𝑗 and 𝐷𝑖 is defined as 

𝑇11
(2)

= 𝐶11
(20) 𝜕𝑢12

𝜕𝑥1
+ 𝐶13

(20) 𝜕𝑢32

𝜕𝑥3
, 

𝑇33
(2)

= 𝐶13
(20) 𝜕𝑢12

𝜕𝑥1
+ 𝐶33

(20) 𝜕𝑢32

𝜕𝑥3
, 

𝑇13
(2)

= 𝐶44
(20)

(
𝜕𝑢12

𝜕𝑥3
+

𝜕𝑢32

𝜕𝑥1
), 

(36) 

𝐷1
(2)

= −𝜅11
(20) 𝜕𝜑2

𝜕𝑥1
, 

𝐷3
(2)

= −𝜅33
(20) 𝜕𝜑2

𝜕𝑥3
, 

(37) 

Eqs. (36) and (37) are substituted into Eqs. (33)-(35) to yield 

𝐶11
(20) 𝜕

2𝑢12

𝜕𝑥1
2 + 𝐶13

(20) 𝜕2𝑢32

𝜕𝑥1𝜕𝑥3
 

+𝐶44
(20)

(
𝜕2𝑢12

𝜕𝑥3
2 +

𝜕2𝑢32

𝜕𝑥1𝜕𝑥3
) = 𝜌2

𝜕2𝑢12

𝜕𝑡2
, 

(38) 
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𝐶44
(20)

(
𝜕2𝑢12

𝜕𝑥1𝜕𝑥3
+

𝜕2𝑢32

𝜕𝑥1
2 ) + 𝐶13

(20) 𝜕2𝑢12

𝜕𝑥1𝜕𝑥3
 

+𝐶33
(20) 𝜕𝑢32

𝜕𝑥3
= 𝜌2

𝜕2𝑢32

𝜕𝑡2
, 

(39) 

𝜅11
(20) 𝜕

2𝜑2

𝜕𝑥1
2 + 𝜅33

(20) 𝜕
2𝜑2

𝜕𝑥3
2 = 0, (40) 

Eqs. (38)-(40) are considered to have the following solutions 

{𝑢12, 𝑢32, 𝜑2}(𝑥1, 𝑥3, 𝑡) = {𝑈12 , 𝑈32, 𝛷2}(𝑥3)𝑒
𝑖𝑘(𝑥1−𝑐𝑡), (41) 

Eq. (41) can be substituted for Eqs. (38)-(40) to produce 

𝐶44
(20) 𝑑2𝑈12

𝑑𝑥3
2 + (𝜌2𝑘

2𝑐2 − 𝐶11
(20)

𝑘2)𝑈12 

+(𝑖𝑘)(𝐶13
(20)

+ 𝐶44
(20)

)
𝑑𝑈32

𝑑𝑥3
= 0, 

(42) 

𝐶33
(20) 𝑑

2𝑈32

𝑑𝑥3
2 + (𝜌2𝑘

2𝑐2 − 𝐶44
(20)

𝑘2)𝑈32 

(𝑖𝑘)(𝐶44
(20)

+ 𝐶13
(20)

)
𝑑𝑈12

𝑑𝑥3
= 0, 

(43) 

𝜅33
(20) 𝑑

2𝛷2

𝑑𝑥3
2 − 𝜅11

(20)
𝑘2𝛷2 = 0, (44) 

From Eq. (44) can be written as 

𝑑2𝛷2

𝑑𝑥3
2 − 𝑘2𝑝2𝛷2 = 0, (45) 

where 𝑝2 =
𝜅11

(20)

𝜅33
(20). 

The solution of the Eq. (45) is given by 

𝛷2(𝑥3) = (𝐹1𝑒
−𝑘𝑝𝑥3 + 𝐹2𝑒

𝑘𝑝𝑥3), (46) 

Now by Eq. (46) and considering that 𝜑2vanishes as 𝑥3 → −∞, the solution of Eq. (40) is 
given by 

𝜑2(𝑥1, 𝑥3, 𝑡) = 𝐹1𝑒
−𝑘𝑝𝑥3𝑒𝑖𝑘(𝑥1−𝑐𝑡), (47) 

The answers to Eqs. (42) and (43) can now be considered to be 

{𝑈12, 𝑈32}(𝑥3) = {𝐺, 𝐻}𝑒−𝑘𝑞𝑥3 , (48) 

wherever unknown variables G and H are used.  
Eq. (48) can be substituted for Eqs. (42) and (43) to produce 

{𝐶44
(20)

𝑞2 + 𝜌2𝑐
2 − 𝐶11

(20)
}𝐺 + {(−𝑖𝑞)(𝐶13

(20)
+ 𝐶44

(20)
)}𝐻 = 0, (49) 
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{−(𝑖𝑞)(𝐶44
(20)

+ 𝐶13
(20)

)}𝐺 + {𝐶33
(20)

𝑞2 + 𝜌2𝑐
2 − 𝐶44

(20)
}𝐻 = 0, 

(50) 

Eqs. (49) and (50) can be easily solved if the coefficient matrix’s determinant is zero, that is 

|𝑏𝑖𝑗| = 0, (𝑖, 𝑗 = 1,2) (51) 

where the coefficient of preceding Eqs. (49) and (50) above, given in Appendix D, is 𝑏𝑖𝑗(𝑖, 𝑗 =

1,2).  
The preceding algebraic expression with order 4 in q results from expanding Eq. (51). 

𝑏0𝑞
4 + 𝑏1𝑞

2 + 𝑏2 = 0, (52) 

there, according to Appendix E, 𝑏𝑖(𝑖 = 0,1,2). 
Considering that ±𝑞1, ±𝑞2are roots of Eq. (52) and displacements are provided as 

𝑈12(𝑥3) = 𝐺1𝑒
−𝑘𝑞1𝑥3 + 𝐺2𝑒

−𝑘𝑞2𝑥3 
+𝐺3𝑒

𝑘𝑞3𝑥3 + 𝐺4𝑒
𝑘𝑞4𝑥3 , 

𝑈32(𝑥3) = 𝛿21𝐺1𝑒
−𝑘𝑞1𝑥3 + 𝛿22𝐺2𝑒

−𝑘𝑞2𝑥3  
−𝛿21𝐺3𝑒

𝑘𝑞3𝑥3 − 𝛿22𝐺4𝑒
𝑘𝑞4𝑥3 , 

(53) 

where𝑞1
2 =

−𝑏1−√𝑏1
2−4𝑏0𝑏2

2𝑏0
, and 𝑞2

2 =
−𝑏1+√𝑏1

2−4𝑏0𝑏2

2𝑏0
. 

The roots of components 𝑈32𝑗, 𝑈12𝑗  related to 𝑞 = 𝑞𝑗 are given by 𝑞𝑗(𝑗 = 1,2). 

𝑈32𝑗

𝑈12𝑗
=

𝐻𝑗

𝐺𝑗
=

𝑏11𝑗

𝑏12𝑗
= 𝛿2𝑗, (54) 

wherever, 𝑏𝑖𝑗𝑘(𝑖, 𝑗, 𝑘=1,2) defined in Appendix F.  

Eq. (53) is approximate answer to substrate can be expressed as 

𝑈12(𝑥3) = 𝐺1𝑒
−𝑘𝑞1𝑥3 + 𝐺2𝑒

−𝑘𝑞2𝑥3  
𝑈32(𝑥3) = 𝛿21𝐺1𝑒

−𝑘𝑞1𝑥3 + 𝛿22𝐺2𝑒
−𝑘𝑞2𝑥3 , 

(55) 

As a result, the final formulation of Eqs. (38)-(40) is 

𝑢12(𝑥1, 𝑥3, 𝑡) = ∑𝐺𝑗𝑒
[−𝑘𝑞𝑗𝑥3+𝑖𝑘(𝑥1−𝑐𝑡)]

2

𝑗=1

, 

𝑢32(𝑥1, 𝑥3, 𝑡) = ∑𝛿2𝑗𝐺𝑗𝑒
[−𝑘𝑞𝑗𝑥3+𝑖𝑘(𝑥1−𝑐𝑡)]

2

𝑗=1

, 

(56) 

𝐺𝑗’s were random constants in this situation.  

 

3.3 Vacuum solution 
 

Compared to the piezoelectric medium, 휀0of air is smaller than layer. As a result, the air is 

assumed to be a vacuum, and 𝜑0(𝑥3 < −ℎ) of air fulfills the Laplace equation, that is 

𝜕2𝜑0

𝜕𝑥1
2 +

𝜕2𝜑0

𝜕𝑥3
2 = 0, (57) 
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Taking into account that 𝜑0 disappears as 𝑥3 → −∞, the answer to Eq. (57) is obtained by 

𝜑0 = 𝐴0𝑒
𝑘𝑥3𝑒𝑖𝑘(𝑥1−𝑐𝑡), (58) 

where 𝐴0 is an undefined constant.  
Electric vacuum displacement is 

𝐷3
(0)

= −휀0

𝜕𝜑0

𝜕𝑥3
. (59) 

 
 

4. Boundary conditions 
 

The layer has been loosely bonded with elastic substrate and have corrugated interface where as 
upper boundary as stress free and corrugated. Additionally, it is thought that the top border is an 
electrically open case as well as a electrically short case. At the interface, scalar potential and 

electrical displacement are continuous functions. These conditions are illustrated mathematically 
below, 

1. The mechanical traction free condition at 𝑥3 = −ℎ + 𝑔2(𝑥1) are 

𝑇33
(1)

− 𝑔2
′  𝑇13

(1)
= 0, 

𝑇13
(1)

− 𝑔2
′  𝑇11

(1)
= 0, 

(60) 

2. The electrically boundary condition at 𝑥3 = −ℎ + 𝑔2(𝑥1) are 
a) Electrically open case 

𝜑1 = 𝜑0, 

𝐷3
(1)

= 𝐷3
(0)

, 
(61) 

b) Electrically short case 

𝜑1 = 0, (62) 

3. The continuous condition at 𝑥3 = 𝑔1(𝑥1) are 

𝑇33
(2)

− 𝑔1
′  𝑇13

(2)
= 𝐾𝑛(𝑢31 − 𝑢32), 

𝑇31
(2)

− 𝑔1
′  𝑇11

(2)
= 𝐾𝑡(𝑢11 − 𝑢12), 

𝑇33
(2)

− 𝑔1
′  𝑇13

(2)
= 𝑇33

(1)
− 𝑔1

′  𝑇13
(1)

, 

𝑇31
(2)

− 𝑔1
′  𝑇13

(2)
= 𝑇31

(1)
− 𝑔1

′  𝑇11
(1)

, 

𝜑1 = 𝜑2, 

𝐷3
(1)

= 𝐷3
(2)

, 

(63) 

where 𝐾𝑛 and 𝐾𝑡 are normal and transverse stiffness coefficients of a unit layer thickness and have 

the dimension N/m3. 
 
 

5. Dispersion relations 
 

In this instance, two cases are taken into consideration: an electrically open as well as a short 
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case. 
 

5.1 Electrically open case 
 
Yielding the solutions of layer, elastic substrate, and vacuum and their related stress and 

electric components into boundary conditions (60), (61), and (63), we get the homogeneous 

equations of unknown constants 𝐴0,𝐴𝑗′𝑠, 𝐺𝑗 ′𝑠 and 𝐹1. 

From that equations eliminating the 𝐴0, 𝐴𝑗′𝑠, 𝐺𝑗′𝑠 and 𝐹1, We obtain the dispersion relation in 

tenth-order determinant form for a piezoelectric layer covering a elastic substrate that is subject to 
the top boundary condition of a free surface. 

|𝑚𝑥𝑦| = 0, (64) 

for every 𝑥, 𝑦 = 1,2, . . . ,10 and 𝑚𝑥𝑦 as described in Appendix G. 

 

5.2 Electrically short case 
 
Yielding the solutions of layer, elastic substrate, and their related stress and electric components 

into boundary conditions (60), (62), and (63), we get the homogeneous equations of unknown 

constants 𝐴𝑗′𝑠, 𝐺𝑗 ′𝑠 and 𝐹1. 

From that equations eliminating the constants 𝐴𝑗′𝑠, 𝐺𝑗′𝑠  and 𝐹1 , We obtain the dispersion 

relation in tenth-order determinant form for a piezoelectric layer covering an elastic substrate that 
is subject to the top boundary condition of a free surface. 

|𝑛𝑥𝑦| = 0, (65) 

for every 𝑥, 𝑦 = 1,2, . . . ,9 and 𝑛𝑥𝑦 as described in Appendix H. 

 
 

6. Numerical calculations and graphical discussions 
 

The following information has been taken into account for the execution of numerical 

computation as well as a graphic illustration of the phase velocity of the Rayleigh wave 
propagation in a corrugated FGPM layer imperfectly bonded to elastic substrate: 

(i) For FGPM layer 

𝐶11
(10)

= 151 × 109 Pa, 𝐶13
(10)

= 96 × 109 Pa,𝐶33
(10)

= 124 × 109 Pa, 

𝐶44
(10)

= 23 × 109 Pa, e31
(10)

= −5.1 C/m2, 𝑒33
(10)

= 27 C/m2, 

𝑒15
(10)

= 17 C/m2, 𝜌1 = 7500 Kg/m3, 𝜅11
(10)

= 15 × 10−9 C/Vm, 

𝜅33
(10)

= 13.27 × 10−9 C/Vm. 

(ii) For elastic substrate: 

𝐶11
(20)

= 226 × 109 Pa, 𝐶13
(20)

= 121 × 109 Pa, 𝐶33
(20)

= 218 × 109 Pa, 

𝐶44
(20)

= 48 × 109 Pa, 𝜌2 = 7500 Kg/m3, 𝜅11
(20)

= 0.19 × 10−9 C/Vm, 

𝜅33
(20)

= 5.1 × 10−9 C/Vm. 

Vacuum dielectric constant 휀0 = 8.85 × 10−12 F/m. 
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Fig. 2 Wave number versus phase velocity for various values of α: electrically open case 

 

 

Fig. 3 Wave number versus phase velocity for various values of h: electrically open case 

 

 
Now, to execute the numerical results and plot the graphs, a particular case of corrugation has 

been considered i.e., 𝑔1 = 𝑎 cos 𝜆 𝑥, and 𝑔2 = 𝑏 cos 𝜆 𝑥. 
 

6.1 Electrically open case 
 

A visual representation of the effects of layer thickness, heterogeneous parameters, interfacial 
imperfection bonding parameters, and amplitudes of corrugation parameters on phase velocity is 
provided for the electrically open situation. In the structure under study, variation in wave number 
and phase velocity, as seen in Figs. 2-7, significantly impact how the Rayleigh wave propagates. 
Fig. 2 shows phase velocity versus wave number graphs for various inhomogeneity parameter 

values 𝛼 (0.03,0.05,0.07). This graph demonstrates that as wave number k rises, phase velocity 
monotonically falls. It grows once again as the wave number rises after reaching a lower level. The 

wave number falls as it rises for all values of 𝛼. Fig. 3 shows the plots for wave number versus  
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Fig. 4 Wave number versus phase velocity for various values of a: electrically open case 

 

 

Fig. 5 Wave number versus phase velocity for various values of b: electrically open case 

 

 
phase velocity for various values of layer thickness h (0.2 Km, 0.5 Km, 0.8 Km). It demonstrates 
that as wave number k rises, phase velocity falls. The wave number drops as h rises with all values 
of h. The graphs show that thickness change has a significant impact. After attaining lower level it 
again increasing with wave number. Figs. 4 and 5 reveal the effect of phase velocity due to 
variation in amplitudes of corrugation a (=0.008 Km; 0.01 Km; 0.012 Km) and b (=0.008 Km; 
0.01 Km; 0.012 Km) respectively. Fig. 4 demonstrates phase velocity versus wave number for 

different values of amplitude of corrugation a, shows that the amplitude of corrugation a decreases 
with increasing the wave number whereas phase velocity decreases. After attaining the lower level 
the graphs become reversed and increasing as wave number increases. Fig. 5 demonstrates phase 
velocity versus wave number for different values of amplitude of corrugation b, shows that the 
amplitude of corrugation b increases with increasing the wave number whereas phase velocity 
decreases. After attaining lower level the nature of the graph become reversed as wave number 
increases phase velocity also increasing whereas b decreasing. Figs. 6 and 7 shows that the  
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Fig. 6 Wave number versus phase velocity for various values of 𝐾𝑛: electrically open case 

 

 

Fig. 7 Wave number versus phase velocity for various values of 𝐾𝑡: electrically open case 

 

 

interfacial imperfection bonding parameters 𝐾𝑛 and 𝐾𝑡 are set to 1GPa,5GPa,10GPa respectively. 

Fig. 6, shows that interfacial imperfection bonding parameter 𝐾𝑛 decreases with increasing the 
wave number whereas phase velocity falls. Once achieved k=2.0, graphs become reversed and 
increasing as wave number increases. Fig. 7, shows that interfacial imperfection bonding 

parameter 𝐾𝑛 decreases with increasing the wave number whereas phase velocity decreases. The 
graphs show that variance has a massive effect. After attaining lower level it again increasing with 

wave number increases. 

 
6.2 Electrically short case 
 
For the electrically short case, the same material system is considered as used in the electrically 

open case. In the case of an electrically short structure, fluctuations between wave number and 
phase velocity, as seen in Figs. 8-13, significantly impact the propagation of the Rayleigh wave.  
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Fig. 8 Wave number versus phase velocity for various values of α: electrically short case 

 

 

Fig. 9 Wave number versus phase velocity for various values of h: electrically short case 

 

 
Fig. 8 shows the graphs for wave number versus phase velocity values for the inhomogeneity 

parameter 𝛼  (0.03,0.05,0.07). As can be observed in the open case, that phase velocity drops 

monotonically while the non - uniformity parameter 𝛼 falls as wave number k grows. Fig. 9 shows 
the plots for wave number versus phase velocity for different values of layer thickness h (0.2 Km, 
0.5 Km, 0.8 Km). It demonstrates that when h decreases, wave number k’s phase velocity 
constantly decreases. The short example also exhibits a substantial influence of thickness 
variation, as in the open case. Figs. 10 and 11 reveal the effect of phase velocity due to variation in 
amplitudes of corrugation a (=0.008 Km; 0.01 Km; 0.012 Km) and b (=0.008 Km; 0.01 Km; 0.012 
Km) respectively. Fig. 10 demonstrates phase velocity versus wave number for different values of 
amplitude of corrugation a, shows that the amplitude of corrugation decreases with increasing the 

wave number whereas phase velocity decreases and became merged. Fig. 5 demonstrates phase 
velocity versus wave number for different values of amplitude of corrugation b, showing that the 
amplitude of corrugation b increases with increasing the wave number whereas phase velocity 
decreases and became merged. Figs. 12 and 13 show that the interfacial imperfection bonding  
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Fig. 10 Wave number versus phase velocity for various values of a: electrically short case 

 

 

Fig. 11 Wave number versus phase velocity for various values of b: electrically short case 

 

 

Fig. 12 Wave number versus phase velocity for various values of 𝐾𝑛: electrically short case 
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Fig. 13 Wave number versus phase velocity for various values of 𝐾𝑡: electrically short case 

 
 

parameters 𝐾𝑛  and 𝐾𝑡  are set to 1 GPa, 5 GPa, 10 GPa respectively. Fig. 12 shows that the 

interfacial imperfection bonding parameter 𝐾𝑛  decreases with increasing the wave number 
whereas phase velocity decreases. Fig. 13 shows the interfacial imperfection bonding parameter 

𝐾𝑛 decreases with increasing the wave number whereas phase velocity decreases. The graphs show 

that variance has a massive effect on 𝐾𝑡. 
 

 

7. Conclusions 
 

It is investigated how Rayleigh waves behave when propagating in an elastic substrate and an 
FGPM layer. The piezoelectric structure is comprised of a corrugated upper boundary and a 
loosely bonded corrugated interface. The determinant form establishes links between electrically 
open as well as short dispersion. For numerical modeling, FGPM layer and the elastic substrate 
were considered. The link between phase velocity and wavenumber is depicted in graphs using the 
numerical data. The conversation and aforementioned numerical data can be used to draw 
conclusions. 

• In electrically open and electrically short cases, the depth, heterogeneity, interfacial defect 

bonding, and amplitudes of corrugation parameters all impact the Rayleigh wave’s phase 
velocity. 
• Generally, when the wavenumber rises, the phase velocity always falls. 
• It was found that an FGPM medium’s material gradient substantially impacts the Rayleigh 
wave’s phase velocity. It is noted that phase velocity of the Rayleigh wave reduces with a 
reduction in the material gradient of an FGPM layer under both electrically open and 
electrically short conditions. 

• The layer’s thickness impacts electrically open and electrically short situations upon that 
phase velocity of the Rayleigh wave. For both electrically open & electrically short scenarios, 
the layer thickness reduces the Rayleigh wave’s phase velocity value. 
• The phase velocity of the Rayleigh wave is amplified by the imperfection parameter 
associated with the imperfect bonding of layer and half-space in both electrically short and 
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open situations. 
• The phase velocity of Rayleigh wave is also affected by the amplitude of the corrugation 
parameter of upper boundary and it increases with the decreasing value of the corrugation 
parameter of upper boundary for both electrically open and electrically short cases. 
• In both electrically open and short cases, it is seen that the effect of two corrugation amplitude 
parameters are in opposite in nature. 

• It can be observed that seismic wave propagation is highly influenced by the thickness of 
layer, imperfect bonding of the layers and corrugation. 
• The consequences of the study presented here find their application in the production and 
development of SAW devices.  
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(10)

𝑘
+

4𝛼𝐶44
(10)

𝑒15
(10)

𝑒33
(10)

𝑘
 

+
2𝛼𝐶44

(10)
𝑒31

(10)
𝑒33

(10)

𝑘
+

2𝛼𝐶33
(10)

𝐶44
(10)

𝜅11
(10)

𝑘
−

𝛼3𝐶33
(10)

𝐶44
(10)

𝜅33
(10)

𝑘3
−

2𝛼 (𝐶13
(10)

)
2
𝜅11

(10)

𝑘
 

+
2𝛼𝐶11

(10)
𝐶33

(10)
𝜅33

(10)

𝑘
−

4𝛼𝐶13
(10)

𝐶44
(10)

𝜅33
(10)

𝑘
−

2𝛼𝑐2𝐶33
(10)

𝜅33
(10)

𝜌10

𝑘
−

2𝛼𝑐2𝐶44
(10)

𝜅33
(10)

𝜌10

𝑘
, 

𝑎4 = −2𝐶33
(10)

𝑒15
(10)

𝑒31
(10)

− 𝐶44
(10)

(𝑒31
(10)

)
2
+ 2𝐶11

(10)
𝑒15

(10)
𝑒33

(10)
+

𝛼2𝐶33
(10)

(𝑒15
(10)

)
2

𝑘2
 

−
𝛼2𝐶33

(10)
𝑒15

(10)
𝑒31

(10)

𝑘2
−

𝛼2𝐶33
(10)

(𝑒31
(10)

)
2

𝑘2
−

𝛼2𝐶13
(10)

𝑒15
(10)

𝑒31
(10)

𝑘2
−

2𝛼2𝐶44
(10)

𝑒15
(10)

𝑒33
(10)

𝑘2
 

+
𝛼2𝐶44

(10)
𝑒31

(10)
𝑒33

(10)

𝑘2
+

𝛼2𝐶11
(10)

(𝑒33
(10)

)
2

𝑘2
− (𝐶13

(10)
)
2
𝜅11

(10)
+ 𝐶11

(10)
𝐶33

(10)
𝜅11

(10)
 

−2𝐶13
(10)

𝐶44
(10)

𝜅11
(10)

−
𝛼2𝐶33

(10)
𝐶44

(10)
𝜅11

(10)

𝑘2
+ 𝐶11

(10)
𝐶44

(10)
𝜅33

(10)
+

𝛼2 (𝐶13
(10)

)
2
𝜅33

(10)

𝑘2
 

−
𝛼2𝐶11

(10)
𝐶33

(10)
𝜅33

(10)

𝑘2
+

3𝛼2𝐶13
(10)

𝐶44
(10)

𝜅33
(10)

𝑘2
+ 𝑐2 (𝑒15

(10)
)
2
𝜌10 + 2𝑐2𝑒15

(10)
𝑒31

(10)
𝜌10  
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+𝑐2 (𝑒31
(10)

)
2
𝜌10 − 2𝑐2𝑒15

(10)
𝑒33

(10)
𝜌10 −

𝛼2𝑐2 (𝑒33
(10)

)
2
𝜌10

𝑘2
− 𝑐2𝐶33

(10)
𝜅11

(10)
𝜌10 − 𝑐2𝐶44

(10)
𝜅11

(10)
𝜌10 

−𝑐2𝐶11
(10)

𝜅33
(10)

𝜌10 − 𝑐2𝐶44
(10)

𝜅33
(10)

𝜌10 +
𝛼2𝑐2𝐶33

(10)
𝜅33

(10)
𝜌10

𝑘2
+

𝛼2𝑐2𝐶44
(10)

𝜅33
(10)

𝜌10

𝑘2
+ 𝑐4𝜅33

(10)
𝜌10

2 , 

𝑎5 =
𝛼3𝐶33

(10)
𝑒15

(10)
𝑒31

(10)

𝑘3
+

𝛼3𝐶13
(10)

𝑒15
(10)

𝑒33
(10)

𝑘3
−

𝛼3𝐶44
(10)

𝑒31
(10)

𝑒31
(10)

𝑘3
+

2𝛼𝐶13
(10)

𝑒15
(10)

𝑒31
(10)

𝑘
 

−
2𝛼𝐶13

(10)
(𝑒15

(10)
)
2

𝑘
−

2𝛼𝐶44
(10)

(𝑒31
(10)

)
2

𝑘
+

𝛼 (𝐶13
(10)

)
2
𝜅11

(10)

𝑘
−

𝛼𝐶11
(10)

𝐶33
(10)

𝜅11
(10)

𝑘
 

+
𝛼𝐶13

(10)
𝐶44

(10)
𝜅11

(10)

𝑘
−

𝛼3𝐶13
(10)

𝐶44
(10)

𝜅33
(10)

𝑘3
−

𝛼𝐶11
(10)

𝐶44
(10)

𝜅33
(10)

𝑘
−

𝛼𝑐2 (𝑒15
(10)

)
2
𝜌10

𝑘
 

+
𝛼𝑐2 (𝑒31

(10)
)
2
𝜌10

𝑘
+

𝛼𝑐2𝐶33
(10)

𝜅11
(10)

𝜌10

𝑘
+

𝛼𝑐2𝐶44
(10)

𝜅11`
(10)

𝜌10

𝑘
+

𝛼𝑐2𝐶11
(10)

𝜅33
(10)

𝜌10

𝑘
 

+
𝛼𝑐2𝐶44

(10)
𝜅33

(10)
𝜌10

𝑘
+

𝛼𝑐4𝜅33
(10)

𝜌10
2

𝑘
, 

𝑎6 = −𝐶11
(10)

(𝑒31
(10)

)
2
−

𝛼2𝐶13
(10)

(𝑒15
(10)

)
2

𝑘2
− 𝐶11

(10)
𝐶44

(10)
𝜅11

(10)
−

𝛼2𝐶13
(10)

𝐶44
(10)

𝜅11
(10)

𝑘2
 

+𝑐2 (𝑒15
(10)

)
2
𝜌10 −

𝛼2𝑐2𝑒15
(10)

𝑒31
(10)

𝜌10

𝑘2
+ 𝑐2𝐶11

(10)
𝜅11

(10)
𝜌10 + 𝑐2𝐶44

(10)
𝜅11

(10)
𝜌10 − 𝑐4𝜅11

(10)
𝜌10

2 . 

 

 

Appendix C 
 

𝑎11𝑗 = 𝐶44
(10)

𝑠𝑗
2 −

𝛼

𝑘
𝐶44

(10)
𝑠𝑗 + 𝜌1𝑐

2 − 𝐶11
(10)

, 𝑎12𝑗 = (𝑖) {−(𝐶13
(10)

+ 𝐶44
(10)

) 𝑠𝑗 +
𝛼

𝑘
𝐶44

(10)
} , 

𝑎13𝑗 = (𝑖) {−(𝑒31
(10)

+ 𝑒15
(10)

) 𝑠𝑗 +
𝛼

𝑘
𝑒15

(10)
} , 𝑎21𝑗 = (𝑖) {−(𝐶44

(10)
+ 𝐶13

(10)
) 𝑠𝑗 +

𝛼

𝑘
𝐶13

(10)
} , 

𝑎22𝑗 = 𝐶33
(10)

𝑠𝑗
2 −

𝛼

𝑘
𝐶33

(10)
𝑠𝑗 + 𝜌1𝑐

2 − 𝐶44
(10)

, 𝑎23𝑗 = 𝑒33
(10)

𝑠𝑗
2 −

𝛼

𝑘
𝑒33

(10)
𝑠𝑗 − 𝑒15

(10)
, 

𝑎31𝑗 = −(𝑖)(𝑒15
(10)

+ 𝑒31
(10)

) 𝑠𝑗 +
𝛼

𝑘
𝑒31

(10)
, 𝑎32𝑗 = −(𝑒33

(10)
𝑠𝑗

2 −
𝛼

𝑘
𝑒33

(10)
𝑠𝑗 + 𝑒15

(10)
) , 

𝑎33𝑗 = 𝜅33
(10)

𝑠𝑗
2 −

𝛼

𝑘
𝜅33

(10)
𝑠𝑗 − 𝜅11

(10)
, (𝑗 = 1, . . . ,6) 

 

 

Appendix D 
 

𝑏11 = 𝐶44
(20)

𝑞2 + 𝜌2𝑐
2 − 𝐶11

(20)
, 𝑏12 = (−𝑖𝑞)(𝐶13

(20)
+ 𝐶44

(20)
) , 

𝑏21 = (−𝑖𝑞)(𝐶44
(20)

+ 𝐶13
(20)

) , 𝑏22 = 𝐶33
(20)

𝑞2 + 𝜌2𝑐
2 − 𝐶44

(20)
. 

 
 

 

360



 

 

 

 

 

 

Rayleigh wave at imperfectly corrugated interface in FGPM structure 

Appendix E 
 

𝑏0 = 𝐶44
(20)

𝐶33
(20)

, 𝑏1 = 𝐶44
(20)

𝜌2𝑐
2 + 𝐶33

(20)
𝜌2𝑐

2 − 𝐶11
(20)

𝐶33
(20)

+ 2𝐶44
(20)

𝐶33
(20)

+ (𝐶33
(20)

)
2
, 

𝑏2 = (𝜌2)
2𝐶44

(20)
− (𝐶44

(20)
+ 𝐶11

(20)
)𝜌2𝑐

2 − 𝐶44
(20)

𝐶11
(20)

. 

 
 

Appendix F 
 

𝑏11𝑗 = 𝐶44
(20)

𝑞𝑗
2 + 𝜌2𝑐

2 − 𝐶11
(20)

, 𝑏12𝑗 = (−𝑖𝑞𝑗) (𝐶13
(20)

+ 𝐶44
(20)

) , (𝑗 = 1,2) 

 

 

Appendix G 
 

𝑚11 = 𝑚18 = 𝑚19 = 𝑚110 = 0, 

𝑚12 = {𝑖𝐶13
(10)

− 𝛿11𝑠1𝐶33
(10)

− 𝛾11𝑠1𝑒33
(10)

 

−𝑔2′ [𝐶44
(10)

(𝑖𝛿11 − 𝑠1) + 𝑖𝑒15
(10)

𝛾11]} 𝑒−𝑘𝑠1[−ℎ+𝑔2], 

𝑚13 = {𝑖𝐶13
(10)

− 𝛿12𝑠2𝐶33
(10)

− 𝛾12𝑠2𝑒33
(10)

 

−𝑔2′ [𝐶44
(10)

(𝑖𝛿12 − 𝑠2) + 𝑖𝑒15
(10)

𝛾12]} 𝑒−𝑘𝑠2[−ℎ+𝑔2], 

𝑚14 = {𝑖𝐶13
(10)

− 𝛿12𝑠3𝐶33
(10)

− 𝛾13𝑠3𝑒33
(10)

 

−𝑔2′ [𝐶44
(10)

(𝑖𝛿13 − 𝑠3) + 𝑖𝑒15
(10)

𝛾13]} 𝑒−𝑘𝑠3[−ℎ+𝑔2], 

𝑚15 = {𝑖𝐶13
(10)

− 𝛿14𝑠4𝐶33
(10)

− 𝛾14𝑠4𝑒33
(10)

 

−𝑔2′ [𝐶44
(10)

(𝑖𝛿14 − 𝑠4) + 𝑖𝑒15
(10)

𝛾14]} 𝑒−𝑘𝑠4[−ℎ+𝑔2], 

𝑚16 = {𝑖𝐶13
(10)

− 𝛿15𝑠5𝐶33
(10)

− 𝛾15𝑠5𝑒33
(10)

 

−𝑔2′ [𝐶44
(10)

(𝑖𝛿15 − 𝑠5) + 𝑖𝑒15
(10)

𝛾15]} 𝑒−𝑘𝑠5[−ℎ+𝑔2], 

𝑚17 = {𝑖𝐶13
(10)

− 𝛿16𝑠6𝐶33
(10)

− 𝛾16𝑠6𝑒33
(10)

 

−𝑔2′ [𝐶44
(10)

(𝑖𝛿16 − 𝑠6) + 𝑖𝑒15
(10)

𝛾16]} 𝑒−𝑘𝑠6[−ℎ+𝑔2], 

𝑚21 = 𝑚28 = 𝑚29 = 𝑚210 = 0, 

𝑚22 = {𝐶44
(10)

(𝑖𝛿11 − 𝑠1) + 𝑖𝑒15
(10)

𝛾11 

−𝑔2′ [𝑖𝐶11
(10)

− 𝛿11𝑠1𝐶13
(10)

− 𝛾11𝑠1𝑒33
(10)

]} 𝑒−𝑘𝑠1[−ℎ+𝑔2], 

𝑚23 = {𝐶44
(10)

(𝑖𝛿12 − 𝑠2) + 𝑖𝑒15
(10)

𝛾12 

−𝑔2′ [𝑖𝐶11
(10)

− 𝛿12𝑠2𝐶13
(10)

− 𝛾12𝑠2𝑒33
(10)

]} 𝑒−𝑘𝑠2[−ℎ+𝑔2], 

𝑚24 = {𝐶44
(10)

(𝑖𝛿13 − 𝑠3) + 𝑖𝑒15
(10)

𝛾13 

−𝑔2′ [𝑖𝐶11
(10)

− 𝛿13𝑠3𝐶13
(10)

− 𝛾13𝑠3𝑒33
(10)

]} 𝑒−𝑘𝑠3[−ℎ+𝑔2], 
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𝑚26 = {𝐶44
(10)

(𝑖𝛿15 − 𝑠5) + 𝑖𝑒15
(10)

𝛾15 

−𝑔2′ [𝑖𝐶11
(10)

− 𝛿15𝑠5𝐶13
(10)

− 𝛾15𝑠5𝑒33
(10)

]} 𝑒−𝑘𝑠5[−ℎ+𝑔2], 

𝑚27 = {𝐶44
(10)

(𝑖𝛿16 − 𝑠6) + 𝑖𝑒15
(10)

𝛾16 

−𝑔2′ [𝑖𝐶11
(10)

− 𝛿16𝑠6𝐶13
(10)

− 𝛾16𝑠6𝑒33
(10)

]} 𝑒−𝑘𝑠6[−ℎ+𝑔2], 

𝑚31 = 𝑒𝑘[−ℎ+𝑔2],𝑚38 = 𝑚39 = 𝑚310 = 0, 

𝑚32 = −𝛾11𝑒
𝑘𝑠1[−ℎ+𝑔2],𝑚33 = −𝛾12𝑒

𝑘𝑠2[−ℎ+𝑔2], 

𝑚34 = −𝛾13𝑒
𝑘𝑠3[−ℎ+𝑔2],𝑚35 = −𝛾14𝑒

𝑘𝑠4[−ℎ+𝑔2], 

𝑚36 = −𝛾15𝑒
𝑘𝑠5[−ℎ+𝑔2],𝑚37 = −𝛾16𝑒

𝑘𝑠6[−ℎ+𝑔2], 

𝑚41 = 휀0𝑒
𝑘[−ℎ+𝑔2], 𝑚48 = 𝑚49 = 𝑚410 = 0, 

𝑚42 = {𝑖𝑒31
(10)

− 𝑒33
(10)

𝛿11𝑠1 + 𝜅33
(10)

𝛾11𝑠1} 𝑒𝑎[−ℎ+𝑔2]𝑒𝑘𝑠1[−ℎ+𝑔2], 

𝑚43 = {𝑖𝑒31
(10)

− 𝑒33
(10)

𝛿12𝑠2 + 𝜅33
(10)

𝛾12𝑠\2} 𝑒𝑎[−ℎ+𝑔2]𝑒𝑘𝑠2[−ℎ+𝑔2], 

𝑚44 = {𝑖𝑒31
(10)

− 𝑒33
(10)

𝛿13𝑠3 + 𝜅33
(10)

𝛾13𝑠3} 𝑒𝑎[−ℎ+𝑔2]𝑒𝑘𝑠3[−ℎ+𝑔2], 

𝑚45 = {𝑖𝑒31
(10)

− 𝑒33
(10)

𝛿14𝑠4 + 𝜅33
(10)

𝛾14𝑠4} 𝑒𝑎[−ℎ+𝑔2]𝑒𝑘𝑠4[−ℎ+𝑔2], 

𝑚46 = {𝑖𝑒31
(10)

− 𝑒33
(10)

𝛿15𝑠5 + 𝜅33
(10)

𝛾15𝑠5} 𝑒𝑎[−ℎ+𝑔2]𝑒𝑘𝑠5[−ℎ+𝑔2], 

𝑚47 = {𝑖𝑒31
(10)

− 𝑒33
(10)

𝛿16𝑠6 + 𝜅33
(10)

𝛾16𝑠6} 𝑒𝑎[−ℎ+𝑔2]𝑒𝑘𝑠6[−ℎ+𝑔2], 

𝑚61 = 𝑚68 = 0, 
𝑚62 = 𝐾𝑡𝑒

−𝑘𝑠1𝑔1 ,𝑚63 = 𝐾𝑡𝑒
−𝑘𝑠2𝑔1 ,𝑚64 = 𝐾𝑡𝑒

−𝑘𝑠3𝑔1 , 
𝑚65 = 𝐾𝑡𝑒

−𝑘𝑠4𝑔1 ,𝑚66 = 𝐾𝑡𝑒
−𝑘𝑠5𝑔1 ,𝑚67 = 𝐾𝑡𝑒

−𝑘𝑠6𝑔1 , 

𝑚69 = −{𝐶44
(20)

(𝑖𝑘𝛿21 − 𝑘𝑞1) − 𝑔1′ [𝑖𝑘𝐶11
(20)

− 𝑘𝐶13
(20)

𝛿21𝑞1] + 𝐾𝑡} 𝑒−𝑘𝑞1𝑔1 , 

𝑚610 = −{𝐶44
(20)

(𝑖𝑘𝛿22 − 𝑘𝑞2) − 𝑔1′ [𝑖𝑘𝐶11
(20)

− 𝑘𝐶13
(20)

𝛿22𝑞2] + 𝐾𝑡} 𝑒−𝑘𝑞2𝑔1 , 

𝑚71 = 𝑚78 = 0, 

𝑚72 = {𝑖𝐶13
(10)

− 𝛿11𝑠1 𝐶33
(10)

− 𝛾11𝑠1𝑒33
(10)

 

−𝑔1′ [𝐶44
(10)

(𝑖𝛿11 − 𝑠1) + 𝑖𝑒15
(10)

𝛾11]} 𝑒𝑎𝑔1𝑒−𝑘𝑠1𝑔1 , 

𝑚73 = {𝑖𝐶13
(10)

− 𝛿12𝑠2 𝐶33
(10)

− 𝛾12𝑠2𝑒33
(10)

 

−𝑔1′ [𝐶44
(10)

(𝑖𝛿12 − 𝑠2) + 𝑖𝑒15
(10)

𝛾12]} 𝑒𝑎𝑔1𝑒−𝑘𝑠2𝑔1 , 

𝑚74 = {𝑖𝐶13
(10)

− 𝛿13𝑠3 𝐶33
(10)

− 𝛾13𝑠3𝑒33
(10)

 

−𝑔1′ [𝐶44
(10)

(𝑖𝛿13 − 𝑠3) + 𝑖𝑒15
(10)

𝛾13]} 𝑒𝑎𝑔1𝑒−𝑘𝑠3𝑔1 , 

𝑚75 = {𝑖𝐶13
(10)

− 𝛿14𝑠4 𝐶33
(10)

− 𝛾14𝑠4𝑒33
(10)

 

−𝑔1′ [𝐶44
(10)

(𝑖𝛿14 − 𝑠4) + 𝑖𝑒15
(10)

𝛾14]} 𝑒𝑎𝑔1𝑒−𝑘𝑠4𝑔1 , 

𝑚76 = {𝑖𝐶13
(10)

− 𝛿15𝑠3 𝐶33
(10)

− 𝛾15𝑠5𝑒33
(10)

 

−𝑔1′ [𝐶44
(10)

(𝑖𝛿15 − 𝑠5) + 𝑖𝑒15
(10)

𝛾15]} 𝑒𝑎𝑔1𝑒−𝑘𝑠5𝑔1 , 

𝑚77 = {𝑖𝐶13
(10)

− 𝛿16𝑠6 𝐶33
(10)

− 𝛾16𝑠6𝑒33
(10)
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−𝑔1′ [𝐶44
(10)

(𝑖𝛿16 − 𝑠6) + 𝑖𝑒15
(10)

𝛾16]} 𝑒𝑎𝑔1𝑒−𝑘𝑠6𝑔1 , 

𝑚79 = −{𝑖𝐶13
(20)

− 𝐶33
(20)

𝑞1𝛿21 − 𝑔1′ [𝐶44
(20)

(𝑖𝛿21 − 𝑞1)]} 𝑒−𝑘𝑞1𝑔1 , 

𝑚710 = −{𝑖𝐶13
(20)

− 𝐶33
(20)

𝑞2𝛿22 − 𝑔1′ [𝐶44
(20)

(𝑖𝛿22 − 𝑞2)]} 𝑒−𝑘𝑞2𝑔1 , 

𝑚81 = 𝑚88 = 0, 

𝑚82 = {𝐶44
(10)

(𝑖𝛿11 − 𝑠1) + 𝑖𝑒15
(10)

𝛾11 

−𝑔1′ [𝑖𝐶11
(10)

− 𝛿11𝑠1𝐶13
(10)

− 𝛾11𝑠1𝑒33
(10)

]} 𝑒𝑎𝑔1𝑥1𝑒−𝑘𝑠1𝑔1 , 

𝑚83 = {𝐶44
(10)

(𝑖𝛿12 − 𝑠2) + 𝑖𝑒15
(10)

𝛾12 

−𝑔1′ [𝑖𝐶11
(10)

− 𝛿12𝑠2𝐶13
(10)

− 𝛾12𝑠2𝑒33
(10)

]} 𝑒𝑎𝑔1𝑥1𝑒−𝑘𝑠2𝑔1 , 

𝑚84 = {𝐶44
(10)

(𝑖𝛿13 − 𝑠3) + 𝑖𝑒15
(10)

𝛾13 

−𝑔1′ [𝑖𝐶11
(10)

− 𝛿13𝑠3𝐶13
(10)

− 𝛾13𝑠3𝑒33
(10)

]} 𝑒𝑎𝑔1𝑥1𝑒−𝑘𝑠3𝑔1 , 

𝑚85 = {𝐶44
(10)

(𝑖𝛿14 − 𝑠4) + 𝑖𝑒15
(10)

𝛾14  

−𝑔1′ [𝑖𝐶11
(10)

− 𝛿14𝑠4𝐶13
(10)

− 𝛾14𝑠4𝑒33
(10)

]} 𝑒𝑎𝑔1𝑥1𝑒−𝑘𝑠4𝑔1 , 

𝑚86 = {𝐶44
(10)

(𝑖𝛿15 − 𝑠5) + 𝑖𝑒15
(10)

𝛾15 

−𝑔1′ [𝑖𝐶11
(10)

− 𝛿15𝑠5𝐶13
(10)

− 𝛾15𝑠5𝑒33
(10)

]} 𝑒𝑎𝑔1𝑥1𝑒−𝑘𝑠5𝑔1 , 

𝑚87 = {𝐶44
(10)

(𝑖𝛿16 − 𝑠6) + 𝑖𝑒15
(10)

𝛾16 

−𝑔1′ [𝑖𝐶11
(10)

− 𝛿16𝑠6𝐶13
(10)

− 𝛾16𝑠6𝑒33
(10)

]} 𝑒𝑎𝑔1𝑥1𝑒−𝑘𝑠6𝑔1 , 

𝑚89 = −{𝐶44
(20)

(𝑖𝛿21 − 𝑘𝑞1) − 𝑔1′ [𝑖𝐶11
(20)

− 𝐶13
(20)

𝛿21𝑞1]} 𝑒−𝑘𝑞1𝑔1 , 

𝑚810 = −{𝐶44
(20)

(𝑖𝛿22 − 𝑘𝑞2) − 𝑔1′ [𝑖𝐶11
(20)

− 𝐶13
(20)

𝛿22𝑞2]} 𝑒−𝑘𝑞2𝑔1 , 

𝑚91 = 𝑚99 = 𝑚910 = 0,𝑚98 = −𝑒−𝑘𝑝𝑔1 ,𝑚92 = 𝛾11𝑒
−𝑘𝑠1𝑔1 , 

𝑚93 = 𝛾12𝑒
−𝑘𝑠2𝑔1 ,𝑚94 = 𝛾13𝑒

−𝑘𝑠3𝑔1 ,𝑚94 = 𝛾13𝑒
−𝑘𝑠3𝑔1 , 

𝑚95 = 𝛾14𝑒
−𝑘𝑠4𝑔1 ,𝑚96 = 𝛾15𝑒

−𝑘𝑠5𝑔1 ,𝑚97 = 𝛾16𝑒
−𝑘𝑠6𝑔1 , 

𝑚101 = 𝑚109 = 𝑚1010 = 𝑚108 = −𝑘𝑝𝑒−𝑘𝑝𝑔1 , 

𝑚102 = {𝑖𝑒31
(10)

− 𝑒33
(10)

𝛿11𝑠1 − 𝜅33
(10)

𝛾11𝑠1} 𝑒𝑎𝑔1𝑒−𝑘𝑠1𝑔1 , 

𝑚103 = {𝑖𝑒31
(10)

− 𝑒33
(10)

𝛿12𝑠2 − 𝜅33
(10)

𝛾12𝑠\2} 𝑒𝑎𝑔1𝑒𝑘𝑠2𝑔1 , 

𝑚104 = {𝑖𝑒31
(10)

− 𝑒33
(10)

𝛿13𝑠3 − 𝜅33
(10)

𝛾13𝑠3} 𝑒𝑎𝑔1𝑒𝑘𝑠3𝑔1 , 

𝑚105 = {𝑖𝑒31
(10)

− 𝑒33
(10)

𝛿14𝑠4 − 𝜅33
(10)

𝛾14𝑠4} 𝑒𝑎𝑔1𝑒𝑘𝑠4𝑔1 , 

𝑚106 = {𝑖𝑒31
(10)

− 𝑒33
(10)

𝛿15𝑠5 − 𝜅33
(10)

𝛾15𝑠5} 𝑒𝑎𝑔1𝑒𝑘𝑠5𝑔1 , 

𝑚107 = {𝑖𝑒31
(10)

− 𝑒33
(10)

𝛿16𝑠6 − 𝜅33
(10)

𝛾16𝑠6} 𝑒𝑎𝑔1𝑒𝑘𝑠6𝑔1 , 
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Appendix H 
 

𝑛11 = 𝑚12, 𝑛12 = 𝑚13, 𝑛13 = 𝑚14, 𝑛14 = 𝑚15, 𝑛15 = 𝑚16, 
𝑛16 = 𝑚17, 𝑛17 = 𝑛18 = 𝑛19 = 0,𝑛21 = 𝑚22, 𝑛22 = 𝑚23, 
𝑛23 = 𝑚24, 𝑛24 = 𝑚25, 𝑛25 = 𝑚26, 𝑛26 = 𝑚27, 

𝑛27 = 𝑛28 = 𝑛29 = 0,𝑛31 = 𝛾11𝑒
𝑘𝑠1[−ℎ+𝑔2], 

𝑛32 = 𝛾12𝑒
𝑘𝑠2[−ℎ+𝑔2], 𝑛33 = 𝛾13𝑒

𝑘𝑠3[−ℎ+𝑔2], 

𝑛34 = 𝛾14𝑒
𝑘𝑠4[−ℎ+𝑔2], 𝑛35 = 𝛾15𝑒

𝑘𝑠5[−ℎ+𝑔2], 

𝑛36 = 𝛾16𝑒
𝑘𝑠6[−ℎ+𝑔2], 𝑛37 = 𝑛38 = 𝑛39 = 0, 

𝑛41 = 𝑚52, 𝑛42 = 𝑚53, 𝑛43 = 𝑚54, 𝑛44 = 𝑚55, 𝑛45 = 𝑚56, 
𝑛46 = 𝑚57, 𝑛47 = 0,𝑛48 = 𝑚59, 𝑛49 = 𝑚510, 
𝑛51 = 𝑚62, 𝑛52 = 𝑚63, 𝑛53 = 𝑚64, 𝑛54 = 𝑚65, 𝑛55 = 𝑚66, 
𝑛56 = 𝑚67, 𝑛57 = 0,𝑛58 = 𝑚69, 𝑛59 = 𝑚610, 
𝑛61 = 𝑚72, 𝑛62 = 𝑚73, 𝑛63 = 𝑚74, 𝑛64 = 𝑚75, 𝑛65 = 𝑚76, 
𝑛66 = 𝑚77, 𝑛67 = 0,𝑛68 = 𝑚79, 𝑛69 = 𝑚710, 
𝑛71 = 𝑚82, 𝑛72 = 𝑚83, 𝑛73 = 𝑚84, 𝑛74 = 𝑚85, 𝑛75 = 𝑚86, 
𝑛76 = 𝑚87, 𝑛77 = 0,𝑛78 = 𝑚89, 𝑛79 = 𝑚810, 
𝑛81 = 𝑚92, 𝑛82 = 𝑚93, 𝑛83 = 𝑚94, 𝑛84 = 𝑚95, 𝑛85 = 𝑚96, 
𝑛86 = 𝑚97, 𝑛87 = 𝑚98, 𝑛88 = 𝑛89 = 0, 
𝑛91 = 𝑚102, 𝑛92 = 𝑚103, 𝑛93 = 𝑚104, 𝑛94 = 𝑚105, 𝑛95 = 𝑚106, 
𝑛96 = 𝑚107, 𝑛97 = 𝑚108, 𝑛98 = 𝑛99 = 0. 
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