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Abstract.  This article is an application of new modified couple stress thermoelasticity without energy dissipation in 
association with two-temperature theory. The upper and lower surfaces of the plate are subjected to an axisymmetric 
heat supply. The solution is found by using Laplace and Hankel transform techniques. The analytical expressions of 
displacement components, conductive temperature, stress components and couple stress are computed in 
transformed domain. Numerical inversion technique has been applied to obtain the results in the physical domain. 
Numerically simulated results are depicted graphically. The effect of two temperature is shown on the various 
components. 
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1. Introduction 
 

Classical continuum theory was not able to predict the size effects at nano/micro scale. So. 
Higher order theories came into the existence. A couple stress theory is an extended continuum 
theory that comprises the effects of couple stresses on a material volume, in addition to the 
classical normal and shear forces per unit area. This immediately admits the possibility of 
asymmetric stress tensor. The two additional constants are related to the underlying microstructure 
of the material and are inherently difficult to determine (e.g., Lakes 1982, Lam et al. 2003). Hence, 
there has been a need to develop higher-order theories involving only one additional material 

length scale parameter. The modified couple-stress theory was developed by Yang et al. (2002) 
that contains only one material length scale parameter. Modified couple stress theory was not 
applicable to anisotropic materials. So, Chen and Si (2013) developed a model of composite 
laminated beam on the basis of the global-local theory and new modified couple-stress theory for 
anisotropic elasticity.  

Li et al. (2013) extended the modified couple stress theory in the isotropic elasticity to 
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anisotropic composite laminated plate. Buckling analysis of plate is done by simplifying the model 

to one material length constant. Chen and Li (2013) analysed micro-scale free vibration of 

composite laminated Timoshenko beam (CLTB) based on the new modified couple stress theory. 

In this theory, a new anisotropic constitutive relation is defined for modeling the CLTB. This 

theory uses rotation-displacement as dependent variable and contains only one material length 

scale parameter. Chen and Li (2014) proposed the new modified couple stress theory (NM-CST) 

for anisotropic materials containing three length scale parameters. Yang and Chen (2015) proposed 

the models of composite laminated micro-plates using a series of assumptions of new modified 

couple stress theory. Chen and Wang (2016) developed a composite laminated Reddy plate model 

based on the global-local theory and new modified couple-stress theory. There is only one micro 

material length scale constant in each layer of the composite laminated plate. This model fulfills 

the free surface condition, the geometric and stresses continuity conditions at interfaces. He et al. 

(2017) studied a size-dependent composite laminated skew Mindlin plate model based on a new 

modified couple stress theory and principle of minimum potential energy. Yang and He (2017) 

proposed a microstructure-dependent orthotropic functionally graded micro-plate model for the 

free vibration and buckling analysis based on the re-modified couple stress theory and principle of 

minimum potential energy. The macro- and microscopic anisotropy are simultaneously taken into 

account. Zihao and He (2019) studied the bending of orthotropic functionally graded micro-plates 

on the basis of a re-modified couple stress theory. The proposed model considered the micro- as 

well as macroscopic anisotropy of the plate. Yang and He (2019) proposed a orthotropic 

microstructure-dependent plate model for bending of functionally graded micro-plates using re-

modified couple stress theory. Chen et al. (2019) studied the flapwise vibration of rotating 

composite microbeam with geometrical imperfection by combining isogeometric analysis and a re-

modified couple stress theory (RMCST) for anisotropic elasticity. The effect of angular velocity, 

slender ratio, scale parameter, maximum imperfection amplitude, and ply angle on the flapwise 

vibration of rotation composite microbeam is investigated. Using re-modified couple stress theory 

and the Refined Zigzag theory, Yang and He (2019) examined the vibration and buckling of 

functionally graded (FG) sandwich micro-plates embedding functionally graded layers. Free 

vibrations and buckling of orthotropic microplates is examined by Mazur et al. (2020) based on 

the modified couple stress theory and Kirchhoff-Love plate theory. The influence of the material 

length scale parameter, boundary conditions, shape parameters, material characteristics on 

vibration frequencies is investigated. Zhou et al. (2022) developed a model of transversely 

isotropic piezoelectric bilayered rectangular micro-plate with a distributed load based on the 

couple stress piezoelectric theory. Zhang et al. (2022) studied the free vibration, buckling and 

post-buckling behaviors of bidirectional functionally graded (BDFG) microbeams employing the 

Timoshenko beam theory and the consistent couple stress theory (C-CST). The material properties 

of a BDFG microbeam were varied continuously in both thickness and axial directions. A model 

of thermal scale effect was proposed by Si et al. (2022), based on new modified couple stress 

theory, for the laminated composite plates of enhanced Reddy theory. Numerical results show that 

as the material length parameter increases, the scale effects of plates are enhanced. Also, the scale 

effects are weakened with increasing of span-thickness ratio of plates. A transversely isotropic 

thermoelastic nanoscale beam with two temperatures and with Green-Naghdi (GN) III theory of 

thermoelasticity for free vibrations with simply supported boundaries have been examined by Kaur 

et al. (2021). 

The objective of this paper is to consider two dimensional transversely isotropic   new modified 

couple stress generalized thermoelastic plate without energy dissipation and with two temperatures 
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due to axisymmetric heat supply. The solution is found by using Laplace and Hankel transform 

techniques. The analytical expressions of displacement components, stress components, 

conductive temperature and couple stress are computed in transformed domain. Numerical 

inversion technique has been applied to obtain the results in the physical domain. Numerically 

simulated results are depicted graphically. The effect of two temperature parameter is shown on 

the various components.  

 

 

2. Basic equations 
 

Following Chen and Li (2014), Youssef (2011) and Devi(), the field equations transversely 

isotropic thermoelastic medium using new modified couple stress theory in the absence of body 

forces, body couple and  without energy dissipation and with two temperature are given by  

𝑡𝑖𝑗 = 𝑐𝑖𝑗𝑘𝑙𝜀𝑘𝑙 +
1

2
𝑒𝑖𝑗𝑘𝑚𝑙𝑘,𝑙 − 𝛽𝑖𝑗𝑇, (1) 

𝑐𝑖𝑗𝑘𝑙𝑒𝑘𝑙,𝑗 +
1

2
𝑒𝑖𝑗𝑘𝑚𝑙𝑘,𝑙𝑗 − 𝛽𝑖𝑗𝑇,𝑗 = 𝜌𝒖̈𝑖, (2) 

𝐾𝑖𝑗𝜑,𝑖𝑗 − 𝜌𝐶𝐸𝑇̈ = 𝛽𝑖𝑗𝑇0𝜀𝑖̈𝑗, (3) 

where 

𝛽𝑖𝑗 = 𝑐𝑖𝑗𝑘𝑙𝛼𝑖𝑗 , (4) 

𝜀𝑖𝑗 =
1

2
(𝑢𝑖,𝑗 + 𝑢𝑗,𝑖), (5) 

𝑚𝑖𝑗 = 𝑙𝑖
2𝐺𝑖𝜒𝑖𝑗 + 𝑙𝑗

2𝐺𝑗𝜒𝑗𝑖 , (6) 

𝜒𝑖𝑗 = 𝜔𝑖,𝑗 , (7) 

𝜔𝑖 =
1

2
𝑒𝑖𝑗𝑘𝑢𝑘,𝑗 , (8) 

𝑇 = 𝜑 − 𝑎𝑖𝑗𝜑,𝑖𝑗 . (9) 

𝑇0  is assumed to be such that 𝑇/𝑇0 ≪ 1, and  𝛽1 = (𝑐11 + 𝑐12)𝛼1 + 𝑐13𝛼3  ,𝛽3 = 2𝑐13𝛼1 +
𝑐33𝛼3.  

 

 

3. Formulation and solution of the problem 
 

Consider a thick circular plate of thickness 2d occupying the space D defined by 0 ≤ 𝑟 ≤
∞ , −𝑑 ≤ 𝑧 ≤ 𝑑. Consider cylindrical polar coordinate system (𝑟, 𝜃, 𝑧) with symmetry about 𝑧-

axis. Cylindrical polar coordinates (𝑟, 𝜃, 𝑧) having origin on the surface z=0, between the lower 

and upper surfaces of the plate and the z-axis normal to plate. The z-axis is assumed to be the axis 

of symmetry. The problem considered is plane axisymmetric, 𝑢𝜃 = 0, and 𝑢𝑟 , 𝑢𝑧  and 𝑇 are 

independent of 𝜃 and are functions of (𝑟, 𝑧, 𝑡). The initial temperature in the plate is given a  
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Fig. 1 Circular plate 

 

 

constant temperature 𝑇0, and the heat flux of magnitude 𝑔0𝐹(𝑟, 𝑧) is prescribed on the upper and 

lower boundary surfaces. For 𝑡 > 0,  heat is generated within the plate at a rate 𝐹(𝑟, 𝑡).  We 

consider a normal surface (ring source) which emanates from the origin of the coordinate axis and 

expands radically at constant rate cover the surface. Under these conditions thermoelastic 

quantities due to the ring load are to be determined. As the problem considered is two dimensional. 

𝑢 = 𝑢(𝑟, 𝑧, 𝑡), 
𝑤 = 𝑤(𝑟, 𝑧, 𝑡), 
𝜑 = 𝜑(𝑟, 𝑧, 𝑡). 

(10) 

𝑐11(
𝜕2𝑢

𝜕𝑟2 +
𝜕𝑢

𝑟 𝜕𝑟
−

𝑢

𝑟2) + 𝑐44
𝜕2𝑢

𝜕𝑧2 + (𝑐13 + 𝑐44)
𝜕2𝑤

𝜕𝑟𝜕𝑧
+

1

4
𝑙2

2𝐺2 (
𝜕4𝑢

𝜕𝑟2𝜕𝑧2 −
𝜕4𝑤

𝜕𝑟3𝜕𝑧
+

𝜕4𝑢

𝜕𝑧4 −
𝜕4𝑤

𝜕𝑧3𝜕𝑟
) −

𝛽1
𝜕

𝜕𝑟
(1 − 𝑎1(

𝜕2

𝜕𝑟2 +
𝜕

𝑟 𝜕𝑟
) − 𝑎3

𝜕2

𝜕𝑧2) 𝜑 = 𝜌𝑢̈, 
(11) 

𝑐33
𝜕2𝑤

𝜕𝑧2 + (𝑐44 + 𝑐13 ) (
𝜕2𝑢

𝜕𝑟𝜕𝑧
+

𝜕𝑢

𝑟 𝜕𝑧
) + 𝑐44 (

𝜕2𝑤

𝜕𝑟2 +
𝜕𝑤

𝑟 𝜕𝑟
) +

1

4
𝑙2

2𝐺2 ((
𝜕3

𝜕𝑟2𝜕𝑧
+

𝜕3

𝜕𝑟2𝜕𝑧
) (

𝜕

𝜕𝑟
+

1

𝑟
) 𝑢 − (

𝜕3

𝜕𝑟3 +
𝜕3

𝜕𝑟𝜕𝑧2)(
𝜕

𝜕𝑟
+

1

𝑟
)𝑤) − 𝛽3

𝜕

𝜕𝑧
(1 − 𝑎1(

𝜕2

𝜕𝑟2 +
𝜕

𝑟 𝜕𝑟
) − 𝑎3

𝜕2

𝜕𝑧2) 𝜑 = 𝜌𝑤,̈   

(12) 

𝐾1 (
𝜕2𝜑

𝜕𝑟2 +
𝜕𝜑

𝑟 𝜕𝑟
) + 𝐾3

𝜕2𝜑

𝜕𝑧2 − 𝜌𝑐𝐸
𝜕2

𝜕𝑡2 (1 − 𝑎1 (
𝜕2

𝜕𝑟2 +
𝜕

𝑟 𝜕𝑟
) − 𝑎3

𝜕2

𝜕𝑧2) 𝜑 = 𝑇0
𝜕2

𝜕𝑡2 (𝛽1
𝜕𝑢

𝜕𝑟
+

𝛽3
𝜕𝑤

𝜕𝑧
).  

(13) 

 

The constitutive equations and couple stress components are 

𝑡𝑧𝑧 = 𝑐13𝑒𝑟𝑟 + 𝑐13𝑒𝜃𝜃 + 𝑐33𝑒𝑧𝑧 − 𝛽3𝑇 

𝑡𝑟𝑧 = 2𝑐44𝑒𝑟𝑧 −
1

4
𝑙2

2𝐺2 (
𝜕3𝑢

𝜕𝑧𝜕𝑟2 +
𝜕3𝑢

𝜕𝑧3 −
𝜕3𝑤

𝜕𝑟3 −
𝜕3𝑤

𝜕𝑟𝜕𝑧2),  

𝑡𝜃𝜃 = 𝑐21𝑒𝑟𝑟 + 𝑐11𝑒𝜃𝜃 + 𝑐13𝑒𝑧𝑧 − 𝛽1𝑇,- 

𝑡𝑟𝑟 = 𝑐11𝑒𝑟𝑟 + 𝑐12𝑒𝜃𝜃 + 𝑐13𝑒𝑧𝑧 − 𝛽1𝑇,- 𝑚𝜃𝑧 =
1

2
𝑙2

2𝐺2 (
𝜕2𝑢

𝜕𝑧2 −
𝜕2𝑤

𝜕𝑧𝜕𝑟
), 

𝑚𝑟𝜃 = −
1

2
𝑙2

2𝐺2 (
𝜕2𝑢

𝜕𝑧𝜕𝑟
−

𝜕2𝑤

𝜕𝑟2 )  

 

(14) 
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where      

𝑒𝑟𝑟 =
𝜕𝑢

𝜕𝑟
  , 𝑒𝑟𝑧 =

1

2
(

𝜕𝑢

𝜕𝑧
+

𝜕𝑤

𝜕𝑟
) , 𝑒𝜃𝜃 =

𝑢

𝑟
  , 𝑒𝑧𝑧 =

𝜕𝑤

𝜕𝑧
,  

𝑇 = (1 − 𝑎1 (
𝜕2

𝜕𝑟2 +
𝜕

𝑟 𝜕𝑟
) − 𝑎3

𝜕2

𝜕𝑧2
) 𝜑.  

In the above equation we use contracting subscript notation (1 → 11,2 → 22,3 → 33,4 →
23,5 → 31,6 → 12) to relate 𝑐𝑖𝑗𝑘𝑙 to 𝑐𝑚𝑛. 

To facilitate the solution, we define the dimensionless quantities are defined as  

𝑟′ =
𝑟

𝐿
 , 𝑧′ =

𝑧

𝐿
, 𝑡′ =

𝑐1

𝐿
𝑡 , 𝑢′ =

𝜌𝑐1
2

𝐿𝛽1𝑇0
𝑢,  𝑤′ =

𝜌𝑐1
2

𝐿𝛽1𝑇0
𝑤,  𝑇 , =

𝑇

𝑇0
 , 𝜑, =

𝜑

𝑇0
 ,  𝑡𝑧𝑟

, =
𝑡𝑧𝑟

𝛽1𝑇0
𝑡𝑟𝑟

, =

𝑡𝑟𝑟

𝛽1𝑇0
, ,  𝑚32

, =
𝑚32

𝐿𝛽1𝑇0
, 𝑎1

′ =  
𝑎1

𝐿2  , 𝑎3
′ =  

𝑎3

𝐿2 ,    𝜌𝑐1
2 = 𝑐11.  

(15) 

Where L is constant of dimensions of length. 

Defining Laplace and Hankel transformation as 

𝑓(𝑟, 𝑧, 𝑠) = ∫ 𝑓
∞

0
(𝑟, 𝑧, 𝑡)𝑒−𝑠𝑡𝑑𝑡, (16) 

𝑓(𝜉, 𝑧, 𝑠) = ∫ 𝑓(𝑟, 𝑧, 𝑠)𝑟𝐽𝑛(𝑟𝜉)𝑑
∞

0
𝑟 . (17) 

Applying the dimensionless quantities defined by (15) and Laplace Hankel defined by (16)-(17) 

to the Eqs. (11)-(13), we obtain  

(𝛿8 + 𝛿2𝐷2 −
𝑙2

2𝐺2

4𝐿2𝑐11
(𝐷4 − 𝜉2𝐷2)) 𝑢̃ + (−𝛿1𝜉𝐷 +

𝑙2
2𝐺2

4𝐿2𝑐11
(−𝜉3𝐷 + 𝜉𝐷3)𝑤̃ + 𝜉(1 + 𝑎1𝜉2  −

𝑎3𝐷2)𝜑̃ = 0,  
(18) 

(𝛿1𝛿9𝐷 −
𝑙2

2𝐺2

4𝐿2𝑐11
𝛿9(−𝜉2𝐷 + 𝐷3)𝑢̃ + (𝛿10 + 𝛿3𝐷2 +

𝑙2
2𝐺2

4𝐿2𝑐11
(−𝜉3 + 𝐷2)𝛿9) 𝑤̃ −

𝛽3

𝛽1
𝐷(1 +

𝑎1𝜉2 − 𝑎3𝐷2)𝜑̃ = 0,  
(19) 

𝛿6𝜉𝑠2𝑢̃ − 𝛿7𝐷𝑠2𝑤̃ + (𝛿11 + (𝛿4 + 𝛿5𝑠2𝑎3)𝐷2 ))𝜑̃ = 0, (20) 

where 

𝐷 =
𝑑

𝑑𝑧
, 𝛿1 =

𝑐13+𝑐44

𝑐11
,   𝛿2 =

𝑐44

𝑐11
,     𝛿3 =

𝑐33

𝑐11
, 𝛿4 =  

𝐾3

𝐾1
   , 𝛿5 =

𝜌𝑐𝐸𝑐1
2

𝐾1
       , 𝛿6 =

𝑇0𝛽1
2

𝐾1𝜌
,   𝛿7 =

𝑇0𝛽1𝛽3

𝐾1𝜌
,   𝛿8 = −(𝑠2 + 𝜉2),    𝛿9 =

−𝜉2+1

𝜉
 ,     𝛿10 = −𝛿2𝛿9 − 𝑠2   , 𝛿11 = −𝜉2 − 𝛿5𝑠2(1 + 𝑎1𝜉2).  

The non trivial solution of the system of Eqs. (18)-(20) yields 

(𝑃𝐷8 + 𝑄𝐷6 + 𝑅𝐷4 + 𝑆𝐷2 + 𝑇)(𝑢̃, 𝑤̃, 𝜑̃) = 0, (21) 

Where 

𝑃 = 𝛿12𝛿16𝛿3 − 𝛿12𝛿7𝑠2𝛿12𝑎3 − 𝛿12
2 𝛿11𝛿3𝛿9, 

𝑄 = 𝛿17𝛿16𝛿3 + 𝛿17𝛿7𝛿15𝑠2𝑎3 − 𝛿12𝛿11𝛿20 − 𝛿12𝛿16𝛿14 − 𝛿12𝛿7𝛿15𝑠2(1 + 𝑎1𝜉2) +
(−𝛿18 + 𝛿12𝜉3)𝛿12𝛿9𝛿16 − 𝜉𝑎3𝛿12𝛿9𝛿7 + 𝛿12𝛿9(𝛿1𝛿9𝛿16 − 𝛿12𝛿9𝛿11 − 𝛿6𝑠2𝜉𝑎3𝛿15),  

𝑅 = 𝛿8𝛿16𝛿3 + 𝛿8𝛿7𝛿15𝑠2𝑎3+𝛿20𝛿11𝛿17 + 𝛿17𝛿16𝛿14 − 𝛿17𝛿7𝛿15𝑠2(1 + 𝑎1𝜉2) − 𝛿12𝛿11𝛿14 −
(−𝛿18 + 𝛿12𝜉3)(𝛿19𝛿16 − 𝛿12𝛿9𝛿11 − 𝛿6𝑠2𝜉𝑎3𝛿15) + 𝛿13𝛿12𝛿9𝑠2 + 𝜉𝑎3𝛿1𝛿9𝛿7𝑠2 +

𝜉𝑎3𝛿6𝑠2𝜉2 + 𝛿12𝛿9𝛿1𝜉2𝑠2(1 + 𝑎1𝜉2),  
𝑆 = 𝛿8𝛿11𝛿20 + 𝛿8𝛿16𝛿14 + 𝛿8𝛿7𝑠2𝛿15(1 + 𝑎1𝜉2) + 𝛿17𝛿11𝛿14 + (𝛿1𝛿11𝛿9 + 𝛿6𝑠2𝜉𝛿15)(−𝛿18 +

𝛿12𝜉3)(1 + 𝑎1𝜉2) − 𝛿13𝛿1𝛿9𝛿7𝑠2 − 𝛿6𝛿13𝑠2𝜉 + 𝛿6𝑠2𝜉2𝑎3𝛿14 + 𝛿1𝛿11δ9
2𝜉𝛿12  
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𝑇 = 𝛿8𝛿11𝛿14 − 𝛿13𝛿6𝛿14𝑠2𝜉. 
The roots of the Eq. (21) are ±𝜆𝑖(𝑖 =  1, 2, 3, 4, 5), using the radiation condition that 𝑢̂, 𝑤̂,  𝜑,̂ →

0 as 𝑧 → ∞ the solution of Eq. (20) may be written as 

𝑢̃ = ∑ 𝐴𝑖cosh (𝜆𝑖𝑧)4
𝑖=1 ,  (22) 

𝑣̃ = ∑ 𝑅𝑖𝐴𝑖 cosh(𝜆𝑖𝑧)4
𝑖=1 ,  (23) 

𝑤̃ = ∑ 𝑆𝑖𝐴𝑖 cosh(𝜆𝑖𝑧),4
𝑖=1   (24) 

Where 

𝑅𝑖 =
𝑃∗𝜆𝑖

6+𝑄∗𝜆𝑖
4+𝑅∗𝜆𝑖

2+𝑆∗

𝐴∗𝜆𝑖
4+𝐵∗𝝀𝒊

𝟐+𝐶∗ ,  

𝑆𝑖 =
𝑃∗∗𝜆𝑖

6+𝑄∗∗𝜆𝑖
4+𝑅∗∗𝜆𝑖

2+𝑆∗∗

𝐴∗𝜆𝑖
4+𝐵∗𝝀𝒊

𝟐+𝐶∗ ,  

where 

𝑃∗ = −𝛿12𝛿16,      𝑄∗ = 𝛿17𝛿16 −  𝛿12𝛿11, 
𝑅∗ =  𝛿8𝛿16 −  𝛿17𝛿11 − 𝛿6𝑠2𝜉2𝑎3, 

𝑆∗ = 𝛿8𝛿11 − 𝛿6𝑠2𝜉𝛿13,     𝑃∗∗ = −δ12
2 𝛿3, 

𝑄∗∗ = 𝛿17𝛿20 −  𝛿12𝛿14 − 𝛿12𝛿9𝛿18, 
𝑅∗∗ = 𝛿8𝛿20 +  𝛿17𝛿14 + 𝛿19𝛿18, 𝑆∗∗ = 𝛿8𝛿14, 

𝐴∗ = 𝛿16𝛿3 + 𝛿7𝑠2𝛿15𝑎3, 
𝐵∗ = 𝛿11𝛿20 + 𝛿16𝛿14 − 𝛿7𝑠2𝛿15(1 + 𝑎1𝜉2), 𝐶∗ =   𝛿11𝛿14 

𝛿12 =
𝑙2

2𝐺2

4𝐿2𝑐11
, 𝛿13 = 𝛽1𝜉(1 + 𝑎1𝜉2) , 𝛿14 = 𝛿10 + 𝛿12𝛿9𝜉3, 𝛿15 =

𝛽3

𝛽1
 , 𝛿16 = 𝛿4 + 𝛿5𝑠2𝑎3, 𝛿17 =

𝛿2 − 𝜉2, 𝛿18 = −𝛿1𝜉 − 𝛿12𝜉3, 𝛿19 = 𝛿1𝛿9 + 𝛿12𝜉2𝛿9, 𝛿20 = 𝛿3 + 𝛿12𝛿9,  
 

 

4. Boundary conditions 
 

𝜕𝜑

𝜕𝑧
= ±𝑔0𝐹(𝑟, 𝑧), at   𝑧 = ±𝑑, (25) 

𝑡𝑧𝑧 = 𝑓(𝑟, 𝑡)   at  𝑧 = ±𝑑, (26) 

𝑡𝑟𝑧 = 0 at 𝑧 = ±𝑑, (27) 

𝑚𝑧𝜃 = 0 at 𝑧 = ±𝑑, (28) 

The function 𝐹(𝑟,𝑧) considered in the problem falls off exponentially as one moves away from 

the centre of the plate in the radial direction and increases symmetrically along the axial direction 

given by 

𝐹(𝑟, 𝑧) = 𝑧2𝑒−𝜔𝑟 , 𝜔 > 0, (29) 

𝑓(𝑟, 𝑡) =
1

2𝜋𝑟
𝛿(𝑐𝑡 − 𝑟). (30) 

and 𝛿( ) is Dirac delta function  

Applying Laplace and Hankel transform defined by (16)-(17) on (29) and (30) we get 
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𝐹̃(𝜉, 𝑧) =
𝑧2𝜔

(𝜉2+𝜔2)3/2 ,  (31) 

𝑓(𝜉, 𝑠) =
1

2𝜋(𝜉2+
𝑠2

𝑐2)1/2
 .  (32) 

Substituting the 𝑢, 𝑤, 𝜑 from (22)-(24) and 𝑡𝑧𝑧 , 𝑡𝑧𝑟 𝑚𝑧𝜃 from (14) with the aid of (15)  in the  

boundary conditions (27)-(30) and with the aid of (16)-(17) and (31)-(32), we obtain the 

expressions for displacement components, stress components, conductive temperature, and couple 

stress  components are  given in the appendix A. 

 

 

5. Inversion of the transformations 
 

To obtain the solution of the problem in physical domain, we must invert the transforms in Eqs. 

(A.1)-(A.9). Here the distance components, normal and tangential stresses, conductive temperature 

and  couple stress are functions of 𝑧, the parameters of Hankel and laplace transforms are 𝜉 and 𝑠 

 respectively and hence are of the form 𝑓 (𝜉 , 𝑧, 𝑠). To obtain the function 𝑓(𝑟, 𝑧, 𝑡) in the physical 

domain, we first invert the Hankel transform using 

𝑓(𝑟, 𝑧, 𝑠) = ∫ 𝜉𝑓(𝜉 , 𝑧 , 𝑠)𝐽𝑛(𝜉𝑟)
∞

0
𝑑𝜉.  (33) 

Now for the fixed values of  𝜉 ,𝑟 and 𝑧 the function 𝑓(𝑟 , 𝑧 , 𝑠) in the expression above can be 

considered as the Laplace transform 𝑔̂ (𝑠)  of 𝑔 (𝑡) . Following Honig and Hirdes (1984), the 

Laplace transform function 𝑔̂ (𝑠) can be inverted. The function 𝑔(𝑡) can be obtained by using 

𝑔(𝑡) =
1

2𝜋ἰ
∫ 𝑒𝑠𝑡𝑔̂(𝑠)𝑑𝑠,

𝐶+ἰ∞

𝐶+ἰ∞
  (34) 

where 𝐶  is an arbitrary real number greater than all the real parts of the singularities of 

𝑔̂(𝑠). Taking 𝑠 =  𝐶 +  𝑖𝑦 we get 

𝑔(𝑡) =
𝑒𝐶𝑡

2𝜋
∫ 𝑒ἰ𝑡𝑦𝑔(𝐶 + ἰ𝑦)𝑑𝑦

∞

−∞
,  (35) 

Now, taking 𝑒−𝐶𝑡𝑔(𝑡)  as ℎ(𝑡)  and expanding it as Fourier series in [0, 2L], we obtain 

approximately the formula 

𝑔(𝑡) = 𝑔∞(𝑡) + 𝐸𝐷 , 
where 

𝑔∞(𝑡) =
𝐶0

2
+ ∑ 𝐶𝑘 ,∞

𝐾=1       0 ≤ 𝑡 ≤ 2𝐿, 

and 

𝐶𝑘 =
𝑒𝐶𝑡

𝐿
𝑅𝑒 [𝑒

𝜋ἰ𝑘𝑡

𝐿 𝑔 (𝐶 +
ἰ𝑘𝜋𝑡

𝐿
))].  (36) 

𝐸𝐷  is the discretization error and can be made arbitrarily small by choosing 𝐶  large 

enough.  

The value of 𝐶 and L are chosen according to the criteria outlined by Honig and Hirdes 

(1984). Since the infinite series in (42) can be summed up only to a finite number of N terms, 

so the approximate value of 𝑔(𝑡) becomes 

𝑔𝑁(𝑡) =
𝐶0

2
+ ∑ 𝐶𝐾 ,𝑁

𝐾=1       0 ≤ 𝑡 ≤ 2𝐿. (37) 
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Now, we introduce a truncation error 𝐸𝑇 , that must be added to the discretization error to 

produce the total approximate error in evaluating 𝑔(𝑡) using the above formula. To accelerate the 

convergence, the discretization error and then the truncation error is reduced by using the 

‘Korrecktur method’ and the ‘𝜖-algorithm’, respectively as given by Honig and Hirdes (1984). 

The Korrecktur method formula, to evaluate the function 𝑔(𝑡) is 

𝑔(𝑡) = 𝑔∞(𝑡) − 𝑒−2𝐶𝐿𝑔∞(2𝐿 + 𝑡) + 𝐸𝐷
, , 

where 

|𝐸𝐷
, | ≪ |𝐸𝐷|. 

Thus, the approximate value of 𝑔(𝑡) becomes 

𝑔𝑁𝑘(𝑡) = 𝑔𝑁(𝑡) − 𝑒−2𝐶𝐿𝑔𝑁′(2𝐿 + 𝑡), (38) 

where 𝑁′ is an interger such that  𝑁′ < 𝑁. 
We shall now describe the 𝜖-algorithm, which is used to accelerate the convergence of the 

series in (37). Let N be an odd natural number and 𝑆𝑚 = ∑ 𝐶𝑘
𝑚
𝑘=1  be the sequence of partial sums 

of (37). we define the ‘𝜖 -sequence’ by 

𝜖0,𝑚 = 0, 𝜖1,𝑚 = 𝑆𝑚, 𝜖𝑛+1,𝑚 = 𝜖𝑛−1,𝑚+1

1

𝜖𝑛,𝑚+1 − 𝜖𝑛,𝑚
; 𝑛, 𝑚 = 1,2,3 … … …. 

The sequence 𝜖1,1, 𝜖3,1, … … … 𝜖𝑁,1  converges to 𝑔(𝑡) + 𝐸𝐷 −
𝐶0

2
 faster than the sequence of 

partial sums 𝑆𝑚 ,   𝑚 = 1,2,3, … …. The actual procedure to invert the Laplace transform consists 

of (38) together with the ‘𝜖 −algorithm’. 

The last step is to calculate the integral in Eq. (33). The method for evaluating this integral is 

described in Press et al. (1986). It involves the use of Romberg’s integration with adaptive step 

size. This also uses the results from successive refinements of the extended trapezoidal rule 

followed by extrapolation of the results to the limit when the step size tends to zero.    

 

 

6. Results and discussions 
 

Even though copper is face centered cubic it has significant mechanical anisotropy depending 

on the crystallographic orientations.  For numerical computations, following Lata (2015), we take 

the copper material as 

𝑐11 = 18.78 × 1010 Kgm−1s−2, 
 𝑐12 = 8.76 × 1010 Kgm−1s−2, 
 𝑐13 = 8.0 × 1010 𝐾gm−1s−2, 
𝑐33 = 17.2 × 1010 Kgm−1s−2, 
𝑐44 = 5.06 × 1010 Kgm−1s−2, 
 𝐶𝐸 = 0.6331 × 103JKg−1K−1, 

𝛼1 = 2.98 × 10−5K−1, 
𝛼3 = 2.4 × 10−5K−1, 

𝑇0 = 293K, 
𝜌 = 8.954 × 103Kgm−3, 

𝑇0 = 293K, 
𝜌 = 8.954 × 103Kgm−3, 

𝐾1 = 0.433 × 103Wm−1K−1, 
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𝐾3 = 0.450 × 103Wm−1K−1, 
𝐺1 = 0.1,      𝐺2 = 0.2,     𝐺3 = 0.3, 

𝑙1 = 𝑙2 = 𝑙3 = .2 nm 

𝑡 = .01𝑠          𝐿 = 1 

The values of displacement components 𝑢 and 𝑤, conductive temperature , stress components 

 𝑡𝑟𝑟 ,  𝑡𝜃𝜃 , 𝑡𝑧𝑧  and  𝑡𝑧𝑟 , and couple stress components 𝑚𝑧𝜃 and 𝑚𝑟𝜃,  w.r.t.r and w.r.t.z, without 

energy dissipation and with two temperatures are presented graphically to show the influence of 

two temperature parameter.   

i) The solid line in black with central symbol square corresponds to  𝑎1 = 𝑎3 = 0.  
ii) The solid line in red with central symbol circle corresponds to  𝑎1 = 𝑎3 = .07.  
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Fig. 2 Variation of displacement component 𝑢 with 

the distance 𝑟 

Fig. 3 Variation of displacement component 𝑤 

with the distance 𝑟 

 

0.0 0.2 0.4 0.6 0.8 1.0 1.2

0

5000000

10000000

15000000

20000000

25000000

30000000

c
o

n
d

u
c
ti
v
e

 t
e

m
p

e
ra

tu
re

 f

distance r

 a1=a3=0

 a1=a3=.07

 

0.0 0.2 0.4 0.6 0.8 1.0 1.2

0.00E+000

5.00E+011

1.00E+012

1.50E+012

2.00E+012

2.50E+012

3.00E+012

3.50E+012

ra
d

ia
l 
s
tr

e
s
s
 t

rr

distance r

 a1=a3=0

 a1=a3=.07

 

Fig. 4 Variation of conductive temperature 𝜑 with 

the distance 𝑟 
Fig. 5 Variation of radial stress 𝑡𝑟𝑟 with the distance 𝑟 
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Fig. 6 Variation of azimuthal stress 𝑡𝜃𝜃  with the 

distance 𝑟 

Fig.  7 Variation of vertical stress 𝑡𝑧𝑧  with the 

distance 𝑟 
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Fig. 8 Variation of shear stress 𝑡𝑧𝑟 with the distance 𝑟 
Fig. 9 Variation of couple stress 𝑚𝑧𝜃  with the 

distance 𝑟 
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Fig. 10 Variation of couple stress  𝑚𝑟𝜃  with the 

distance 𝑟 

Fig. 11 Variation of displacement component u 

with the z coordinate 
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Fig. 12 Variation of displacement component w 

with the z coordinate 

Fig. 13 Variation of conductive temperature φ with 

the z coordinate 
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Fig. 14 Variation of radial stress  𝑡𝑟𝑟  with the z 

coordinate 

Fig. 15 Variation of azimuthal stress  𝑡𝜃𝜃 with the z 

coordinate 
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Fig. 16 Variation of vertical stress  𝑡𝑧𝑧 with the z 

coordinate 

Fig. 17 Variation of shear stress  𝑡𝑧𝑟  with the z 

coordinate 
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Fig. 18 Variation of couple stress  𝑚𝑧𝜃 with the z 

coordinate 

Fig. 19 Variation of couple stress  𝑚𝑟𝜃 with the z 

coordinate 

 

 

For variation w.r.t r 

In Fig. 2 displacement component u follow decreases in the first half range, increases in 0.55 ≤
𝑟 ≤ 1 and then decreases. In Fig. 3 displacement component w follow oscillatory trend. Inclusion 

of two temperature parameter decreases the amplitude of oscillations. In Fig. 4 conductive 

temperature 𝜑 follows similar pattern as that of displacement component u. In Fig. 5 radial stress 

𝑡𝑟𝑟 and in Fig. 6 azimuthal stress 𝑡𝜃𝜃 decrease for 𝑎1 = 𝑎3 = 0 with the increase of r. for 𝑎1 =
𝑎3 = .07 𝑡𝑟𝑟   and 𝑡𝜃𝜃 follow consecutively decreasing increasing pattern. In Fig. 7 vertical stress 

𝑡𝑧𝑧 follows similar pattern as that of displacement u except the magnitude In Fig. 8 shear stress 𝑡𝑧𝑟 

decreases in the first half range and increases in remaining range. For given r inclusion of two 

temperature decreases the magnitude of variation. In Fig. 9 couple stress 𝑚𝑧𝜃  is oscillatory in 

pattern. In Fig. 10 𝑚𝑟𝜃  decreases for 0.1 ≤ 𝑟 ≤ 0.5,  increases in 0.1 ≤ 𝑟 ≤ 0.5,  and decreases 

again in the remaining range.  

 

For variation w.r.t z 

In Fig. 11 displacement component u for 𝑎1 = 𝑎3 = 0 follows oscillatory pattern w.r.t.z. For 

𝑎1 = 𝑎3 = .07 sketch is almost linear. In Fig. 12 displacement component w for 𝑎1 = 𝑎3 = 0 

follows oscillatory pattern w.r.t.z. For 𝑎1 = 𝑎3 = .07  sketch is linear for 0.1 ≤ 𝑟 ≤ 1  and 

increases a little in the remaining range w.r.t.z. In Fig. 13 conductive temperature φ pursues 

oscillatory pattern. Inclusion of two temperature parameter decreases the distance between 

consecutive crests and troughs. In Figs. 14-15 variations for radial stress, azimuthal stress are 

oscillatory for 𝑎1 = 𝑎3 = 0. For 𝑎1 = 𝑎3 = .07 value of physical quantities increases with the 

increase in z. In Fig. 16 vertical stress is oscillatory for 𝑎1 = 𝑎3 = 0. For 𝑎1 = 𝑎3 = .07 sketch is 

curvilinear. In Fig. 17 variation for shear stress 𝑡𝑧𝑟 is oscillatory for 𝑎1 = 𝑎3 = 0. For 𝑎1 = 𝑎3 =
.07 sketch decreases w.r.t.z initially the increases w.r.t.z. In Fig. 18 for 𝑚𝑧𝜃  variation do not 

follow a proper pattern. In Fig. 19 variation for couple stress 𝑚𝑟𝜃  is similar to corresponding 

variation for radial stress 𝑡𝑟𝑟 . 
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7. Conclusions 
 

Analysis of displacement components, stresses, conductive temperature cut these words due to 

ring load in a thick circular plate is a significant problem of continuum mechanics. The result 

obtained from above study are summarized as.  

The resulting quantities depicted graphically are observed to be very sensitive towards the two 

temperature parameter. Figures show that the two-temperature parameter changes the magnitude 

the physical quantities obtained after computational process. It is also observed that the physical 

quantities in the absence of two temperature parameters are oscillatory for variation w.r.t. z. 

Presence of two temperature parameter changes variation from oscillatory to curvilinear. The 

results obtained in the study should be beneficial for people working on transversely isotropic new 

modified couple stress thermoelastic solid with mass diffusion. By introducing the two 

temperature parameter to the assumed model present a more realistic mode for future study. 
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Notation 
 

𝒖 = (𝑢, 𝑣, 𝑤)  displacement vector 

𝑐𝑖𝑗𝑘𝑙(𝑐𝑖𝑗𝑘𝑙 = 𝑐𝑖𝑗𝑙𝑘 = 𝑐𝑗𝑖𝑘𝑙 = 𝑐𝑗𝑖𝑙𝑘)  Elastic parameters 

𝑡𝑖𝑗  stress tensor 

𝑒𝑖𝑗   Strain tensor 

𝛼𝑖𝑗  coefficients of linear thermal expansion 

𝛽𝑖𝑗  thermal tensor 

T thermodynamical temperature 

𝜑  conductive temperature 

𝑙𝑖(𝑖 = 1,2,3)  material length scale parameters 

𝜒𝑖𝑗  Curvature 

𝜔𝑖  rotational vector 

  density of material 

𝐾𝑖𝑗  materialistic constant 

𝑐𝐸  specific heat at constant strain 

𝑇0  reference temperature 

𝐺𝑖  Elasticity constants 

𝑚𝑖𝑗  Couple stress tensor 

𝑎𝑖𝑗  Coefficients of two-temperature parameter tensor 
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Appendix A 
 

𝑢̃ =
𝑔0𝐹̃(𝜉,𝑑)

∆
∑ 𝐵1𝑖 cosh(𝜆𝑖𝑧) +

𝑓̃(𝜉,𝑠)

∆
∑ 𝐵2𝑖 cosh(𝜆𝑖𝑧)2

𝑖=1
2
𝑖=1 ,  (A.1) 

𝑤̃ =
𝑔0𝐹̃(𝜉,𝑑)

∆
∑ 𝐵1𝑖𝑅𝑖 cosh(𝜆𝑖𝑧) +

𝑓̃(𝜉,𝑠)

∆
∑ 𝐵2𝑖 𝑅𝑖cosh(𝜆𝑖𝑧)2

𝑖=1
2
𝑖=1 ,  (A.2) 

𝜑̃ =
𝑔0𝐹̃(𝜉,𝑑)

∆
∑ 𝐵1𝑖𝑆𝑖 cosh(𝜆𝑖𝑧) +

𝑓̃(𝜉,𝑠)

∆
∑ 𝐵2𝑖 𝑆𝑖cosh(𝜆𝑖𝑧)2

𝑖=1
2
𝑖=1 ,  (A.3) 

𝑡𝑟𝑟̃ =
1

∆
∑ (𝑔0𝐹̃(𝜉, 𝑑)𝐵1𝑖 + 𝑓(𝜉, 𝑠)𝐵2𝑖) (((

𝑐12

𝑐11

1

𝜉
− 𝜉) − (1 + 𝑎1𝜉2 −4

𝑖=1

𝑎3𝜆𝑖
2)𝑆𝑖) cosh(𝜆𝑖𝑧) +

𝑐13

𝑐11
𝜆𝑖 𝑅𝑖sinℎ(𝜆𝑖𝑧))   

(A.4) 

𝑡𝜃𝜃̃ =
1

∆
∑ (𝑔0𝐹̃(𝜉, 𝑑)𝐵1𝑖 + 𝑓(𝜉, 𝑠)𝐵2𝑖) (((−

𝑐12

𝑐11
𝜉 +

1

𝜉
) − (1 + 𝑎1𝜉2 −4

𝑖=1

𝑎3𝜆𝑖
2)𝑆𝑖) cosh(𝜆𝑖𝑧) +

𝑐13

𝑐11
𝜆𝑖 𝑅𝑖sinh(𝜆𝑖𝑧))  

(A.5) 

𝑡𝑧𝑧̃ =
𝑔0𝐹̃(𝜉,𝑑)

∆
(∑ 𝜂𝑖 𝐵1𝑖cosh(𝜆𝑖𝑧)4

𝑖=1 + ∑ 𝜇𝑖𝐵1𝑖 sinh(𝜆𝑖𝑧)4
𝑖=1 ) +

𝑓̃(𝜉,𝑠)

∆
(∑ 𝜂𝑖 𝐵2𝑖cosh(𝜆𝑖𝑧)4

𝑖=1 + ∑ 𝜇𝑖𝐵2𝑖 sinh(𝜆𝑖𝑧)4
𝑖=1 ),  

(A.6) 

𝑡𝑧𝑟̃ =
𝑔0𝐹̃(𝜉,𝑑)

∆
(∑ 𝜈𝑖 𝐵1𝑖cosh(𝜆𝑖𝑧)4

𝑖=1 + ∑ 𝜅𝑖𝐵1𝑖 sinh(𝜆𝑖𝑧)4
𝑖=1 ) +

𝑓̃(𝜉,𝑠)

∆
(∑ 𝜈𝑖 𝐵2𝑖cosh(𝜆𝑖𝑧)4

𝑖=1 + ∑ 𝜅𝑖𝐵2𝑖 sinh(𝜆𝑖𝑧)4
𝑖=1 ),  

(A.7) 

𝑚𝜃𝑧̃ =
𝑔0𝐹̃(𝜉,𝑑)

∆
(∑ 𝜏𝑖 𝐵1𝑖cosh(𝜆𝑖𝑧)4

𝑖=1 + ∑ 𝜒𝑖𝐵1𝑖 sinh(𝜆𝑖𝑧)4
𝑖=1 ) +

𝑓̃(𝜉,𝑠)

∆
(∑ 𝜏𝑖 𝐵2𝑖cosh(𝜆𝑖𝑧)4

𝑖=1 + ∑ 𝜒𝑖𝐵2𝑖 sinh(𝜆𝑖𝑧)4
𝑖=1 ),  

(A.8) 

𝑚𝜃𝑟̃ = −
1

2

𝛽1𝑇0

𝐿2𝜌𝑐1
2∆

𝑙2
2𝐺2 ∑ (𝜉𝜆𝑖 sinh(𝜆𝑖𝑧) + 𝜉2 𝑅𝑖cosh(𝜆𝑖𝑧))(𝑔0𝐹̃(𝜉, 𝑑)𝐵1𝑖 + 𝑓(𝜉, 𝑠)𝐵2𝑖)4

𝑖=1   (A.9) 

where 

𝜂𝑖 = −
𝑐13

𝑐11
𝜉 −

𝛽3

𝛽1
((1 + 𝑎1𝜉2)𝑆𝑖 − 𝑎3𝜆𝑖

2𝑆𝑖) 

𝜇𝑖 =
𝑐33

𝑐11
𝜆𝑖𝑅𝑖 

𝜅𝑖 =
𝑐44

𝑐11
𝜆𝑖 −

1

4
 

𝛽1𝑇0

𝐿3𝜌𝑐1
2 𝑙2

2𝐺2(−𝜉2𝜆𝑖 + 𝜆𝑖
3) 

𝜈𝑖 = −𝜉𝑅𝑖 −
1

4
 

𝛽1𝑇0

𝐿3𝜌𝑐1
2 𝑙2

2𝐺2(−𝜉3 − 𝜆𝑖
2𝜉)𝑅𝑖 
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𝜏𝑖 =
1

2

𝛽1𝑇0

𝐿2𝜌𝑐1
2 𝑙2

2𝐺2𝜆𝑖
2 

𝜒𝑖 = −
1

2

𝛽1𝑇0

𝐿2𝜌𝑐1
2 𝑙2

2𝐺2𝜉𝜆𝑖𝑅𝑖 

𝐴1𝑖 = 𝜆𝑖𝑆𝑖 sinh(𝜆𝑖𝑑),     
𝐴2𝑖 = 𝜂𝑖 cosh(𝜆𝑖𝑑) + 𝜇𝑖 sinh(𝜆𝑖𝑑) 

𝐴3𝑖 = 𝜅𝑖 sinh(𝜆𝑖𝑑) + 𝜈𝑖 cosh(𝜆𝑖𝑑),      
𝐴4𝑖 = 𝜏𝑖 cosh(𝜆𝑖𝑑) + 𝜒𝑖 sinh(𝜆𝑖𝑑)  𝑖 = 1,2,3,4   

∆= ∆1 − ∆2 + ∆3 − ∆4, 
∆1= 𝐴11𝐴22(𝐴33𝐴44 − 𝐴43𝐴34) − 𝐴11𝐴23(𝐴32𝐴44 − 𝐴42𝐴34) + 𝐴11𝐴24(𝐴32𝐴43 − 𝐴42𝐴33), 
∆2= 𝐴12𝐴21(𝐴33𝐴44 − 𝐴43𝐴34) − 𝐴12𝐴23(𝐴31𝐴44 − 𝐴41𝐴34) + 𝐴24𝐴12(𝐴31𝐴43 − 𝐴41𝐴33), 
∆3= 𝐴13𝐴21(𝐴32𝐴44 − 𝐴42𝐴34) − 𝐴22𝐴13(𝐴31𝐴44 − 𝐴41𝐴34) + 𝐴13𝐴24(𝐴31𝐴42 − 𝐴41𝐴32), 
∆4= 𝐴14𝐴21(𝐴32𝐴43 − 𝐴42𝐴33) − 𝐴22𝐴14(𝐴31𝐴43 − 𝐴41𝐴33) + 𝐴14𝐴23(𝐴31𝐴42 − 𝐴41𝐴32) 

𝐵1𝑖 = (−1)1+𝑖∆𝑖/𝐴1𝑖 , 
               𝐵21 = −𝐴21(𝐴33𝐴44 − 𝐴43𝐴34) + 𝐴23(𝐴31𝐴44 − 𝐴41𝐴34) − 𝐴24(𝐴31𝐴43 − 𝐴41𝐴33),  
               𝐵22 = 𝐴11(𝐴33𝐴44 − 𝐴43𝐴34) − 𝐴13(𝐴31𝐴44 − 𝐴41𝐴34) + 𝐴14(𝐴31𝐴43 − 𝐴41𝐴33),  
                𝐵23 = −𝐴11(𝐴23𝐴44 − 𝐴43𝐴24) + 𝐴13(𝐴21𝐴44 − 𝐴41𝐴24) − 𝐴14(𝐴21𝐴43 − 𝐴41𝐴23),  
                𝐵24 = 𝐴11(𝐴23𝐴34 − 𝐴33𝐴24) − 𝐴13(𝐴21𝐴34 − 𝐴31𝐴24) + 𝐴14(𝐴21𝐴33 − 𝐴31𝐴23). 
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