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Abstract.  In our research, we have proposed a solid solution for aviation analysis which can ensure the asymptotic 
stability of coupled nonlinear plants, according to the theoretical solutions and demonstrated method. Because this 
solution employed the scheme of specific novel theorem of control, the controllers are artificially combined by the 
parallel distribution computation to have a feasible solution given the random coupled systems with aviation stability 
analysis. Therefore, we empathize and manually derive the results which shows the utilized lemma and criterion are 
believed effective and efficient for aircraft structural analysis of composite and nonlinear scenarios. To be fair, the 
experiment by numerical computation and calculations were explained the perfectness of the methodology we 
provided in the research. 
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1. Introduction 
 

Mathematics seems to be a guide, appearing by the physicist at the right time, bringing light to 
the gloomy world of physics. However, the mutual influence of mathematics and physics is far 

more complicated than the story told. In most recorded history, physics and mathematics are not 
even separate subjects. The mathematics of ancient Greece, Egypt, and Babylon believed that we 
live in a world where distance, time, and gravity all operate in a certain way. The mathematical 
and statistical models for many physical, nature and technical systems are generally large or 
contain dynamic interaction phenomena and the cost for testing these models of control purposes 
are often too high. Therefore, it is natural to find a technique that can reduce the calculation costs. 
The large systems methodology provides this technique by manipulating the structure of the 

system in some way. Therefore, research on modeling, math, analysis, collection, optimization and 
control of large-scale systems has generated great interest. Recently, many of these methods have 
been proposed to verify the stability of the literature and the stability of large systems (Yang and 
Chang 1996, Bedirhanoglu 2014, 2004, 2005, Chiang et al. 2007, Liu et al. 2009, Liu et al. 2010, 
Hung et al. 2019, Eswaran and Reddy, 2016 and references included). 
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In a computer network, because different communication subnets and network architectures 

adopt different transfer control methods, the transfer delay in the communication subnet is 

determined by the network status. The delay time caused by the electrical signal response is fixed. 

The smaller the response time, the smaller the delay, the larger the bandwidth, and the higher the 

transmission rate. Therefore, the larger the channel bandwidth, the smaller the delay. Delay time is 

the time it takes to get a packet from a specific point. Delay time is generally the sum of response 

delay and transmission delay. Delays usually occur in other technological systems. Computer 

control systems, for example, experience delays because computers take a long time to perform 

digital tasks. Also, there are remote operations, radar, power grid, transportation, metal delay and 

so on. The outputs of these systems do not respond to the input data until a certain amount of time 

has passed. The introduction of a delay factor usually causes instability and often complicates the 

analysis. Therefore, the analysis of the delay stability of the system on research (Mori 1985, Trine 

Aldeen 1995, Tsai et al. 2012, 2015, Tim et al. 2019, Chen 2011, 2014, Tim et al. 2020, Chen et 

al. 2020) have published and executed by demonstrations. 

In recent years, there has much been on the topic of a growing interest in system controls. 

There are already many successful applications. Despite that of its success, it is clear that a great of 

basic problems remain to be solved and the main problem with control systems is system design to 

ensure stability. Recently, there have been many studies on the stability (see Tanaka Sugeno 1992, 

Tim et al. 2021, Zhen et al. 2021, Chen et al. 2022, Hsiao et al., Wang et al. 1996, Tanaka et al. 

1996, Feng et al. 1997 and references). The history of applying the artificial intelligence tools into 

the the engineering problems has been presented in some papers. For example, Chiang et al. 

(2001, 2002, 2004) have provided the novel criterion for system, Chengwu et al. (2002) provided 

the LMI form for system, Hsiao et al. (2003, 2005) utilized the AI theory in nonlinear systems, 

Hsieh et al. (2006) proposed the stability analysis for AI, Lin et al. (2010) et al. provided the 

control application in TLP system, Chen et al. (2006, 2007, 2009) also demonstrated the 

performance by neural network based LDI theory. Recently Chen et al. (2019, 2020) had some 

research results of evolutionary models for engineering applications. However, studies in the 

literature have yet to solve the stability and non-stable problem of large systems with multiple 

delays.  

Therefore, this study has a stability formula based directly on the Lyapunov method, which 

provides asymptotic stability for large systems with multiple delays. According to this statement 

and the limited control system, fuzzy control groups are involved to stabilize large systems in 

multi-delay systems that involve many interconnected systems. In addition, these subsystems are 

represented by a simple Takagi-Sugen model in multiple delays. In these models, each rule is 

represented by a linear model of the system, so the linear response of the control can be used as a 

stable response. Therefore, a type of compensation design based on a fuzzy model uses a parallel 

distributed compensation (PDC) scheme. The idea is that all linear local linear response models 

share the same assumptions. And we focus on the results that show the best efficiency of the 

proposed damage propagation theory for aerospace structural analysis of composite materials. 

In summary, we will briefly introduce the Takagi Sugeno fuzzy model with some delays and 

describe the system. The stability measure is then derived and checked based on the Lyapunov 

method, to ensure the asymptotic stability of coupled systems with multiple delays. And we focus 

on the results that show the best efficiency of the proposed damage propagation theory for 

aerospace structural analysis of composite materials. Finally, descriptive results and conclusions 

are presented for numerical simulation models. 
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2. Coupled system description  
 

The following we review a nonlinear aviation stability, that is to simplify the construction of 

the equation Eq. (2.1), we consider a nonlinear J as coupled subsystems 𝐹𝑗,  The jth as isolated 

subsystems (without any interconnection) of F are represented by the technique of IF-THEN delay 

control model of Takagi-Sugeno. The main feature of the Takagi-Sugeno fuzzy model with 

multiple delays is the expression of each of rule by means of a linear equation of state, and the 

model is as follows (Chen 2014, Chen et al. 2019, Chen et al. 2020) 

Rule i :  IF any 𝑥1𝑗(𝑡) is  𝑀𝑖1𝑗  and ⋯  and  𝑥𝑔 𝑗(𝑡)  is  𝑀𝑖𝑔 𝑗                          (2.1) 

THEN 𝑥̇𝑗(𝑡) = 𝐴𝑖𝑗𝑥𝑗(𝑡)  + ∑ 𝐴𝑖⥂⥂𝑘⥂𝑗𝑥(𝑡 − 𝜏𝑘⥂𝑗) +
𝑁𝑗

𝑘=1
𝐵𝑖𝑗𝑢𝑗(𝑡)                           

where 𝑥𝑗
𝑇(𝑡) = [𝑥1𝑗(𝑡), 𝑥2𝑗(𝑡), ⋯ , 𝑥𝑔 𝑗(𝑡)], 𝑢𝑗

𝑇(𝑡) = [𝑢1𝑗(𝑡), 𝑢2𝑗(𝑡), ⋯ , 𝑢𝑚𝑗(𝑡)] 

𝑟𝑗  is the jth subsystem’s IF-THEN rule umber. 𝐴𝑖𝑗  , 𝐴𝑖⥂𝑘⥂𝑗   and 𝐵𝑖𝑗  are coupled system 

matrices, state 𝑥𝑗(𝑡) , input 𝑢𝑗(𝑡) , delay 𝜏𝑘⥂𝑗  fuzzy set 𝑀𝑖𝑝𝑗 ( 𝑝 = 1, 2, ⋯ , 𝑔 ), and premise 

𝑥1𝑗(𝑡)~𝑥𝑔𝑗(𝑡) are used to infer the fuzzy dynamic model 

𝑥̇𝑗(𝑡) =
∑ 𝑤𝑖𝑗(𝑡) {𝐴𝑖𝑗𝑥𝑗(𝑡) + ∑ 𝐴𝑖⥂⥂𝑘⥂𝑗𝑥(𝑡 − 𝜏𝑘⥂𝑗) +

𝑁𝑗

𝑘=1
𝐵𝑖𝑗𝑢𝑗(𝑡)}

𝑟𝑗

𝑖=1

∑ 𝑤𝑖𝑗(𝑡)
𝑟𝑗

𝑖=1

 

= ∑ ℎ𝑖𝑗(𝑡)
𝑟𝑗

𝑖=1
{𝐴𝑖𝑗𝑥𝑗(𝑡) + ∑ 𝐴𝑖⥂⥂𝑘⥂𝑗𝑥(𝑡 − 𝜏𝑘⥂𝑗) +

𝑁𝑗

𝑘=1
𝐵𝑖𝑗𝑢𝑗(𝑡)}                   (2.2) 

with 

𝑤𝑖𝑗(𝑡) = ∏ 𝑀𝑖𝑝𝑗(𝑥𝑝𝑗(𝑡))
𝑔
𝑝=1 ,  ℎ𝑖𝑗(𝑡) =

𝑤𝑖𝑗(𝑡)

∑ 𝑤𝑖𝑗(𝑡)
𝑟𝑗
𝑖=1

                                 (2.3) 

in which 𝑀𝑖𝑝𝑗(𝑥𝑝𝑗(𝑡))  is in the grade of any membership of 𝑥𝑝𝑗(𝑡)  in 𝑀𝑖𝑝𝑗 if  𝑤𝑖𝑗(𝑡) ≥

0,   𝑖 =   1, 2, ⋯ , 𝑟𝑗 and  ∑ 𝑤𝑖𝑗(𝑡)
𝑟𝑗

𝑖=1
> 0 , ℎ𝑖𝑗(𝑡) ≥ 0,  𝑖 =   1, 2, ⋯ , 𝑟𝑗,  ∑ ℎ𝑖𝑗(𝑡)

𝑟𝑗

𝑖=1
= 1. 

According to the above mentioned analysis, these jth 𝐹𝑗 could be  

𝑥̇𝑗(𝑡) = ∑ ℎ𝑖𝑗(𝑡) {𝐴𝑖𝑗𝑥𝑗(𝑡) + ∑ 𝐴𝑖⥂⥂𝑘⥂𝑗𝑥(𝑡 − 𝜏𝑘⥂𝑗) +
𝑁𝑗

𝑘=1
𝐵𝑖𝑗𝑢𝑗(𝑡)} + ∑ 𝐶𝑛𝑗𝑥𝑛

𝐽
𝑛=1
𝑛≠𝑗

(𝑡)
𝑟𝑗

𝑖=1
    (2.4) 

where 𝐶𝑛𝑗 is the interconnection. 

 

 

3. Coupled system criterion of smart control 
 

According to the decentralized fuzzy controllers using the parallel distributed compensation 

(PDC) method to stabilize the coupled system F, the option of the distributed compensation is each 

distributed control rule is designed in parallel. The fuzzy based controller shares the same fuzzy 

set with the fuzzy model in the spatial parameters with coupled aviation stability. Since each rule 

of the fuzzy model is described by a linear state equation, linear coupled control theory can be 

used to design the following aviation components of the fuzzy controller. The resulting overall 

fuzzy controller, usually non-linear, is obtained by combining each linear controller.  

The fuzzy controller of the jth subsystem is in the following form 
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                            Rule i:  IF ig jg jjij MtxMtx   is  )( and  and    is  )( 11   

THEN )()( txKtu jjij −= ,                                                 (3.1) 

where i =1, 2,…, jr . Hence, the final output of the fuzzy controller is  

.)()(

)(

)()(

)(
1

1

1 




=

=

= −=−=
j

j

j

r

i
jjijir

i
ji

r

i
jijji

j txKth

tw

txKtw

tu                                  (3.2) 

Substituting Eq. (3.2) into Eq. (2.4), we have the jth closed-loop subsystem 

)(])[()()(
1 1

txKBAththtx j

r

i
f ji ji jf j

r

f
i jj

j j


= =

−= + )(tj .                           (3.3) 

A stability criterion is given below to guarantee the asymptotic stability of the fuzzy large-scale 

system F. 

Theorem 1: The fuzzy large-scale system F is asymptotically stable, if the feedback gains (Kij) 

are chosen to satisfy  

(I)     
ji jmi j Q  −= )(ˆ > 0   and   

ji f jmi f j Q  −= )(
~

> 0                          (3.4) 

for jri  ,2, ,1 = , jrfi  , Jj  ,  2, ,1 =      

or 

(II)    0

ˆ~~

~ˆ~

~~ˆ

21

2212

1121























=

jrjrjr

jrjj

jrjj

j

jjj

j

j















,    for  Jj  ,  2, ,1 =                     (3.5) 

where  

)(
1

n

T

jn

J

jn
n

j

T

njj PCPC +=

=

 , 

          )]()[( i ji ji jjj

T

i ji ji jij KBAPPKBAQ −+−−= ,                               (3.6) 

             i f jQ )( i f jjj

T

i f j GPPG +−= ,                                                   (3.7) 

with  
2

)()( i jf jf jf jiji j

i f j

KBAKBA
G

−+−
= , 0= T

jj PP ,  

and 𝜆𝑚(𝑄𝑖𝑗) as well as 𝜆𝑚(𝑄𝑖𝑓𝑗) denote the minimum eigenvalues of 𝑄𝑖𝑗 and 𝑄𝑖𝑓𝑗, respectively. 

Let the Lyapunov function for the fuzzy large-scale system F be defined as  
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)()()(
11

txPtxtvV
J

j
jj

T

j

J

j
j 

==

==                                            (A1) 

where 0= T

jj PP . We then evaluate the time derivative of V on the trajectories of Eq. (3.3) to get  

V = )]()()()([)(
11

txPtxtxPtxtv jj

T

jj

J

j
j

T

j

J

j
j

 +=
==

 

= [ {
1


=

J

j

)()]()())(( )(
1 1

txPttxKBAthth jj

T

j

r

i
jf ji ji jf j

r

f
i j

j j


= =

+−  

+ [)( j

T

j Ptx )]}())(( )(
1 1

tKBAthth j

r

i
f ji ji jf j

r

f
i j

j j


= =

+−  

= 
= ==

−+−
J

j

r

fi
ji ji ji jjj

T

i ji ji j

T

ji j txKBAPPKBAtxth
j

1 1

2  )( )]())[(()(  

 
= 

−+−+
J

j

r

fi
jf ji ji jjj

T

f ji ji j

T

jf ji j

j

txKBAPPKBAtxthth
1

)( )]())[(()()(  

+
=

+
J

j
jj

T

jjj

T

j tPtxtxPt
1

)]()()()([   

 = 321 DDD ++ ,                                                             (A2) 

where 

1D  
= ==

−+−
J

j

r

fi
ji ji ji jjj

T

i ji ji j

T

ji j txKBAPPKBAtxth
j

1 1

2  )( )]())[(()(  

= 
= =

−
J

j

r

i
ji j

T

ji j

j

txQtxth
1 1

2 )()()(
2

1 1

2 )()()( txQth j

J

j

r

i
i jmi j

j


= =

−  ,       (A3) 

2D 
= 

−+−
J

j

r

fi
jf ji ji jjj

T

f ji ji j

T

jf ji j

j

txKBAPPKBAtxthth
1

)( )]())[(()()(  

= 
= 

+
J

j

r

fi
ji f jjj

T

i f j

T

jf ji j

j

txGPPGtxthth
1

)())(()()(2  


= 

−
J

j

r

fi
ji f jmf ji j

j

txQthth
1

2

)()()()(2  ,(A4) 

3D 
=

+
J

j
jj

T

jjj

T

j tPtxtxPt
1

)]()()()([   

)]()()()([
1

txCPtxtxPCtx nnjj

T

jjj

J

j

J

jn

T

nj

T

n +=
= 


= 


J

j

J

jn
jj

T

nj

T

n txPCtx
1

)()(2  

j

T

nj

J

j

J

jn
n PCtx  )( 2

1

 
= 

 )(tx j ))()((  
2

1

2
txtxPC j

J

j

J

jn
nj

T

nj + 
= 
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2

1

)() (  txPCPC jn

T

jn

J

j

J

jn
j

T

nj += 
= 

2

1

)(tx j

J

j
j

=

=  .                             (A5) 

Substituting Eqs. (A3)-(A5) into Eq. (A2) yields 

V 
2

1 11 1

2 )(})()()()()( 2)()({ txththQththQth jj

r

i

r

f
f ji ji f jmf j

r

fi
i j

J

j

r

i
i jmi j

j jjj

  
= == =

−+−  

2

1

2

1 1

2 )(})()( 2)()()()( 2)()({ txthththQththQth j

r

i
jf j

r

fi
i jjiji f jmf j

r

fi
i j

J

j

r

i
i jmi j

j jjj

  
= = =

−−+−=   

 
2

1 1

2 )(}
~

)()( 2ˆ)({ txththth ji f jf j

r

fi
i j

J

j

r

i
i ji j

jj

  
= =

+−= .                               (A6) 

Based on Eq. (3.4), we have 0V  and the proof of condition (I) is thereby completed. 

(II): According to Eq. (A6), we get 

V 
2

1 1

2 )(}
~

)()( 2ˆ)({ txththth ji f jf j

r

fi
i j

J

j

r

i
i ji j

jj

  
= =

+−  

=  
=

−
J

j
jrjj ththth

j
1

21 )()()( { 





















jrjrjr

jrjj

jrjj

jjj

j

j







ˆ~~

~ˆ~

~~ˆ

21

2212

1121









 





















)(

)(

)(

2

1

th

th

th

jr

j

j

j


}

2

)(tx j  

  j

J

j
j

T

j HH
=

−=
1

2

)(tx j ,                                                  (A7) 

in which T

jH ])()()([ 21 ththth jrjj j
 .  

 

 

4. Example  
 

In this section, we will examine Fisher's equations and temperature control of high-speed 

aircraft cooling coils to demonstrate about this effectiveness of these proposed method in design. 

Fisher's equations have been used as the basis for various models of spatial gene spread of 

populations, chemical wave propagation, flame propagation, branched brown motion processes, 

and reactor theory. Consider a aviation stability from the coupled system composed of three 

linking in and out states which are described as follows. 

Subsystem 1: 

Rule 1: If )(11 tx  is 111M  

     Then )()( 1111 txAtx = + )(111 tuB                                         

Rule 2: If )(11 tx  is 211M  

Then )()( 1211 txAtx = + )(121 tuB                                       
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with  
123

129
11 









−

−
=A ,  

145

425
21 









−

−−
=A , 









−
=

2

5.0
11B , 








=

1

3.0
21B                     (4.1) 

and membership functions for Rule 1 and Rule 2 are  

=))(( 11111 txM
)](2 exp[1

1

11 tx−+
, =))(( 11211 txM ))((1 11111 txM− . 

Subsystem 2: 

Rule 1: If )(12 tx  is 112M  

     Then )()( 2122 txAtx = + )(212 tuB                                     

Rule 2: If )(12 tx  is 212M  

Then )()( 2222 txAtx = + )(222 tuB                                    

with  
165

130
12 









−−

−
=A ,  

136

125
22 









−−

−
=A , 








=

2

2.0
12B , 









−
=

3

6.0
22B                    (4.2) 

and membership functions for Rule 1 and Rule 2 are  

=))(( 12112 txM )](exp[ 2

12 tx− , ))((1))(( 1211212212 txMtxM −= . 

Subsystem 3: 

Rule 1: If )(13 tx  is 113M  

     Then )()( 3133 txAtx = + )(313 tuB                                     

Rule 2: If )(13 tx  is 213M  

Then )()( 3233 txAtx = + )(323 tuB .                                       

with  
132

237
13 









−

−
=A ,  

143

334
23 









−

−−
=A , 









−
=

2

8.0
13B ,  

1

9.0
23 








=B               (4.3) 

and membership functions for Rule 1 and Rule 2 are 

=))(( 13113 txM
)](4 exp[1

1

13 tx−+
, =))(( 13213 txM ))((1 13113 txM− . 

Moreover, the coupled in and out states matrices among three aviation stability are  










−

−
=

31

1.25.1
21C ,   








=

5.23

5.45
31C ,      









−

−
=

5.14.1

32
12C , 

        








−

−
=

2.14.1

4.21
32C ,    









−

−
=

5.06.0

5.02
 13C ,   









−

−
=

3.02.1

4.11
23C .                    (4.4) 

Therefore, aviation stability from coupled systems have the states matrices Aij and Bij shown in 

Eqs. (4.1)-(4.3). 

Since the pairs (Aij, Bij), i=1,2, j=1,2,3 are all given, we analyze controlled coupled structures as 

Rule 1: If )(11 tx  is 111M      Then )()( 1111 txKtu −= ,  
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Rule 2: If )(11 tx  is 211M       Then )()( 1211 txKtu −= .   

=11K  3704.04815.11 −−  and =21K  1548.05161.0− . 

Rule 1: If )(12 tx  is 112M         Then ),()( 2122 txKtu −=       

Rule 2: If )(12 tx  is 212M      Then )()( 2222 txKtu −= ,       

=12K  5714.02857.14 −−  and =22K  5568.15495.0 − . 

Rule 1: If )(13 tx  is 113M      Then )()( 3133 txKtu −= ,    

Rule 2: If )(13 tx  is 213M  Then )()( 3233 txKtu −= .  

=13K  6170.30426.4 −−  and =23K  4213.17542.11 −− . 

In order to satisfy the aviation stability conditions from coupled system of Theorem 1, Eq. (3.6) 

must be positive we can obtain i jQ , 2 , 1   =i , 3 2, ,1=j  positive definite: 










−

−
=

7619.12794.0

2794.05062.1
1P , ,

4738.13153.0

3153.03865.1
2 








=P  








=

9350.10876.0

0876.03662.1
3P . 









=

5584.453305.23

3305.239131.58
11Q , 









−

−
=

6183.475195.14

5195.149267.77
21Q , 









−

−
=

7829.435816.24

5816.249133.80
  121Q ,

12Q = 








−

−

0915.430437.23

0437.234030.60
, 








=

8670.502892.17

2892.179823.72
22Q ,    








=

8423.393456.50

3456.508514.81
  122Q ,









=

4496.778202.9

8202.93250.93
13Q ,      









−

−
=

9820.480449.23

0449.234088.61
 23Q ,   








=

4499.503662.15

3662.154472.80
  123Q . 

From Eq. (3.5), we have†  









=

8965.156548.5

6548.50797.2
1 , 









−

−
=

0329.220736.13

0736.137627.7
2 , 








=

1730.118213.23

8213.236056.52
3    (4.11) 

and the eigenvalues of them are given below: 

, 017.9157  ,0605.0)( 1 =   , 029.7917  ,0039.0)( 2 = 063.4586  ,3201.0)( 3 = . 

From Table 1 and Figs. 1-4, we see the feasibility of proposed control results.  

 

 

5. Conclusions 
 

In this paper, the modulated complex mechanical control of dynamically coupled systems with 

aviation stability is considered. To do this, a two-step strategy is proposed to first divide a large 

integrated system into several interrelated subsystems. We focus on damage propagation for in-

plane structural analysis of composite materials. As a modified fuzzy control order, the following 

has been adopted as a feedback theory based on the energy function and LMI optimal stability  

 

†In this example, the Euclidean norm is considered. 
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Table 1 Basic data for test sets 

State No. number/meshes State No. number/meshes State No. number/meshes State No. number/meshes 

1 784.59 26 275.92 51 289.27 76 222.87 

2 748.7 27 253.44 52 293.53 77 255.93 

3 72.09 28 247.99 53 288.4 78 272.07 

4 778.94 29 247.78 54 409.4 79 285.74 

5 89.48 40 792.07 55 405.54 80 247.47 

6 98.84 41 798.8 56 287.4 81 244.74 

7 727.74 42 258.54 57 404.27 82 229.74 

8 785.59 44 287 58 279.07 84 245.87 

9 749.44 44 427.2 59 797.74 84 224.74 

10 728.45 45 274.47 80 258.8 85 225.47 

17 747.9 46 282.94 61 228.74 88 798.47 

12 729.07 47 482.8 62 248.4 87 729.74 

14 727.92 48 478.2 64 278.94 88 797.48 

14 754.89 49 449.47 64 285.4 89 777.82 

15 745.8 40 445.27 65 297.27 90 784.49 

16 728.77 41 489.8 66 278.2 91 781.94 

17 92.78 42 452.94 67 275.8 92 770.77 

18 744.42 44 284 68 278.4 94 788.27 

19 749.07 44 248.2 69 288.2 94 784.28 

20 747.79 45 248.44 70 295.8 95 788.47 

21 149.58 46 272.94 71 289.74 96 208.49 

22 145.79 47 274.54 72 255.27 97 424.8 

24 140.57 48 259.27 74 185.07 98 411.14 

24 155.88 49 258.47 74 204.27 99 274.47 

25 194.09 50 280 75 214.74 100 207.73 

 

 

Fig. 1 The coupled system model 1 prediction results and prediction error 

 

 

criteria, which allows researchers to solve this problem and ensure the entire integrated system is 

in asymptotic stability. We focus on results that demonstrate the high efficiency of the proposed 

theory applied to damage propagation for in-plane structural analysis of composite materials.  

7

14

0

-17

14

0
3
8
3
0
-4

16

-2
31

15

-13

0

7
10

-2-3

5

-8

-2

-11

-5

-11

2

9
6

-7

2

15

-8
-11

12

-2

-8-6-7

0

9

19

9

0-2

9

-20-2
12
-3
0
4
0

-8

8

-7

12

0-20
2413
6

-8

00

10

0
3
0202-200

44
8

0
-5
-10
-5
0

-12

0

7

0

-8-8

0
-3
00

-20

-15

-10

-5

0

5

10

15

20

25

1 6

1
1

1
6

2
1

2
6

3
1

3
6

4
1

4
6

5
1

5
6

6
1

6
6

7
1

7
6

8
1

8
6

9
1

9
6

1
0
1

229



 

 

 

 

 

 

C.C. Hung and T. Nguyễn 

 

Fig. 2 The nonlinear coupled system 2 prediction results and prediction error 

 

 

Fig. 3 The nonlinear coupled system 3 prediction results and prediction error 

 

 

Fig. 4 The nonlinear coupled system summation results 
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