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Abstract.  This article presents a new analytical model to study the effect of porosity on the shear correction factors 
(SCFs) of functionally graded porous beams (FGPB). For this analysis, uneven and logarithmic-uneven porosity 
functions are adopted to be distributed through the thickness of the FGP beams. Critical to the application of this 
theory is a determination of the correction factor, which appears as a coefficient in the expression for the transverse 
shear stress resultant; to compensate for the assumption that the shear strain is uniform through the depth of the cross-
section. Using the energy equivalence principle, a general expression is derived from the static SCFs in FGPB. The 
resulting expression is consistent with the variationally derived results of Reissner’s analysis when the latter are 
reduced from the two-dimensional case (plate) to the one-dimensional one (beam). A convenient algebraic form of 
the solution is presented and new study cases are given to illustrate the applicability of the present formulation. 
Numerical results are presented to illustrate the effect of the porosity distribution on the (SCFs) for various FGPBs. 
Further, the law of changing the mechanical properties of FG beams without porosity and the SCFare numerically 
validated by comparison with some available results. 
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1. Introduction 
 

From the turn of the 20th century to the present day, the engineering design of composites for 

structural applications requires higher strength-to-weight and stiffness-to-weight ratios involved in 
manufacturing processes. Nevertheless, the problem of developed stress concentrations at the 
interfaces between the layers constitutes a major drawback. In order to have an important 
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characteristic of composite materials such as the elimination of delamination and cracking; in the 

mid-1980s Japanese researchers designed new materials called, Functionally Graded Materials 

(FGMs). However, this concept was proposed by Bever and Duwez (1972) and by several 

researchers in the United States (Goetzel and Lavendel 1964). Its exploitation in composite 

materials was tried sporadically in the 1950s, 1960s, 1970s, and 1980s. However, these studies had 

a limited impact at that time due to the lack of a design, a manufacturing method, and a method for 

evaluating graded structures. These initial estimates of the advantage of FGMs consist of a variety 

of material properties from one surface to another according to specific mathematical rules in 

chosen directions providing a continuous stress distribution in the FGM structure. For this reason, 

they are classed as advanced composite materials, which attracted many research organizations, 

(Koizumi 1997, Suresh and Mortensen 1998). These organizations focused their researchers on 

structures subjected to cold conditions on one side and to very hot environment on the other. Thus, 

various methods have been developed to manufacture the FGMs such as High-speed centrifugal 

casting; Ultraviolet irradiation process and direct oxidation technique, etc. A number of 

investigations have been made on FGM beams and plates to study their static and dynamic 

behaviours. Plates are the commonly used structural members that have numerous applications in 

aerospace industries, civil and mechanical engineering.  

Functionally graded porous (FGP) materials are an example of innovative development in the 

materials industry and are engineered for use in many sectors. Their reputation comes from their 

high surface area to volume ratio of consolidating phase. Nowadays, FGP nanocomposite materials 

are produced by adding carbon nanotubes (CNTs) and graphene platelets (GPLs) on a nanoscale 

level to metal, ceramic, or polymer matrices. This addition improves the energy absorption 

properties of thin-walled rings, arches, beams, and plates considerably. These materials are 

commonly chosen for a wide range of engineering applications, including lightness, electrical 

conductivity, energy absorption, and thermal management. FGP materials have unique physical 

and materialistic properties resulting from their composition or microstructure shape, which is 

specifically adjusted to meet the needs of particular operations. The development of FGPs aimed 

to reduce stress fluctuations in composite materials, and they exhibit decreased transverse and in-

plane stresses, minimized residual stress, elevated thermal resistance, minimized thermal 

conductivity, and elevated fracture toughness and resistance to interlaminar stresses from an 

engineering perspective. 

However, a detailed analysis conducted by Yas and Rahimi (2020) on FGP nanocomposites, 

specifically on weight fraction, scattering patterns, size and geometry of platelets, and porosity 

allocation and coefficient, revealed that the operation performance of graphene platelets (GPLs) 

depends heavily on their geometry. Yas and Rahimi (2020) presented free vibration, buckling, and 

bending analysis of FG graphene nanoplatelets (GNPs)-reinforced nanocomposites under hygro-

thermo-mechanical loads. The results showed that the assembly becomes stiffer as the weight 

fraction of GNPs increases, leading to an increase in the natural frequency and critical buckling 

stress. However, elevated temperature and moisture decrease the stiffness, natural frequency, and 

critical buckling load (Jalali et al. 2019). Safaei et al. (2019) investigated the effects of CNTs and 

porosity properties of CNT cluster/polymer porous nanocomposite sandwich plates (PNSPs) and 

examined the mechanical and thermal stresses, geometry, elastic foundation parameters, and 

boundary conditions that impact the loading distributions and bending of PNSPs. The authors 

found that functional grading of the core decreases deflection, and the utilization of 5% volume 

fraction CNTs has negligible impact on the deflection of PNSPs due to the growth of CNT 

clusters. 
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Various plate theories have been proposed by researchers to study the bending, buckling, and 

free vibration behaviours of thin and thick FG plates. Due to its high efficiency and simplicity, the 

first-order shear deformation theory (FSDT) was used for analyzing moderately thick FG plates. 

Several authors have proposed models that take into account the transversal shear effect. Based on 

the Classical laminate theory CPT, FSDT, and third-order shear deformation plate theory (TSDT), 

a comprehensive work on the free vibration, buckling, and static deflections of FG square, circular, 

and skew plates, with different combinations of boundary conditions, was carried out by Abrate 

(2006).  Ferreira et al. (2006) employed the collocation method with multiquadric radial basis 

functions along with the FSDT and TSDT to find natural frequencies of FG square plates with 

different boundary conditions. Zhao et al. (2009) presented a free vibration analysis for FG square 

and skew plates with different boundary conditions using the element-free KP-Ritz method using 

the FSDT.  

The necessary term, used in the FSDT, is the SCF which amends the effect of uniform 

transverse stress in shear forces, who is mainly equal to 5/6 in isotropic homogeneous plates. Noor 

et al. (Noor et al. 1989, 1990) proposed predictor-corrector procedures to correct the SCF by using 

an iteration process. The SCFs obtained from this method depend on boundary conditions, plate 

geometry, and loading conditions, and hence, they cannot be directly applied to other plate 

configurations. The introduction of energy considerations in composite laminates, in order to 

calculate the SCFs, can be found in (Whitney 1973, Bert 1973, Vlachoutsis 1992, Berthelot 1992) 

presented for composite beams a simplified analysis of the static SCF by the derivation of its 

expression for laminated cross-ply beams. Whitney (Whitney 1973) presented results from this 

analysis. By comparing the shear strain energy with the equivalent Timoshenko beam, Bert and 

Gordaninejad (1983) developed a closed-form solution for the laminated beam. 

Birman and Bert (2002) have made an important review and discussion of the philosophies and 

results of determining SCF for homogeneous rectangular cross-sections as well as the case of 

sandwich structures. Based on consistent kinematic assumptions of Timoshenko beam theory, 

Madabhusi-Raman and Davalos (1996) are presented an engineering approach including the 

transverse shear deformation, in the formulation of the mechanics of laminated beams (MLB) of 

rectangular beam. 

The material properties in FG plates vary along the thickness direction, in practice and due to 

the use of constant SCF errors in the results occur; Timoshenko showed that the SCF depends on 

the Poisson’s ratio (Timoshenko 1922). Recently, many studies have been done on the formulation 

of SCF in FGM plates. Efraim and Eisenberger (2007) considered the volume fractions and 

Poisson’s ratio of the two gradients. Nguyen et al. (2006) used FSDT to model power-law function 

gradient material (P-FGM) structures by presenting this factor in terms of ceramic-to-metal 

Young’s modulus ratio, and gradient indices to examine the static analysis. 

Some researchers have tried to improve these factors to get results that are more accurate for 

plate vibration. In general, the FSDT are used to determine the transverse shear strain through the 

thickness. The accuracy of FSDT is influenced by the accuracy of the SCF used in the theory to 

calculate the transverse shear forces. Most studies have focused on deriving SCFs for composite 

laminated beams and very little effort has been devoted to deriving SCFs for functionally graded 

beams (FGB). A formula is derived from an energy equivalence principle, and the integral 

equation is simplified into a convenient algebraic form, which reduces to the common expression 

for isotropic materials reported in the literature. In addition, the study of the effect of the on the 

static response of the plates can be found in the studies presented by Chi and Chung (2006) and 

Nguyen et al. (2006). 
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In order to understand the static and dynamic behavior of structures made of FGM, taking into 

account the effect of porosity, various interesting studies have been developed by Reddy (2002), 

Wattanasakulpong et al. (2014), Mouaici et al. (2016), Saidi et al. (2019), Merdaci et al. (2019). 

On the other hand, various recent theoretical developments have been investigated the FGM 

porous structures. Chen et al. (2016) are studied the elastic buckling and bending response of a 

porous FG beam based on the Timoshenko beam theory. In addition, Chen et al. (2016) 

investigated the nonlinear free vibration of a porous sandwich core with an FG beam. The free 

vibration and flexural response of porous plates supported by different types of boundary 

constraints were analyzed by Rezaei and Saidi (2015, 2016, 2017). A quasi-3D shear deformation 

theory was used to examine the static response of porous FGM single-layered and sandwich plates 

by Zenkour (2018). The free vibration and bending analysis of Levy type porous FGM plates were 

investigated Demirhan and Taskin (2019). In a thin S-FGM plate based on the nonlinear CPT 

model, Wang and Zu (2017) introduced two types of porosity distribution, using the Galerkin 

method in vibration analysis. Singh and Harsha (2020b) studied the effect of porosity and 

temperature on sandwich S-FGM plate. The research in the field of FGM plate with porosity effect 

and elastic foundation remains limited. Unlike the conventional FSDT and the higher-order shear 

deformation theories, Sadoun et al. (2014) proposed a new simple FSDT which contains only four 

unknowns. They concluded that the proposed theory is precise and simple to solve the static 

bending and free vibration behaviours of laminated composite plates and the analytical solutions 

of simplysupported antisymmetric cross-ply and angle-ply laminates are accurate compared with 

the exact three dimensional (3D) solutions. The determination of the transverse SCF poses a 

problem to compensate for the assumption that the shear strain is uniform throughout the depth of 

the cross-section. Meena et al. (2012) presented a general expression for evaluating these factors 

(SCF) for general FGM rectangular beams. The SCF of FG beams is not the same as that of 

homogeneous beams and it is a function of the ratio between the elastic moduli of the constituents 

and the material parameter 𝑝.  The SCF of sigmoid FGMs (S-FG) beams is slightly lower than that 

of power-law (P-FG) beams when the material parameter 𝑝 is less than unity (𝑝 < 1) and for the 

material parameter 𝑝 greater than unity (𝑝 > 1).  The SCF of the P-FG beam is lower than that of 

the S-FG beam, unlike the case where 𝑝 < 1. 

This paper aims to study the effect of porosity on the SCF of the FG porous beam using a new 

analytical model. Uneven porosity and logarithmic uneven distribution through the thickness of 

the FGPB are selected here for the analysis. Several parameters such as thickness ratios, volume 

fractions, and types of distribution are also investigated. 

 

 

2. Model and theoretical formulations 
 

2.1 Material gradient of FGP FGP beam 
 

We consider the FGP Beam (see Fig. 1) with the geometry parameter: thicknessℎ, length 𝐿, and 

width 𝑏 made from the mixture of ceramics and metals. The material properties are assumed that 

varying continuously from a top surface (𝑧 = ℎ 2⁄ ) to the bottom (𝑧 = −ℎ 2⁄ ) surface according to 

a power-law distribution (𝑘 ). The law of changing the mechanical properties 𝑃(𝑧) through 

thickness of FGP Beam can be expressed as follows (Houari et al. 2018, Shahsavari et al. 2018, 

Tran et al. 2021, Selmi 2021, Aalmitani et al. 2021) 
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Fig. 1 Model of functionally graded porous beam 

 

 

𝑃(𝑧) = 𝑃𝑚 + (𝑃𝑐 − 𝑃𝑚) (
1

2
+
𝑧

ℎ
)
𝑘

− 𝜒(𝑧)(𝑃𝑐 + 𝑃𝑚) (1) 

Where 𝑃 represents material properties such as Young’s modulus 𝐸, mass density 𝜌, Poisson’s 

ratio 𝜈  and thermal expansion coefficient 𝛼 . Subscripts 𝑐  and 𝑚  denote the ceramic and metal 

constituents, respectively. The volume fraction of ceramic and metal varying through thickness via 

the power-law distribution (𝑘), 𝜒 (𝑧) is the coefficient of the porosity distribution and let 𝜉 be the 

porosity coefficient. 

The relationship between 𝜒(𝑧)  and 𝜉  of each type of porosity, distribution is expressed as 

follows (Shahsavari et al. 2018, Tran et al. 2021): 

- Uneven porosity distribution (uneven) 

𝜒(𝑧) =
𝜉

2
(1 −

2|𝑧|

ℎ
) (2a) 

- Logarithmic-uneven porosity distribution (Log-uneven) 

𝜒(𝑧) = (1 −
2|𝑧|

ℎ
) log10 (

𝜉

2
+ 1) (2b) 

In the present work, we propose two modified models of the porosity distribution through the 

thickness of the FGP Beam, inspired by the two models proposed by (Shahsavari et al. 2018, Tran 

et al. 2021) in Eqs. (2a), (2b) as:  

- Uneven porosity distribution (uneven) 

𝜒(𝑧) =
𝜉

2
(1 −

2|𝑧|

ℎ
)

𝑝

 (3a) 

- Logarithmic-uneven porosity distribution (Log-uneven) 

𝜒(𝑧) = (1 −
2|𝑧|

ℎ
)

𝑝

log10 (
𝜉

2
+ 1) (3b) 

Where: 𝑝 is the porosity parameter.  

The two models proposed above have the advantage of giving several forms of porosity 

distribution through the thickness of the structure and this for any value of material parameter 𝑘. 

The law of changing the mechanical properties 𝑃(𝑧) through thickness of FG beam without 
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porosity can be easily obtained by setting 𝜉 = 0 in (3), that is 

𝑃(𝑧) = 𝑃𝑚 + (𝑃𝑐 − 𝑃𝑚) (
1

2
+
𝑧

ℎ
)
𝑘

 (4) 

 

2.2 Constitutive relations 
 

2.2.1 Basic assumptions 
The assumptions of the present theory are as follows: 

The displacements are small in comparison with the plate thickness and, therefore, strains involved 

are infinitesimal. The transverse normal stress 𝜎𝑧 is negligible in comparison with in-plane stresses 

𝜎𝑥 and 𝜎𝑦. This theory assumes constant transverse shear stress, and it needs a shear correction 

factor in order to have deformation energy due to the shear deformation effect equal to that 

obtained by the exact solution of the elasticity. 

 

2.2.2 Kinematics 
Based on the assumptions made in the preceding section, the displacement field can be 

obtained as follows 

𝑢(𝑥, 𝑦) = 𝑢0(𝑥, 𝑦) − 𝑧
𝜕𝛷

𝜕𝑥
 (5a) 

𝑣(𝑥, 𝑦) = 𝑣0(𝑥, 𝑦) − 𝑧
𝜕𝛷

𝜕𝑦
 (5b) 

𝑤(𝑥, 𝑦, 𝑧) = 𝑤0(𝑥, 𝑦)
 

(5c) 

Where, 𝑢 ,𝑣 , 𝑤  are displacements in the 𝑧  directions, 𝑢0  and 𝑣0   are the mid plane surface 

displacements, 𝛷 is function of coordinates 𝑥, 𝑦. 

The strains associated with the displacements in Eq. (5) are 

{

𝜀𝑥
𝜀𝑦
𝛾𝑥𝑦

} = {

𝜀𝑥
0

𝜀𝑦
0

𝛾𝑥𝑦
0

} + 𝑧 {

𝑘𝑥
𝑘𝑦
𝑘𝑥𝑦

},  {
𝛾𝑦𝑧
𝛾𝑥𝑧
} = {

𝛾𝑦𝑧
𝑠

𝛾𝑥𝑧
𝑠 } (6) 

{

𝜀𝑥
0

𝜀𝑦
0

𝛾𝑥𝑦
0

} =

{
 
 

 
 

𝜕𝑢0

𝜕𝑥
𝜕𝑣0

𝜕𝑥
𝜕𝑢0

𝜕𝑦
+
𝜕𝑣0

𝜕𝑥}
 
 

 
 

,  {

𝑘𝑥
𝑘𝑦
𝑘𝑥𝑦

} =

{
 
 

 
 −

𝜕2𝛷

𝜕𝑥2

−
𝜕2𝛷

𝜕𝑦2

−2
𝜕2𝛷

𝜕𝑥𝜕𝑦}
 
 

 
 

,  {
𝛾𝑦𝑧
𝑠

𝛾𝑥𝑧
𝑠 } = {

𝜕𝑤

𝜕𝑦
−
𝜕𝛷

𝜕𝑦

𝜕𝑤

𝜕𝑥
−
𝜕𝛷

𝜕𝑥

} (7) 

Where 

𝜀𝑥 =
𝜕𝑢0
𝜕𝑥

− 𝑧 
𝜕2𝛷

𝜕𝑥2
, 𝜀𝑦 =

𝜕𝑣0
𝜕𝑥

− 𝑧 
𝜕2𝛷

𝜕𝑦2
, 𝜀𝑥𝑦 =

𝜕 𝑢0
𝜕𝑦

+
𝜕 𝑣0
𝜕𝑥

− 2 𝑧 
𝜕2𝛷

𝜕𝑥𝜕𝑦
 (8a) 

𝜀𝑥 = 𝜀𝑥0 + 𝑧𝑘𝑥 yyy zk+= 0 𝜀𝑥𝑦 = 𝜀𝑥𝑦0 + 𝑧𝑘𝑥𝑦
 

(8b) 

The stiffness coefficients of a functionally graded beam are derived by appropriately modifying 
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the stiffness coefficients of a functionally graded plate (FGP Plate), and then, the linear 

constitutive relations for a FGP Beam, including transverse shear deformation (FSDT), are 

obtained. The in-plane stress-strain relation can be expressed as follows 

{

𝜎𝑥
𝜎𝑦
𝜏𝑥𝑦

} = [

𝑄11 𝑄12 0
𝑄12 𝑄22 0
0 0 𝑄66

] {

𝜀𝑥
𝜀𝑦
𝛾𝑥𝑦

} and  {
𝜏𝑦𝑧
𝜏𝑧𝑥
} = [

𝑄44 0
0 𝑄55

] {
𝛾𝑦𝑧
𝛾𝑧𝑥
} (9) 

where (𝜎𝑥 , 𝜎𝑦 , 𝜏𝑥𝑦 , 𝜏𝑦𝑧 , 𝜏𝑥𝑧 ) and (𝜀𝑥 , 𝜀𝑦 , 𝛾𝑥𝑦 , 𝛾𝑦𝑧 , 𝛾𝑥𝑧 ) are the stress and strain components, 

respectively.  

𝑄𝑖𝑗 are the material constants in the material axes of the layer given as 

𝑄11 = 𝑄22 =
𝐸(𝑧)

1 − 𝜈2
 (10a) 

𝑄12 =
𝜈𝐸(𝑧)

1 − 𝜈2 

(10b) 

𝑄66 =
𝐸(𝑧)

2(1 + 𝜈) 
(10c) 

First, we obtain expressions for the axial and bending stress resultants. Using a classical plate 

theory approach, the integration of stresses, given in Eq. (9), through the thickness of FG plate 

results in the following relation between the stress resultants and the strains and curvatures 

{
𝑁
𝑀
} = [

𝐴 𝐵
𝐵 𝐷

] {
𝜀
𝑘
} (11) 

Where 

𝑁 = {𝑁𝑥 , 𝑁𝑦, 𝑁𝑥𝑦}
𝑡
,   𝑀 = {𝑀𝑥 , 𝑀𝑦 , 𝑀𝑥𝑦}

𝑡
 (12a) 

𝜀 = {𝜀𝑥
0, 𝜀𝑦

0, 𝛾𝑥𝑦
0 }

𝑡
,   𝑘 = {𝑘𝑥 , 𝑘𝑦, 𝑘𝑥𝑦}

𝑡

 

(12b) 

and the expressions for the stiffness sub-matrices are expressed as follows: 

(𝐴11, 𝐵11, 𝐷11) = ∫ 𝑄11
ℎ/2

−ℎ/2
(1, 𝑧, 𝑧2)𝑑𝑧, (𝐴12, 𝐵12, 𝐷12) = ∫ 𝑄12

ℎ/2

−ℎ/2
(1, 𝑧, 𝑧2)𝑑𝑧,          

(𝐴66, 𝐵66, 𝐷66) = ∫ 𝑄66
ℎ/2

−ℎ/2
(1, 𝑧, 𝑧2)𝑑𝑧 

(13) 

Inversion of the full stiffness matrix in Eq. (11) results in 

{
[𝜀]

[𝑘]
} = [

[𝛼] [𝛽]

[𝛽] [𝛿]
] {
[𝑁]

[𝑀]
} (14) 

In conformance with the assumptions considered by Whitney et al. for obtaining FG beam 

stiffness coefficients from the equations of the stress resultants of FG beams, the following stress-

resultants 𝑁𝑦  , 𝑁𝑥𝑦  , 𝑀𝑦  , and 𝑀𝑥𝑦  are equated to zero in Eq. (14) to obtain the compliance 

coefficients of an FG beam (Whitney et al. 1974) as 

{
𝜀𝑥0
𝑘𝑥
} = [

𝐴 𝐵
𝐵 𝐷

] {
𝑁𝑥
𝑀𝑥
} (15) 

Inverting Eq. (15) leads to the following expression for the stress-resultants of an FG beam 
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{
𝑁𝑥
𝑀𝑥
} = [

𝛼11 𝛽11
𝛽11 𝛿11

] {
𝜀𝑥0
𝑘𝑥
}

 where 

𝐴 =
𝛿11

(𝛼11𝛿11 − 𝛽11
2 )

 

𝐵 =
𝛽11

(𝛼11𝛿11 − 𝛽11
2 )

 
𝐷 =

𝛼11

(𝛼11𝛿11 − 𝛽11
2 )

 

(16) 

Next, the transverse shear stress resultant is derived by considering the constitutive relations for 

transverse shear stresses in an FG plate 

{
𝜏𝑦𝑧
𝜏𝑧𝑥
} = [

𝑄44 0
0 𝑄55

] {
𝛾𝑦𝑧
𝛾𝑧𝑥
} (17) 

Where 

𝑄44 = 𝑄55 =
𝐸(𝑧)

2(1 + 𝜈)
 (18) 

The integration of the transverse shear stresses (τzx and τyz in Eq. (17)) through the thickness 

of FG plate yields the following relation 

{
𝑄𝑥
𝑄𝑦
} = [

𝑘1
2𝐴44 0

0 𝑘2
2𝐴55

] {
𝛾𝑦𝑧
𝛾𝑧𝑥
}

 

(19a) 

where 𝑘1
2 and 𝑘2

2 are the plate shear correction factors and 

(𝐴44, 𝐴55) = ∫
ℎ/2

−ℎ/2

(𝑄44, 𝑄55)𝑑𝑧 (19b) 

Similar to the assumption considered for the stress resultants due to the in-plane stress 

components, let 𝑄𝑦 = 0 , and by inversion of the stiffness matrix of Eq. (19), we obtain the 

constitutive relation for the transverse shear stress resultant of FG beam as 

𝛾𝑥𝑧 =
1

𝑘𝐹
𝑄𝑥 (20) 

Where 𝑘 = 𝑘2
2 is the shear correction factor and 𝐹 = 𝐴55. 

Thus, from Eqs. (16) and (20) and consistent with FSDT, the constitutive relations of FG beam 

are expressed as 

{

𝑁𝑥
𝑀𝑥

𝑄𝑥

} = [
𝐴 𝐵 0
𝐵 𝐷 0
0 0 𝑘𝐹

] {

𝜀𝑥0
𝑘𝑥
𝛾𝑥𝑧

} (21) 

 

2.3 Derivation of the shear correction factor  
 

In this section, we extend the theory presented by Bert and Madabhusi-Raman and Davalos to 

functionally graded beams (Bert 1973, Madabhusi-Raman and Davalos 1996). Using two-

dimensional equilibrium equations, an expression is derived for the variation of the transverse 
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shear stress through the thickness of the FG beam. The shear correction factor is obtained by the 

following procedure: the shear strain energy, due to transverse shear stress distribution obtained 

from equilibrium equations, is computed and subsequently equated to the shear strain energy 

obtained from the constitutive relations for the transverse shear stress resultants of the FG beam 

given by Eq. (20), which assumes constant transverse shear strain through the thickness of the 

beam. First, an expression for the transverse shear stress 𝜏𝑥𝑧 is obtained. The equilibrium equation 

for the stresses acting in the 𝑥 − 𝑧 plane in the absence of body forces is 

𝜎𝑥,𝑥 + 𝜏𝑥𝑧,𝑧 = 0 (22) 

Integrating Eq. (22) through the thickness with respect to the z coordinate, yields 

𝜏𝑥𝑧 = −∫ 𝜎𝑥,𝑥

𝑧

−ℎ/2

𝑑𝑧 (23) 

Substituting 𝜎𝑥 given in Eq. (9) into Eq. (23), we get 

𝜏𝑥𝑧 = −∫
𝑧

−ℎ/2

[
(𝑄11𝜀𝑥0 + 𝑄12𝜀𝑦0 + 𝑄16𝛾𝑥𝑧0) +

𝑧(𝑄11𝜒𝑥 + 𝑄22𝜒𝑦 + 𝑄16𝜒𝑥𝑦)
]
,𝑥

𝑑𝑧 (24) 

The strains and curvatures in Eq. (24) are replaced by the expressions given in Eq. (14), and 

considering only the nonzero stress-resultants, Eq. (24) becomes 

𝜏𝑥𝑧 = −∫ (𝑁𝑥,𝑥(𝑄1𝑖

𝑧

−ℎ/2

𝛼1𝑖 + 𝑧𝑄1𝑖𝛽1𝑖) + 

𝑀𝑥,𝑥(𝑄1𝑖𝛽1𝑖 + 𝑧𝑄1𝑖𝛿1𝑖))𝑑𝑧, 𝑓𝑜𝑟 𝑖 = 1,2,6 

(25) 

Using the expressions 𝑁𝑥,𝑥 = 0 (the case where there is no distributed load in axial direction), 

𝑀𝑥,𝑥 = 𝑄𝑥 from the resultant equilibrium equations of static beam theory, we have 

𝜏𝑥𝑧 = −∫ (𝑄𝑥(𝑄1𝑖

𝑧

−ℎ/2

𝛽1𝑖 + 𝑧𝑄1𝑖𝛿1𝑖)𝑑𝑧, 𝑓𝑜𝑟 𝑖 = 1,2,6 (26) 

Eq. (26) is the expression for the variation of the transverse shear stress through the thickness. 

From the constitutive relation for transverse shear given in Eq. (17), the following expression is 

obtained for the shear strain energy per unit length 

𝑈̄ =
1

2
∫

𝜏𝑥𝑧
2

𝑄55

ℎ/2

−ℎ/2

𝑑𝑧 (27) 

Substituting 𝜏𝑥𝑧 from Eq. (26) in Eq. (27), the shear strain energy per unit length is expressed 

as 

𝑈 =
1

2
∫ 𝑄𝑥

2
[∫ (𝑄1𝑖
𝑧

−ℎ/2
𝛽1𝑖 + 𝑧𝑄1𝑖𝛿1𝑖)𝑑𝑧]

2

𝑄55

ℎ/2

−ℎ/2

𝑑𝑧, 

 
Where i=1,2,6 

(28) 

Similarly, the shear strain energy per unit length computed from the constitutive relation of Eq. 

(20), which assumes constant transverse shear strain, is 
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(a) Uneven porosity distribution (b) Logarithmic uneven porosity distribution 

Fig. 2 The Young’s modulus 𝐸(𝑧) with different porosity distributions, different values of power law index 𝑘 

and different values of porosity parameter𝑝 

 

 

𝑈 =
1

2

𝑄𝑥
2

𝑘 ⥂ 𝐴55
 (29) 

Equating Eqs. (28) and (29), the expression for the shear correction factor for P-FG beam is 

given by 

𝑘 =
1

𝐴55
[∫

[∫ (𝑄𝑥(𝑄1𝑖
𝑧

−ℎ/2
𝛽1𝑖 + 𝑧𝑄1𝑖𝛿1𝑖)𝑑𝑧]

2

𝑄55

ℎ/2

−ℎ/2

𝑑𝑧]

−1

, 

 

Where i=1,2,6 

(30) 

 

 

3. Numerical results 
 

A beam consisting of metal and ceramic substances of an FGM is considered as an example. 

Young’s modulus for metal (Aluminium) is 𝐸𝑏 = 70 GPa, and for ceramic (SiC) is 𝐸𝑡 = 380 GPa. 

Note that Poisson’s ratio is selected constant and equal to 0.3 for both of the constituents. For 𝜉 =
0.2, Fig. 2 shows that the variation of elastic Young’s modulus 𝐸(𝑧) through thickness in z-axis of 

functionally graded porous beams for type uneven of porosity distributions (Fig. 2(a)) and the 

Logarithmic-uneven type (Fig. 2(b)) with different values of power law index k and different 

values of porosity parameter 𝑝. It is seen from the above figures that the variation of Young’s 

modulus is continuous for values of the porosity parameter 𝑝 < 1 ; which gives the same 

appearance of the graph of the case without porosity (Fig. 3), but the graphs are non-continuous 

and move towards larger values with an increasing parameter value of porosity, and this for the 

two forms of porosity distribution. It is clear that Young’s modulus decreases with increasing the 

power law index 𝑝 and increase with increasing the porosity parameter𝑝. Thus, it can be concluded 

that the presence of pores has a considerable effect on Young’s modulus and the more the porosity 

parameter 𝑝 values increase the more the Young’s modulus values increase and this for any value 

of power law index 𝑘. 

E (z) E (z) 
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Fig. 4 Comparaison of Variation of the shear correction factor for the FG beam without porosity 

and two types of porosity (uneven, Log-unven) for 𝑝 = 0.5 

 

 

Fig. 5 Tthe variation of Young’s modulus with power -law distribution 𝑘 without porosity 

 

 

3.1 Shear correction factor for FGP beams  
 

3.1.1 FG beams without porosity (𝜉 = 0.2) 
Table 1 presents values of shear correction factors for a FG beam without porosity calculated 

by Eq. (4) they are equal to the values given by Nguyen et al. (2008) and Menaa et al. (2012). The 

shear correction factors are equal to 5/6 as for a homogeneous beam for 𝑘 = 0 and  𝐸𝑡/𝐸𝑏 = 1 and 

approximately this usual value for 𝑘 = 1. The comparaison of Variation of the shear correction 

factor for the FG beam without porosity and two types of porosity (uneven, Log-unven) for 𝑘 =
0.5 and 𝑘 = 2 (Fig. 4 and Fig. 5) confirm the effect of porosity. 

 

3.1.2 Shear correction factor for  FGP beams related to couple (𝑘, 𝑛) 
3.1.2.1 Uneven porosity distribution (uneven) 
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Fig. 6 Variation of the shear correction factor according to 𝑛 = 𝐸𝑡/𝐸𝑏and the power law index 𝑘 

for the FG beam uneven 𝑝 = 0.5 and 𝜉 = 0.2 

 

 

For FGP beam with the uneven porosity distribution (uneven), Table 2, Fig. 6 and Fig. 7 give 

the values of the shear corrections factors SCF related to every couple (𝑘, 𝑛) with different values 

of porosity parameter 𝑝 calculated by Eq. (1) and Eq. (3a). In the case of 𝐸𝑡/𝐸𝑏 = 1, the values of 

the shear corrections factors SCF are close to each other whatever the changes of the variables 𝑝 

and 𝑘 and lower than 5/6 as for 𝜉 = 0 (Fig. 4 and Fig. 5).  

• For 𝑘 ≤ 1 we notice a slight variation in the values of SCF; 

• For 𝑘 > 1 SCF decreases as n increases; 

the decrease in the values of the CSF becomes significant from 𝑘 ≥ 3. 

 

3.1.2.2 Logarithmic uneven porosity distribution (log-uneven): 
In application of Eq. (1) and Eq. (3b) Table 3, the variation of the shear corrections factors 

SCF according to 𝑛  and 𝑘  with different values of porosity parameter 𝑝  (Fig. 8, Fig. 9) the  

Table 2 Shear correction factors for the FG beams, Uneven porosity distribution 𝜉 = 0.2 (uneven) according 

to 𝑛 = 𝐸𝑡/𝐸𝑏  
and the porosity parameter 𝑝 and the power law index 𝑘 

 New model uneven  𝜉 = 0.2 

𝑝 𝑘 
𝑛 = 𝐸𝑡/𝐸𝑏 

1 2 3 4 5 6 8 10 15 20 

0,5 

0 0,81190 0,81042 0,81996 0,82896 0,82145 0,82818 0,82078 0,82227 0,82242 0,82254 

1 0,81190 0,82335 0,82763 0,82988 0,83127 0,83221 0,83288 0,83339 0,83378 0,83409 

5 0,81190 0,80973 0,80795 0,80739 0,80752 0,80799 0,80860 0,80925 0,80988 0,81048 

10 0,81190 0,77637 0,74851 0,72769 0,71253 0,70179 0,69447 0,68983 0,68732 0,68649 

1 

0 0,80462 0,81273 0,81528 0,81653 0,81727 0,81776 0,81810 0,81837 0,81857 0,81873 

1 0,80462 0,81672 0,82128 0,82369 0,82518 0,82619 0,82691 0,82746 0,82789 0,82823 

5 0,80462 0,80256 0,80074 0,79999 0,79988 0,80010 0,80046 0,80089 0,80133 0,80176 

10 0,80462 0,76894 0,74150 0,72099 0,70579 0,69456 0,68632 0,68034 0,67611 0,67323 

10 

0 0,81008 0,81663 0,81870 0,81971 0,82031 0,82071 0,82099 0,82120 0,82136 0,82149 

1 0,81855 0,82801 0,83155 0,83339 0,83451 0,83525 0,83578 0,83617 0,83648 0,83672 

5 0,81855 0,81715 0,81591 0,81537 0,81523 0,81528 0,81543 0,81562 0,81581 0,81600 

10 0,81855 0,79028 0,76998 0,75561 0,74541 0,73813 0,73293 0,72922 0,72658 0,72474 
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Fig. 7 Variation of the shear correction factor according to 𝑛 = 𝐸𝑡/𝐸𝑏 and the power law index 𝑘 

for the FG beam uneven 𝑝 = 5
 
and 𝜉 = 0.2 

 

 

Fig. 8 Variation of the shear correction factor according to 𝑛 = 𝐸𝑡/𝐸𝑏 and the power law index 𝑘 

for the FG beam Log-uneven 𝑝 = 0.5 and 𝜉 = 0.2 

 

 

SCF increases with increasing n, whatever the value of 𝑝 or 𝑘. 

In the case of 𝐸𝑡/𝐸𝑏 = 1, the values of the shear corrections factors SCF are close to each other 

whatever the changes of the variables 𝑝 and 𝑘 and lower than 5/6 as for 𝜉 = 0 (Fig. 4 and Fig. 5).  

- For 𝑘 ≤ 1 notice a slight variation in the values of SCF    

- For 𝑘 > 1, SCF decreases as n increases. 

the decrease in the values of the SCF becomes significant from 𝑘 ≥ 3. 

 
3.1.3 Shear correction factor for FGP beams related to couple (𝑝, 𝑛) 
3.1.3.1 Uneven porosity distribution (uneven) 
Table 4 gives the values of the shear corrections factors SCF related to every couple (𝑝, 𝑛) 

calculated by Eq. (1) and Eq. (3a). Fig. 10 and Fig. 11 show that whatever the value of 𝑝 , a very 

slight variation of SCF Independent of the value of 𝑛  and the confirmation of the remarks 

mentioned above for the couple (𝑘, 𝑛). 
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Fig. 9 Variation of the shear correction factor according to 𝑛 = 𝐸𝑡/𝐸𝑏 and the power law index 𝑘 

for the FG beam Log-uneven 𝑝 = 5
 
and 𝜉 = 0.2 

 

 

3.1.3.2 Logarithmic-uneven porosity distribution (log-uneven): 
In application of Eq (1) and Eq (3b) Table 5, Fig. 12 and Fig. 13 show, the variation of the 

shear:  

- For 𝑝 < 1;  SCF decreases as n increases; 

- For 𝑝 ≥ 1we notice a slight variation in the values of SCF. 

 

3.2 Effect of type of porosity distribution by comparison of uneven and log-uneven of 
FGP beam on the shear correction 
 

Table 6 and Figs. 8, 9, 10 and 11 represent the variation of shear correction factor with different 

values of porosity parameter 𝑝 for the ratio of elastic modulus 𝐸𝑡/𝐸𝑏 = 4, it is observed from 

these theoretical results that: 

 

Fig. 10 Variation of the shear correction factor according to 𝑛 = 𝐸𝑡/𝐸𝑏  and the porosity 

parameter 𝑝 for the FG beam uneven 𝑘 = 0.5 and 𝜉 = 0.2 
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Fig. 11 Variation of the shear correction factor according to 𝑛 = 𝐸𝑡/𝐸𝑏  and the porosity 

parameter 𝑝 for the FG beam uneven 𝑘 = 2 and 𝜉 = 0.2 

 

 

 

Case when 𝑘 ≤ 1 

• For  𝑝 < 1
 
SCF decreases as 𝑛 increases;  

• For 𝑝 ≥ 1 , we notice a slight variation in the values of SCF; 

Table 5 and Figs. 14, 15 and16 represent the variation of shear correction factor with different 

values of porosity parameter P for the ratio of elastic modulus 𝐸𝑡/𝐸𝑏 = 4, it is observed from these 

theoretical results: 

whatever the type of porosity, the variation of SCF remains slight with values exceeding 0.80 for 

𝑘 ≤ 1and the curves of uneven and log-uneven are closer. 

For 𝑘 ≥ 1
 
the variation of the SCF of Log-Uneven porosity distribution has an increasing 

trend, rough 

Table 3 Shear correction factors for the FG beams, Log Uneven porosity distribution 𝜉 = 0.2 according to 

𝑛 = 𝐸𝑡/𝐸𝑏 and the power law index 𝑘 

 New model uneven  𝜉 = 0.2 

𝑝 𝑘 
𝑛 = 𝐸𝑡/𝐸𝑏 

1 2 3 4 5 6 8 10 15 20 

0,5 

0 0,78247 0,80066 0,80570 0,80806 0,80943 0,81032 0,81094 0,81141 0,81177 0,81205 

1 0,78247 0,80198 0,80847 0,81163 0,81348 0,81468 0,81552 0,81614 0,81661 0,81697 

5 0,78247 0,78619 0,78613 0,78574 0,78544 0,78525 0,78513 0,78506 0,78501 0,78498 

10 0,78247 0,74598 0,71875 0,69824 0,68267 0,67072 0,66145 0,65420 0,64848 0,64396 

1 

0 0,82259 0,82541 0,82633 0,82678 0,82706 0,82724 0,82737 0,82746 0,82754 0,82760 

1 0,82259 0,83130 0,83498 0,83674 0,83782 0,83854 0,83905 0,83944 0,83973 0,83997 

5 0,82259 0,82103 0,81968 0,81914 0,81906 0,81920 0,81945 0,81973 0,82002 0,82029 

10 0,82259 0,79459 0,77399 0,75919 0,74865 0,74115 0,73585 0,73217 0,72967 0,72806 

10 

0 0,83056 0,83130 0,83154 0,83165 0,83173 0,83177 0,83181 0,83183 0,83185 0,83187 

1 0,83056 0,83824 0,84110 0,84259 0,84348 0,84408 0,84450 0,84481 0,84505 0,84524 

5 0,83056 0,82916 0,82800 0,82753 0,82744 0,82754 0,82771 0,82792 0,82813 0,82832 

10 0,83056 0,80576 0,78797 0,77547 0,76672 0,76059 0,75631 0,75336 0,75136 0,75007 
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Table 4 Shear correction factors for the FG beams, Uneven porosity distribution 𝜉 = 0.2, according to 𝑛 =
𝐸𝑡/𝐸𝑏 and 𝑝 

 New model uneven  𝜉 = 0.2 

𝑘 𝑝 
𝑛 = 𝐸𝑡/𝐸𝑏 

1 2 3 4 5 6 8 10 15 20 

0,5 

0,5 0,81190 0,82335 0,82763 0,82988 0,83127 0,83221 0,83288 0,83339 0,83378 0,83409 

1 0,80462 0,81672 0,82128 0,82369 0,82518 0,82619 0,82691 0,82746 0,82789 0,82823 

5 0,81008 0,82078 0,82481 0,82691 0,82819 0,82905 0,82967 0,83012 0,83048 0,83076 

10 0,81855 0,82801 0,83155 0,83339 0,83451 0,83525 0,83578 0,83617 0,83648 0,83672 

0,2 

0,5 0,81190 0,82404 0,82812 0,83015 0,83137 0,83217 0,83275 0,83318 0,83351 0,83378 

1 0,80462 0,81807 0,82265 0,82500 0,82633 0,82725 0,82790 0,82840 0,82878 0,82908 

5 0,81008 0,82171 0,82572 0,82775 0,82896 0,82977 0,83035 0,83079 0,83112 0,83139 

10 0,81855 0,82824 0,83157 0,83325 0,83426 0,83494 0,83542 0,83578 0,83606 0,83628 

1 

0,5 0,81190 0,80973 0,80795 0,80739 0,80752 0,80799 0,80860 0,80925 0,80988 0,81048 

1 0,80462 0,80256 0,80074 0,79999 0,79988 0,80010 0,80046 0,80089 0,80133 0,80176 

5 0,81008 0,80856 0,80720 0,80658 0,80640 0,80645 0,80660 0,80680 0,80701 0,80721 

10 0,81855 0,81715 0,81591 0,81537 0,81523 0,81528 0,81543 0,81562 0,81581 0,81600 

2 

0,5 0,81190 0,77637 0,74851 0,72769 0,71253 0,70179 0,69447 0,68983 0,68732 0,68649 

1 0,80462 0,76894 0,74150 0,72099 0,70579 0,69456 0,68632 0,68034 0,67611 0,67323 

5 0,81008 0,77912 0,75668 0,74062 0,72909 0,72075 0,71469 0,71029 0,70711 0,70483 

10 0,81855 0,79028 0,76998 0,75561 0,74541 0,73813 0,73293 0,72922 0,72658 0,72474 

 

 

For  𝑝 < 1  and slow for 𝑝 ≥ 1. 

we note for the variation of the SCF of Uneven porosity distribution a decreasing trend for 𝑝 < 1 

and increasing for 𝑝 ≥ 1. 

 

 

4. Conclusions  
 

New theoretical formulas for the porosity distribution uneven porosity and logarithmic uneven  

 

Fig. 12 Variation of the shear correction factor according to 𝑛 = 𝐸𝑡/𝐸𝑏  and the porosity 

parameter 𝑝 for the FG beam Log-uneven 𝑘 = 0.5 and 𝜉 = 0.2 
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Fig. 13 Variation of the shear correction factor according to 𝑛 = 𝐸𝑡/𝐸𝑏  and the porosity 

parameter 𝑝 for the FG beam Log-uneven 𝑘 = 2 and 𝜉 = 0.2 

 

 

Fig. 14 Effect of the type of porosity distribution uneven and Log-uneven of FGP beam on shear 

correction for 𝐸𝑡/𝐸𝑏 = 4 and 𝜉 = 0.2 

 

 

Fig. 15 Effect of the type of porosity distribution uneven and Log-uneven of FGP beam on shear 

correction for 𝐸𝑡/𝐸𝑏 = 4, 𝑘 = 0.5 and 𝜉 = 0.2 

 

215



 

 

 

 

 

 

Ben Abdallah Medjdoubi et al. 

 

Fig. 16 Effect of the type of porosity distribution uneven and Log-uneven of FGP beam on shear 

correction for 𝐸𝑡/𝐸𝑏 = 4, 𝑘 = 5 and 𝜉 = 0.2 

 

 

 

are developed by using the reduced number of unknowns of the theory of FSDT, the energy 

equivalence principle and equation for the shear correction factor; some conclusions from 

numerical investigations are given as follows:  

• The presence of pores has a considerable effect on Young’s modulus for any value of power 

law index k.  

• The law of a changing the mechanical properties 𝑝 = (𝑘) through the thickness of FG beam 

without porosity is valeted. 

Table 5 Shear correction factors for the FG beams, log Uneven porosity distribution 𝜉 = 0.2, according to 

𝑛 = 𝐸𝑡/𝐸𝑏 and 𝑝 

 New model uneven  𝜉 = 0.2 

𝑘 𝑝 
𝑛 = 𝐸𝑡/𝐸𝑏 

1 2 3 4 5 6 8 10 15 20 

0,5 

0,5 0,78247 0,80198 0,80847 0,81163 0,81348 0,81468 0,81552 0,81614 0,81661 0,81697 

1 0,82259 0,83130 0,83498 0,83674 0,83782 0,83854 0,83905 0,83944 0,83973 0,83997 

5 0,82886 0,83676 0,83973 0,84128 0,84222 0,84285 0,84330 0,84363 0,84388 0,84408 

10 0,83056 0,83824 0,84110 0,84259 0,84348 0,84408 0,84450 0,84481 0,84505 0,84524 

0,2 

0,5 0,78247 0,80465 0,81156 0,81491 0,81689 0,81819 0,81911 0,81980 0,82033 0,82076 

1 0,82259 0,83139 0,83442 0,83595 0,83686 0,83747 0,83791 0,83824 0,83849 0,83869 

5 0,82886 0,83613 0,83865 0,83991 0,84068 0,84118 0,84154 0,84181 0,84202 0,84219 

10 0,83056 0,83744 0,83982 0,84101 0,84173 0,84221 0,84255 0,84280 0,84300 0,84316 

1 

0,5 0,78247 0,78619 0,78613 0,78574 0,78544 0,78525 0,78513 0,78506 0,78501 0,78498 

1 0,82259 0,82103 0,81968 0,81914 0,81906 0,81920 0,81945 0,81973 0,82002 0,82029 

5 0,82886 0,82730 0,82609 0,82561 0,82554 0,82566 0,82586 0,82609 0,82632 0,82655 

10 0,83056 0,82916 0,82800 0,82753 0,82744 0,82754 0,82771 0,82792 0,82813 0,82832 

2 

0,5 0,78247 0,74598 0,71875 0,69824 0,68267 0,67072 0,66145 0,65420 0,64848 0,64396 

1 0,82259 0,79459 0,77399 0,75919 0,74865 0,74115 0,73585 0,73217 0,72967 0,72806 

5 0,82886 0,80327 0,78483 0,77184 0,76272 0,75633 0,75184 0,74874 0,74664 0,74527 

10 0,83056 0,80576 0,78797 0,77547 0,76672 0,76059 0,75631 0,75336 0,75136 0,75007 
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Table 6 Shear correction factors for the FG beams without porosity 

𝑝 
𝑘 = 0.5 𝑘 = 5 

Uneven Log uneven Uneven Log uneven 

0,5 0,82988 0,81163 0,60924 0,41217 

0,6 0,82810 0,82292 0,60726 0,58217 

0,7 0,82663 0,82922 0,60597 0,63432 

0,8 0,82544 0,83295 0,60521 0,65866 

1 0,82369 0,83674 0,60486 0,67977 

2 0,82146 0,83993 0,61283 0,69684 

5 0,82691 0,84128 0,64320 0,70412 

7 0,83011 0,84193 0,65663 0,70680 

8 0,83137 0,84219 0,66182 0,70780 

10 0,83333 0,84259 0,67004 0,70934 

 

 

• For 𝑘 = 0 and 𝐸𝑡/𝐸𝑏 = 1, the shear correction  

factors are equal to 5/6 and substantially of the same value for 𝑘 = 1; Which differs from the 

case where we consider the porosity (𝜉 ≠ 0).  
• For both cases, uneven (UNEVEN) and Logarithmic uneven (LOG-UNEVEN) porosity 

distribution, with increasing n, the values of the shear correction factors SCF related to every 

couple (𝑝, 𝑛) increase for the power law index 𝑘 < 1, and decrease for 𝑘 ≥ 1. 

• For 𝐸𝑡/𝐸𝑏 = 1, the values of the shear correction factors SCF are close to each other and 

lower than 5/6 for 𝑝 = 0
 
with the difference in the log- uneven porosity distribution (log-

uneven), the values are dependent on the variables 𝑝 and independent of the variables 𝑘 which 

once again confirms the effect of porosity. The present analytical solution based on FSDT for 

porous FGM beam can be used as a reference for future studies.  

Finally, the formulation lends itself particularly well to study several problems related to the 

bending, vibration and dynamic behavior of advanced composite macro/nanostructures subjected 

to moving loads (Esen 2013, 2015, Esen et al. 2018, Esen 2019, 2020, Esen et al. 2020, Özarpa 

and Esen 2020, Gao et al. 2020, Qin et al. 2019, Qin et al. 2020). And for study the other modified 

continuum theories such as nonlocal strain gradient, modified couple stress, surface energy 

(Abdelrahman et al. 2021a, b, Esen et al. 2021, Liu et al. 2021a, Liu et al. 2022b). 
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