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Abstract.  A theoretical method is developed to analyze the free vibration of an elastic annular plate in contact with 
an ideal liquid. The displacement potential functions of the contained liquid are expressed as a combination of the 
Bessel functions that satisfy the Laplace equation and the liquid boundary conditions. The compatibility condition 
along the interface between the annular plate and the contained liquid is taken into account to consider the fluid-
structure coupling. The dynamic displacement of the wet annular plate is assumed to be a combination of dry 
eigenfunctions, allowing for prediction of the natural frequencies using the Rayleigh-Ritz method. The study 
investigates the effect of radial liquid boundary conditions on the natural frequencies of the wet annular plate, 
considering four types of liquid bounding: outer container bounded, outer and inner bounded, inner bounded, and 
radially unbounded. The proposed theoretical method is validated by comparing the predicted wet natural frequencies 
with those obtained from finite element analysis, showing excellent accuracy. The results indicate that the radial liquid 
bounding effect on the natural frequencies is negligible for the axisymmetric vibrational mode, but relatively significant 
for the mode with one nodal diameter (n = 1) and no nodal circle (m' = 0). Furthermore, the study reveals that the wet 
natural frequencies are the largest for the plate with an inner bounded cylinder among the radial liquid boundary cases, 
regardless of the vibration mode. 
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1. Introduction 
 

The effect of liquid inertia on free vibration of structures coupled with a liquid are commonly 

characterized by the added mass or hydrodynamic mass, as noted by Chen et al. (2021), Lin et al. 
(2022), Wang et al. (2019), Zhang et al. (2022). The presence of liquid tends to reduce the natural 
frequencies of the liquid-coupled system. Annular type plates are widely used in engineering, and 
their dynamics in contact with a liquid have been investigated through analytical and experimental 
studies. In particular, the dynamics of annular plates in contact with a liquid have been investigated 
both analytically and experimentally. For instance, the bottom plates of a small nuclear reactor 
consist of multiple annular plates submerged in coolant, which are designed to mitigate radiation 
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from the core to the reactor pressure vessel outside. The presence of coolant between the annular 

plates can be radially bounded or not, and it is important to investigate the effect of coolant bounding 

on the dynamic characteristics of the bottom plates. 
As a result, numerous studies on the free vibration of annular plates or circular plates in contact 

with a liquid have been published. Amabili (1996) theoretically studied the free vibration of annular 
plates coupled with an ideal liquid with a finite depth using the Rayleigh-Ritz method with assumed 
vibrational modes. In the paper, the liquid domain was assumed to be unbounded in the radial 
direction, but the top of the liquid had either a free surface or was bounded by a rigid cover. Amabili 
et al. (1996) suggested an analytical method to obtain wet natural frequencies of liquid-contacting 
annular plates fixed along an infinite rigid wall using the Hankel transform. Bauer and Komatsu 
(2000) studied the hydroelastic vibration of a liquid-contacting flexible annular plate supported by 
two rigid cylindrical containers. A theory on the natural frequencies of free-edge annular plates 
(Kwak and Amabili 1999, Liang et al. 1999) and circular plates (Kwak and Han 2000) resting on a 
free surface or completely submerged was developed employing the Hankel transform. Modal tests 
were also carried out for free-edge annular plates to determine the non-dimensionalized added 
virtual mass incremental (NAVMI) factors. Jeong et al. (2005) developed an analytical method for 
free vibration of a circular plate submerged in a bounded compressible liquid using the Rayleigh-
Ritz method based on the Fourier-Bessel series expansion, and found that the liquid compressibility 
and off-center distance of the plate in the liquid storage cylindrical tank significantly affect the wet 
natural frequencies. Jeong (2006) presented a theoretical study on the hydroelastic vibration of two 
annular plates coupled with a bounded liquid using the finite Hankel transform. Kim and Lee (2005) 
analytically investigated the structural and sloshing modes of an elastic annular plate fixed on a 
liquid-filled rigid cylindrical storage tank, taking into account the free surface effect of the liquid in 
the theory. Askari et al. (2013) developed a theoretical method to investigate free vibrations of a 
circular plate immersed in a liquid, where the coupled governing equations of both the hydroelastic 
vibration of the plate and liquid sloshing were simultaneously solved by a semi-analytical procedure. 
The proposed approach was verified by both modal tests and finite element analyses for circular 
steel plates submerged in a container filled with water. Escaler et al. (2018) performed experimental 
and numerical analyses to determine the effects of water loading on the axisymmetric modes of 
vibration of a fully submerged circular plate. Recently, Askari et al. (2020) theoretically studied the 
dynamics of an eccentric annular plate in contact with a fluid, and Hosseini (2017) suggested a 
suspended submerged annular plate as a sloshing reduction tool in oil storage tanks. In the above 
studies on annular plates or circular plates, it was possible to obtain a solution using integral 
transformations such as the Hankel transform with the Rayleigh-Ritz method. 

However, the major concern in previous studies was the effect of the liquid depth on the natural 

frequencies of the liquid-contacting plates, and investigation on the effect of the radial liquid 

boundary condition on free vibration of circular or annular plates was rare. Therefore, this study 

develops theoretical formulations for a flexible annular plate in contact with an ideal liquid with 

various radial liquid boundary conditions, and investigates the effect of the radial constraints of the 

liquid on the wet natural frequencies of the liquid-contacting annular plate. The theoretical approach 

for several radial liquid boundaries is verified using finite element analyses. 

 

 

2. Theoretical formulation 
 

2.1 Description of annular plate coupled with liquid 
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Fig. 1 Mathematical model of an annular plate coupled with a liquid 

 

 

Theoretical models for a flexible annular plate in contact with an ideal liquid are illustrated in 

Fig. 1. Four cases of the radial liquid boundary condition are taken into consideration in the analysis: 

Case A shows that the contained liquid is radially bounded by the outer rigid container only; Case B 

illustrates that the contained liquid is radially bounded by both the inner rigid cylinder and outer 

rigid container; Case C demonstrates that the liquid is radially bounded by the inner rigid cylinder 

only, but it is radially unbounded along the outer liquid edge; Case D describes that the liquid is 

totally unbounded in the radial direction. It is assumed that the homogeneous elastic annular plate 

with the thickness h is clamped along both the inner and outer edges with the inner radius a and 

outer radius R. The cylindrical inner rigid cylinder, the outer container, and the outer liquid edge 

have the radius a, R, and H, respectively, as shown in Fig. 1. The radially unbounded cases such as 

Cases C and D can be simulated by applying a significantly large radius of the outer edge with zero 

liquid displacement potential. The contained liquid with a depth L is bounded axially by a rigid 

bottom. 

 

2.2 Equation of motion for dry annular plate 
 

Assuming small deformations, the partial differential equation of motion for the transverse 

displacement, w, of the annular plate is given by Eq. (1) in the polar coordinate system ( , )r   (Jeong 

et al. 2005, Kwak and Amabili 1999). 

4 2 2( , , ) / ( , , )D w r t w t p r t   +   =                                                (1) 
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where, ( , , )p r t  is the oscillating hydrodynamic pressure exerted on the plate, t time, and 𝜌 the mass 

density of the annular plate per unit area. The oscillating hydrodyanmic pressure on the plate in the 

dry condition is definitlely zero. The flexural rigidity of the plate in Eq. (1) is defined as 
3 2/12 (1 )D Eh = − , where the modulus of elasticity and the Poisson’s ratio of the plate are indicated 

by E and  , respectively. The transverse dynamic displacement of the annular plate w, regardless 

of the liquid presence, is written as Eq. (2). 

1

( , , ) ( , ) exp (i )
M

nm m

m

w r t q W r t  
=

=                                               (2) 

where i 1= − , and   is the natural frequency of the annular plate. Each mode shape of the annular 

plate can be expanded using a finite number of displacement modal functions, denoted by ( , )mW r  , 

and the unknown coefficient, nmq  , for dynamic deformation of the flexible annular plate. The 

function ( , )mW r   in Eq. (2) is assumed to be the m-th eigen-function of the dry annular plate which 

satisfies the boundary condition along both the edges for a fixed wave number n. The wave number 

n also indicates the number of nodal diameters in the vibration mode (Jeong 2006). 

( , ) ( ) cos ( )m nmW r W r n =                                                       (3) 

1 2 3( ) J ( ) Y ( ) I ( ) K ( )nm n nm nm n nm nm n nm nm n nmW r r C r C r C r   = + + +                (4)
 

in which Jn  and Yn  are the Bessel functions of the first and second kinds, and In  and Kn  are the 

the modified Bessel functions of the first and second kinds, respectively. The frequency parameter 

is denoted by mn  in Eq. (4). Furthermore, m of Eq. (4) represents the number of expanding terms 

for the radial modal function. The unknown coefficients, 
nmjC  (j =1, 2, 3) in Eq. (4) are determined 

by the boundary conditions along the inner and outer edges of the annular plate. Before determining 

the natural frequencies of the liquid-structure coupled system, the clamped boundary conditions 

must be satisfied in conjunction with the plate displacement and slope, that is, 0nmW =   and 

/ 0nmdW dr =  at r=R and r=a. Therefore, the frequency parameter for the dry clamped annular plate 

can be obtained by Eq. (5). 

J ( ) Y ( ) I ( ) K ( )

J ( ) Y ( ) I ( ) K ( )
0

J '( ) Y '( ) I '( ) K '( )

J '( ) Y '( ) I '( ) K '( )

n nm n nm n nm n nm

n nm n nm n nm n nm

n nm n nm n nm n nm

n nm n nm n nm n nm

a a a a

R R R R

a a a a

R R R R

   

   

   

   

=                                 (5) 

where, the prime (’ ) indicates the derivative of the Bessel functions with respect to r. For the 

clamped annular plate along the inner and outer edges, the modal coefficients 
nmjC  (j =1, 2, 3) in 

Eq. (4) can be derived as listed in Appendix (Jeong 2006). The natural frequencies of the clamped 

dry annular plate, a  are obtained using Eqs. (5) and (6). 

2 /a nm D  =                                                                 (6) 

 

2.3 Liquid motion 
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2.3.1 Displacement potential function of liquid 
The motion of the liquid in contact with the annular plate can be described using the displacement 

potential function that satisfies the Laplace equation in the cylindrical coordinates under the 

assumption of an ideal liquid. 

2 ( , , , ) 0r x t  =                                                           (7) 

The displacement potential function of the contained liquid,   can be separated into two spatial 

displacement potential functions, ( )ns r  and ( )ns x  with the harmonic time function (Kwak and 

Amabili 1999). 

1

( , , , ) ( ) ( ) cos ( ) exp (i )ns ns

s

r x t r x n t     


=

=                                     (8) 

The general solution of Eq. (7) for a fixed circumferential wave number, n is given by the 

combination in multiplication of the radial and axial displacement potential functions as delineated 

in Eq. (8). The radial and axial displacement potential functions of Eq. (8) can be expressed by the 

Bessel and hyperbolic sinusoidal functions, respectively. 

1 2( ) J ( ) Y ( )ns ns n ns ns n nsr A r A r  = +                                        (9) 

( ) sinh ( ) cosh ( )ns ns ns nsx x B x  = +                                       (10) 

The liquid boundary condition at the impermeable rigid bottom wall satisfies Eq. (11), and it 

leads to Eq. (12). 

( ) / 0ns x L
d x dx

=
=                                                      (11) 

( ) sinh ( ) cosh ( ) / tanh ( )ns ns ns nsx x x L   = −                                    (12) 

 

2.3.2 Radial displacement potential function of Case A 
As the radial displacement potential function of the liquid for Case A should be finite at 0r = , 

the term of the second kind of Bessel function, Yn  in Eq. (9) vanishes. So, the displacement potential 

function of Eq. (9) is simplified to Eq. (13). 

1( ) J ( )ns ns n nsr A r =                                                     (13) 

In addition, the liquid boundary condition at the impermeable rigid container wall should satisfy 

the equation. 

( ) / 0ns r R
d r d r

=
=                                                       (14) 

Substituting Eq. (13) into Eq. (14) leads to the transcendental equation. 

J '( ) 0n ns R =                                                             (15) 

in which, the coefficients, ns  in Eq. (13) are determined by Eq. (15) for each nodal diameter, n. 

 

2.3.3 Radial displacement potential function of Case B 
The impermeable condition along both the rigid outer container and the inner cylinder for Case 

B implies 
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( ) / 0ns r R
d r d r

=
=                                                          (16) 

( ) / 0ns r a
d r d r

=
=                                                          (17) 

The radial displacement potential function for Case B that satisfies Eq. (16) is given as Eq. (18). 

 1( ) Y '( ) J ( ) J ' ( ) Y ( )ns ns n ns n ns n ns n nsr A R r R r    = −                               (18) 

By substituting Eq. (18) into Eq. (17), we can obtain the transcendental equation of Eq. (19). 

Therefore, the coefficients, ns  in Eq. (18) are obtained by Eq. (19) for Case B. 

J ' ( )Y '( ) J ' ( ) Y ' ( ) 0n ns n ns n ns n nsa R R a   − =                                      (19) 

 

2.3.4 Radial displacement potential function of Case C 
As the radial displacement potential function for Case C can be similarly determined by the 

boundary condition of Eq. (20) along the impermeable inner rigid cylindrical wall and the boundary 

condition of Eq. (21) along the liquid edge for H (>>R). 

( ) / 0ns r a
d r dr

=
=                                                            (20) 

( ) 0ns r H
r

=
=                                                                (21) 

The displacement potential function of the radial direction satisfying the Laplace equation of Eq. 

(7) and Eq. (21) is written as 

 1( ) Y ( ) J ( ) J ( )Y ( )ns ns n ns n ns n ns n nsr A H r H r    = −                                   (22) 

Therefore, the transcendental equation of Eq. (23) can be derived by substituting Eq. (22) into 

Eq. (20). 

Y ( ) J '( ) J ( ) Y '( ) 0n ns n ns n ns n nsH a H a   − =                                         (23) 

The coefficients, ns  of Eq. (22) for Case C are extracted using Eq. (23) for each circumferential 

wave number, n. 

 

2.3.5 Radial displacement potential function of Case D 
The liquid displacement potential function for Case D can be similarly determined by the 

boundary condition of Eq. (21) along the liquid edge. As the liquid displacement potential function 

for Case D must be finite at 0r = , the displacement potential function of Eq. (9) is reduced to Eq. 

(13) for H>>R. Inserting Eq. (13) into Eq. (21) gives 

J ( ) 0n ns H =                                                                  (24) 

where, the coefficients, ns , for Case D are calculated by the transcendental equation of Eq. (24). 

 

2.4 Compatibility condition 
 

2.4.1 Liquid-plate interaction 
When the bottom surface of the annular plate must remain in contact with the liquid during its 

oscillation, the axial compatibility condition along the liquid interfacing surface with the annular 
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plate yields 

 
0

( , , ) ( , , , ) / for
x

w r t r x t x a r R  
=

=                                        (25) 

Therefore, Eq. (25) is converted to Eq. (26) by replacing Eqs. (2), (3), and (8) into Eq. (25). 

1 1

( , ) ( ) cos ( )
M M

nm m nm nm

m m

q W r q W r n 
= =

=   ( )0
1

( ) ( ) / cos ( )ns ns x
s

r d x dx n  


=
=

=                (26) 

Inserting Eqs. (4) and (12) into Eq. (26) gives 

 1

1

J ( ) Y ( )
M

nm n nm nm n nm

m

q r C r 
=

 + 2 3I ( ) K ( )nm n nm nm n nmC r C r  + + 
1

( )ns ns

s

r 


=

=             (27) 

 

2.4.2 Displacement potential function of Case A  
The compatibility condition for Case A is revealed from Eqs. (27) and (13). 

1 2 3

1

J ( ) Y ( ) I ( ) K ( )
M

nm n nm nm n nm nm n nm nm n nm

m

q r C r C r C r   
=

 + + +  1

1

J ( )ns ns n ns

s

A r 


=

=           (28) 

Eq. (28) is modified to Eq. (29) for n=0, since the coefficient, 0ns =  when s=1. 

0 0 0 0 1 0 0 0 2 0 0 0 3 0 0

1

J ( ) Y ( ) I ( ) K ( )
M

m m m m m m m m

m

q r C r C r C r   
=

 + + +  0 1 0 0 0

2

J ( )s s s

s

A r 


=

=    (29) 

For n=0 of Case A, hereinafter Eq. (29) is applied instead of Eq. (28). The finite Henkel 

transformation is applied to Eq. (28) to obtain a relation between the coefficients for the liquid and 

plate motions. As a result, Eq. (28) is developed into Eq. (30) by integration along the interval (0, 

R) after multiplication of weighting function, J ( )n nsr r . 

1 2 3

1 1

J ( ) J ( ) Y ( ) I ( ) K ( )
M

R

nm n ns n nm nm n nm nm n nm nm n nma
m s

q r r r C r C r C r dr    


= =

 + + +     

( ) 
2

1 0
1

J
R

ns ns n ns

s

A r r dr 


=

=                                                (30) 

Eq. (30) can be rewritten as Eq. (31) based on the orthogonal property of the Bessel function, 

J ( )n ns r . 

( )1 1 2 2 3 3 4

1 1

M

nm nms nm nms nm nms nm nms

m s

q C C C   


= =

+ + +  1

1

ns ns ns

s

A K


=

=                   (31) 

The integral coefficients, 1nms  , 2nms  , 3nms  , 4nms  , and nsK   in Eq. (31) are defined in 

Appendix. The coefficient for liquid motion, 1nsA , can be briefly written in terms of the unknown 

coefficient for dynamic displacement of the plate, nmq . 

 
1

1

1

M

ns ns ns nm nms

m

A K q 
−

=

=                                                      (32) 

( )1 1 2 2 3 3 4nms nms nm nms nm nms nm nmsC C C    = + + +                                  (33) 
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The radial displacement potential function, ( )ns r , for Case A is finally given as 

 
1

1

( ) J ( )
M

ns ns ns nm nms n ns

m

r K q r   
−

=

=                                             (34) 

 

2.4.3 Displacement potential of Case B  
The compatibility condition for Case B is redefined by substituting Eq. (18) into Eq. (27). 

1 2 3

1

J ( ) Y ( ) I ( ) K ( )
M

nm n nm nm n nm nm n nm nm n nm

m

q r C r C r C r   
=

 + + +   

 1

1

Y '( ) J ( ) J ' ( ) Y ( )ns ns n ns n ns n ns n ns

s

A R r R r    


=

= −  (35) 

A finite Henkel transformation of Eq. (35) is applied to obtain a relation between the unknown 

coefficients for the liquid and plate motions. Therefore, Eq. (35) is transformed into Eq. (36) by 

integration along the radial interval (a, R) after multiplication of a weighting function,

Y '( ) J ( )n ns n nsr R r  J ' ( ) Y ( )n ns n nsR r − . 

 
1 1

Y '( ) J ( ) J ' ( ) Y ( )
M

R

nm n ns n ns n ns n nsa
m s

q r R r R r   


= =

−   1J ( ) Y ( )n nm nm n nmr C r  +  

2 3I ( ) K ( )nm n nm nm n nmC r C r dr  + +  1

1

Y '( ) J ( )
R

ns ns n ns n nsa
s

A r R r  


=

=   

            
2

J ' ( ) Y ( )n ns n nsR r dr −                                                    (36) 

The coefficient for the liquid motion, 1nsA , in Eq. (36) can be written as a variable of the unknown 

coefficient for the plate, nmq , based on the orthogonal property for the weighting function. 

 
1

1

1

M

ns ns ns nm nms

m

A G q 
−

=

=                                                   (37) 

( )1 1 2 2 3 3 4nms nms nm nms nm nms nm nmsC C C    = + + +                                   (38) 

The integral coefficients, 1nms , 2nms , 3nms , 4nms , and nsG  in Eqs. (37) and (38) are defined 

in Appendix, and the radial displacement potential function, ( )ns r  for Case B can be explicitly 

expressed as 

  
1

1

( ) Y '( ) J ( )
M

ns ns ns nm nms n ns n ns

m

r G q R r    
−

=

=  J ' ( ) Y ( )n ns n nsR r −                 (39) 

 

2.4.4 Displacement potential function of Case C 
The compatibility condition for Case C is given by inserting Eq. (22) into Eq. (27). 

1 2 3 1

1 1

J ( ) Y ( ) I ( ) K ( ) Y ( ) J ( )
M

nm n nm nm n nm nm n nm nm n nm ns ns n ns n ns

m s

q r C r C r C r A H r      


= =

 + + + =    

J ( )Y ( )n ns n nsH r −                                                           (40) 
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Performing an integration in the liquid interval (a, H) after multiplication of 

Y ( ) J ( )n ns n nsr H r  J ( )Y ( )n ns n nsH r −  to Eq. (40) leads to 


1 1

Y ( ) J ( ) J ( ) Y ( )
M

R

nm n ns n ns n ns n nsa
m s

q r H r H r   


= =

−    

1 2 3J ( ) Y ( ) I ( ) K ( )n nm nm n nm nm n nm nm n nmr C r C r C r dr     + + + 
 

 
2

1

1

Y ( ) J ( ) J ( ) Y ( )
H

ns ns n ns n ns n ns n nsa
s

A r H r H r dr    


=

= −                        (41) 

The coefficient of the liquid motion, 1nsA , for Case C can be similarly expressed in terms of the 

unknown coefficient of the plate, nmq , as briefly delineated in Eqs. (42) and (43). 

 
1

1

1

M

ns ns ns nm nms

m

A F q 
−

=

=                                                    (42) 

( )1 1 2 2 3 3 4nms nms nm nms nm nms nm nmsC C C    = + + +                                    (43) 

The integral coefficients, 1nms  , 2nms  , 3nms  , 4nms  , and nsF   in Eqs. (42) and (43) are 

defined in Appendix, and the radial displacement potential function for the liquid, ( )ns r  for Case 

C is given by 

   
1

1

( ) Y ( ) J ( ) J ( ) Y ( )
M

ns ns ns nm nms n ns n ns n ns n ns

m

r F q H r H r      
−

=

= −                    (44) 

 

2.4.5 Displacement potential function of Case D 
The compatibility condition for Case D is given by inserting Eq. (13) into Eq. (27).  

1 2 3

1

J ( ) Y ( ) I ( ) K ( )
M

nm n nm nm n nm nm n nm nm n nm

m

q r C r C r C r   
=

 + + +  1

1

J ( )ns ns n ns

s

A r 


=

=          (45) 

Performing an integration in the liquid interval (0, H) after multiplying by J ( )n nsr r  to Eq. (45) 

results in 

1 2 3

1 1

J ( ) J ( ) Y ( ) I ( ) K ( )
M

R

nm n ns n nm nm n nm nm n nm nm n nma
m s

q r r r C r C r C r dr    


= =

 + + +         

                                                     
2

10
1

J ( )
H

ns ns n ns

s

A r r dr 


=

=                         (46) 

The coefficient of liquid motion, 1nsA   for Case D can be similarly written in the unknown 

coefficient for plate, nmq  as briefly given in Eqs. (47) and (48). 

1

1

1
M

ns nm nms
ns ns m

A q
Q


 =

=                                                              (47) 

( )1 1 2 2 3 3 4nms nms nm nms nm nms nm nmsC C C    = + + +                                    (48) 
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The integral coefficients, 1nms , 2nms , 3nms , 4nms , and nsQ  in Eqs. (47) and (48) are defined 

in Appendix, and the radial displacement potential function, ( )ns r  for Case D is finally written as 

 
1

1

( ) J ( )
M

ns ns ns nm nms n ns

m

r Q q r   
−

=

=                                             (49) 

 

 

3. Method of solution 
 

3.1 Kinetic energy of liquid 
 

The natural frequencies of an annular plate can be estimated by the ratio of the potential energy 

and to kinetic energy of the system. The natural frequencies, a  in the dry condition, and   in the 

wet condition are given by the Rayleigh quotient, respectively. 

*/2
a p pV T =   for the dry condition                                              (50) 

 
* */ ( )2

p p FV T U = +   for the wet condition                                         (51) 

where, pV  and 
*
pT  represent the maximum potential and reference kinetic energies of the vibrating 

annular plate, respectively. The reference kinetic energy of the liquid, 
*
FU   in Eq. (51) can be 

evaluated by its integration along the wet surface of the annular plate. 

 *

0
1 1

1 ( ) ( ) ( )
2

M
R

F o nk ns ns xa
k s

U r W r r x dr   


=
= =

= −                                  (52) 

where o  is the mass density of the liquid, and  

2 for 0

for 0

n

n







=
= 


                                                        (53) 

  1

0
( ) [tanh( )]ns nsx
x L  −

=
= −                                                   (54) 

The reference liquid kinetic energy, 
*
FU   of Eq. (52) for Case A takes the following form by 

substituting Eqs. (4) and (34) into Eq. (52). 

 *
1 2 3

1 1

1 J ( ) Y ( ) I ( ) K ( )
2

M
R

F o n nk nk n nk nk n nk nk n nka
s k

U r r C r C r C r     


= =

= + + +    

  
1

1

tanh ( ) J ( )
M

ns ns ns nm nms n ns

m

L K q r dr   
−

=

                (55) 

Therefore, it is represented as a reduced form. 

*

1 1 1

11
2 tanh ( )

M M

F o nk nks nm nms
ns ns nss k m

U q q
L K

   
 



= = =

=                            (56) 

For Case B, the reference kinetic energy of the liquid, 
*
FU  in Eq. (52) similarly becomes 
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 *
1 2 3

1 1

1 J ( ) Y ( ) I ( ) K ( )
2

M
R

F o n nk nk n nk nk n nk nk n nka
s k

U r r C r C r C r     


= =

= + + +    

                     
1

1

tanh ( ) Y '( ) J ( ) J ' ( ) Y ( )
M

ns ns ns nm nms n ns n ns n ns n ns

m

L G q R r R r dr      
−

=

 −   (57) 

Eq. (57) is reduced to a simple expression. 

 
1*

1 1 1

1 tanh ( )
2

M M

F o ns ns ns nk nks nm nms

s k m

U L G q q     


−

= = =

=                           (58) 

For Case C, the reference liquid kinetic energy, 
*
FU  in Eq. (52) is also similarly written 

 *
1 2 3

1 1

1 J ( ) Y ( ) I ( ) K ( )
2

M
R

F o n nk nk n nk nk n nk nk n nka
s k

U r r C r C r C r     


= =

= + + +    

                       
1

1

tanh ( ) Y ( ) J ( ) J ( ) Y ( )
M

ns ns ns nm nms n ns n ns n ns n ns

m

L F q H r H r dr      
−

=

 −  (59) 

Therefore, Eq. (59) can be replaced by the simplified expression. 

         
1*

1 1 1

1 tanh ( )
2

M M

F o ns ns ns nk nks nm nms

s k m

U L F q q     


−

= = =

=                           (60) 

For Case D, the reference liquid kinetic energy, 
*
FU  in Eq. (52) is similarly given as 

 *
1 2 3

1 1

1 J ( ) Y ( ) I ( ) K ( )
2

M
R

F o n nk nk n nk nk n nk nk n nka
s k

U r r C r C r C r     


= =

= + + +    

  
1

1

tanh ( ) J ( )
M

ns ns ns nm nms n ns

m

L Q q r dr   
−

=

                                  (61) 

Therefore, Eq. (61) can be compactly written as 

 
1*

1 1 1

1 tanh ( )
2

M M

F o ns ns ns nk nks nm nms

s k m

U L Q q q     


−

= = =

=                           (62) 

A sufficiently large finite number, M in Eqs. (56), (58), (60) and (62) can guarantee the converged 

solution in the expanding the terms m and k to perform the numerical calculations for each 

circumferential wave number, n. The summation of s is also stopped for numerical computation, at 

a large integer value to acquire the required accuracy. It can be assumed that the liquid edge radius, 

H is large enough to converge the solution for simmulation of the radially unbounded infinite liquid. 

A column vector, q of the unknown coefficients in conjunction with the plate is introduced for 

numerical calculations. 

 1 2 3

T

n n n nMq q q q=q                                                    (63) 

Upon applicating Eq. (63) to Eqs. (56), (58), (60) and (62), the reference kinetic energy of the 

liquid can be written as a matrix form. 

* / 2T
F oU  = q G q                                                          (64) 
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where the added virtual mass incremental (AVMI) matrix, G for the fixed n is obtained by integration 

in Eqs. (55), (57), (59) and (61) with respect to the four liquid boundary conditions. The reference 

kinetic energy of the annular plate is calculated using the orthogonal property of the dry mode 

shapes. 

 * / 2T
pT  = q Z q                                                          (65) 

where Z is the reference kinetic energy matrix of the annular plate given as 

/ik i ikZ h P 2=                                                              (66) 

( )
R 2

i nia
P r W dr=  ,  ik : Kronecker delta (i, k =1, 2, 3… M)                            (67) 

When Eq. (4) is substituted into Eq. (67), and integrated with respect to the variable r from a to 

R, we can obtain a simple expression for the reference kinetic energy of the annular plate. On the 

other hand, the maximum potential energy of the annular plate can be computed by Eq. (68). 

/ 2T
dV = q U q                                                            (68) 

where   is defined in Eq. (53) and U is the diagonal matrix given by 

/ 22
ik ni i ikU D P =    (i, k =1, 2, 3… M)                                            (69) 

As delineated in Eqs. (50) and (51), the relationships between the reference kinetic energy and 

the maximum potential energy lead to an eigenvalue problem for the annular plate in contact with 

the liquid with various radial liquid boundary conditions (Amabili 1996, Jeong et al. 2009). 

 ( )  2 0o  − + =U q Z G q                                                 (70) 

Consequently, the eigenvalus and the corresponding eigenvectors of Eq. (70) can be extracted. 

 

 
4. Examples and discussion 

 

4.1 Theoretical and finite element models 
 

The determinant of Eq. (70) is calculated using the commercial software Mathcad (release15) to 

extract the natural frequencies of an annular plate in contact with a liquid. The theoretical calculation 

involves an infinite and a finite series of algebraic terms, but the expansion in the mode and the 

series expansion should be truncated for effective calculation. The expanding terms s and m are set 

at 100 and 40 to obtain converged solutions, respectively. 

In addition to the theoretical calculation, finite element analyses are also carried out using a 

commercial computer software, ANSYS (release 18.2) to check the validity of the theoretical 

formulation with respect for four cases of the radial liquid boundary condition, with a liquid depth 

denoted as d=80 mm. Two-dimensional axisymmetric finite element models of a liquid-coupled 

annular plate are constructed with the same plate geometry, boundary conditions and material 

properties as used in the theoretical calculation. The input data used in the theoretical calculations 

and the finite element analyses are listed in Table 1. The viscosity and compressibility of the liquid 

are ignored in both the theoretical calculations and the finite element analyses.  
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Table 1 Dimension and mechanical data of an annular plate in contact with a liquid 

Component Geometry and material property Unit Symbol Value 

Annular plate 

Thickness mm h 2.0 

Outer radius mm R 200.0 

Inner radius mm a 50.0 

Mass density kg/m3 ρ 2700.0 

Modulus of elasticity GPa E 69.0 

Poisson's ratio - μ 0.33 

Outer container radius mm R 200.0 

Inner cylinder radius mm a 50.0 

Liquid outer edge radius mm H 2000.0 

Liquid 
Mass density kg/m3 o  1000.0 

Depth mm L 80.0 

 

 

The axisymmetric models in the finite element analyses consist of axisymmetric harmonic liquid 

elements (FLUID81) and axisymmetric harmonic shell elements (SHELL61). The liquid domain is 

divided into a number of identical fluid elements, and the annular plate is also divided into identical 

shell elements. The nodes of the fluid elements at r=0 are constrained in the radial direction only for 

Case A and Case D. At the same time, the liquid movement at r=R, namely along the rigid outer 

cylindrical container, is also restricted to the radial direction to simulate Eq. (14) for Case A. In Case 

B, all nodes of the fluid elements at both r=a and r=R are radially restricted to attain the constraints 

along both the inner rigid cylinder and the outer rigid container as specified in Eqs. (16) and (17). 

In Case C, the nodes of the fluid elements at r=a are only constrained in the radial direction to 

achieve the liquid boundary condition of the inner rigid cylinder wall as written in Eq. (20). On the 

other hand, the radial boundary at the outer edge of the liquid domain is not restricted to simulate 

Eq. (21) for Case C. For Case D, the boundary at the outer edge of the liquid domain is also 

unrestricted to simulate Eq. (21).  

The vertical displacement of all nodes at the rigid bottom surface is limited for all cases to satisfy 

Eq. (11). The vertical displacement of all nodes in the liquid element adjacent to each surface of the 

wetted annular plate coincides with that of the plate elements so that the finite element model can 

simulate the compatibility requirement of Eq. (25). The flexible annular plate is divided into 60 two-

dimensional axisymmetric shell elements with the same size for all the four cases. In addition, the 

liquid region of the finite element model with the liquid depth, L=80 mm, consists of 2560 (80×32) 

identical liquid elements for Case A, 1920 (60×32) liquid elements for Case B, 24960 (780×32) for 

Case C, and 25600 (800×32) for Case D. All the displacements and rotation are constrained along 

both plate edges in order to simulate the clamped boundary condition in the finite element analysis 

model. The 50 modal natural frequencies and mode shapes are extracted up to 18000 Hz using the 

Block Lanczos method in the finite element analyses. 

 

4.2 Verification of analytical method 
 

The theoretical and numerical natural frequencies of the wet annular plate are presented in Table 

2 for Cases A, B, C and D, in the range of 0<n<3 and 0<m’<3. The symbol m’ in Table 2 and Figs. 

2-8 represents the number of nodal circles in a vibration mode. The theoretical natural frequencies 

agree well with the finite element results as shown in Table 2, verifying the proposed theory for  
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Table 2 Verification for natural frequencies of an annular plate in contact with a liquid 

Mode no.* Natural frequency (Hz) 

n m’ 
Case A Case B Case C Case D 

Theory ANSYS Theory ANSYS Theory ANSYS Theory ANSYS 

0 

1 490.1 491.6 491.8 489.6 501.9 502.1 501.3 501.2 

2 1335.1 1154.8 1337.6 1151.4 1168.0 1172.5 1172.1 1165.6 

3 2182.4 2249.4 2168.6 2239.4 2263.4 2258.3 2269.8 2282.2 

1 

0 104.0 104.2 94.0 94.2 114.8 114.9 122.4 122.4 

1 514.2 525.6 506.7 517.3 533.9 534.1 541.3 542.4 

2 1191.8 1221.9 1174.9 1200.3 1215.7 1228.1 1247.7 1247.5 

3 2220.4 2303.7 2192.3 2279.3 2308.6 2309.2 2328.3 2345.7 

2 

0 167.5 168.1 164.7 165.8 179.0 178.7 180.9 180.9 

1 581.0 595.3 576.1 589.8 609.8 609.8 615.4 615.6 

2 1282.8 1321.9 1275.4 1307.6 1352.7 1338.9 1351.6 1353.2 

3 2318.3 2408.4 2289.2 2387.1 2422.9 2425.8 2443.2 2447.3 

3 

0 242.7 244.7 241.1 244.1 253.5 253.7 254.3 254.3 

1 685.2 703.0 682.1 701.2 719.7 720.4 723.1 723.3 

2 1422.1 1461.5 1418.1 1453.4 1463.2 1483.8 1491.2 1492.1 

3 2462.4 2565.1 2432.0 2550.2 2584.0 2590.8 2603.8 2605.9 

*n=Number of nodal diameter, m’=Number of nodal circles 
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Fig. 2 Normalized natural frequencies of a liquid contacting annular plate for n=0 

 

 

Cases A, B, C and D by the finite element analyses. The maximum discrepancy between the 

theoretical and finite element results tends to increase with mode numbers as demonstrated in Table 

2. The axisymmetric mode with n=0 and m’=0 is not included in the Table 2 because the specific 

mode violates the liquid volume conservation, as explained in a previous study (Jeong et al. 2005). 
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 Case A (m' = 0)

 Case A (  = 1)

 Case A (  = 2)

 Case B (  = 0)

 Case B (  = 1)

 Case B (  = 2)

 Case C (  = 0)

 Case C (  = 1)

 Case C (  = 2)

 Case D (  = 0)

 Case D (  = 1)

 Case D (  = 2)

m'

m'

m'

m'

m'

m'

m'

m'

m'

m'

m'

0.1 1

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

N
o
rm

al
iz

ed
 n

at
u
ra

l 
fr

eq
u
en

cy

Normalized liquid depth (L/2R)  

Fig. 3 Normalized natural frequencies of a liquid contacting annular plate for n=1 
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Fig. 4 Normalized natural frequencies of a liquid contacting annular plate for n=2 

 

      

4.3 Effect of liquid boundary condition 
 

The natural frequency of a structure in contact with a liquid is well known to be lower than the 

corresponding natural frequency in air due to the hydrodynamic mass effect on the structure’s 

motion. Hence, the normalized natural frequency, defined as the natural frequency of the wet annular 

plate divided by the corresponding natural frequency of the dry annular plate, ranges between unity 

and zero regardless of the mode, as demonstrated in Figs. 2-4. The normalized natural frequencies 

are plotted in Figs. 2-4 as a function of normalized liquid depth, L/2R, for n=0, 1, and 2, respectively. 

A reduction in the liquid depth significantly affects the wet natural frequencies when 

approximately L<R. As the liquid depth L decreases, the hydrodynamic mass amplifies and reduces  
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(a) n=0, m’=1 (b) n=0, m’=2 

  

(c) n=1, m’=0 (d) n=1, m’=1 

Fig. 5 Vector plots of mode shape in a liquid-contacting annular plate for Case A 

 

 

the natural frequency of the wet annular plate. The natural frequencies increase drastically with 

increasing liquid depth, regardless of the radial boundary condition of the liquid, and eventually 

converge to those of the annular plate floating on an infinite liquid depth. The wet natural frequency 

of the liquid-coupled annular plate primarily depends on the total moving liquid volume during 

vibration. Therefore, the effect of liquid depth on the wet natural frequencies is more dominant than 

the influence of the radial liquid constraints. It is obvious that an increase in the number of nodal 

circles, m' or nodal diameter, n reduces the hydrodynamic mass, and increases wet natural 

frequencies due to the separation effect in the liquid flow. As the number of nodal circles, m', and 

nodal diameter, n, increases, the oscillating liquid regions become more divided. 

Figs. 5-8 depict the deflection vectors of both the annular plate and the contained liquid for Cases 

A, B, C and D, with respect to n=0, 1 and m'=0, 1, 2. Figs. 2-8 reveal that the effect of the radial 

liquid boundary condition on the natural frequencies and the mode shapes is relatively insignificant. 

However, upon closer examination of the difference in the wet natural frequencies for the four cases 

of the radial liquid boundary condition, it is observed that the natural frequencies of the liquid-

coupled plate depend on the radial liquid boundary condition for certain vibrational modes. Roughly 

speaking, the normalized natural frequencies of the axisymmetric mode with n=0 do not depend on 

the radial liquid boundary conditions as shown in Fig. 2. This is because the liquid motions at the 

inner cylinder region of Case A and Case D are relatively small as illustrated in the vector plots for 

n=0 in Figs. 5-8. In other words, the difference between the liquid vectors of the four cases is 

negligible, which means that the inner cylinder and the outer container do not affect the mode shapes 

and wet natural frequencies for the axisymmetric mode n=0.  

On the other hand, the normalized natural frequencies with n=1 and n=2 considerably depend on 

the radial liquid boundary conditions for m'=0 as shown in Figs. 3 and 4 because the liquid motions 

at the inner cylinder region of Case A and the outer container region of Case C are relatively 

significant as illustrated in the vector plots of Fig. 5(c) and Fig. 7(c). As the radial movement of  
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(a) n=0, m’=1 (b) n=0, m’=2 

 
 

(c) n=1, m’=0 (d) n=1, m’=1 

Fig. 6 Vector plots of mode shape in a liquid-contacting annular plate for Case B 

 

 

liquid across the centerline of the cylinder is allowed for n=1, the effect of the radial constraints such 

as the cylinder and container becomes relatively significant. The difference in the normalized natural 

frequency between the radial liquid boundary conditions is clearly demonstrated in Figs. 3 and 4.  

Furthermore, the presence of the inner rigid cylinder and the outer rigid container also increases 

the hydrodynamic mass, leading to a reduction in the fundamental natural frequency for the 

circumferential mode n=1. The natural frequencies of Case B are lower than those of Case A, and 

the natural frequencies of Case A are lower than those of Case C regardless of mode numbers as 

listed in Table 2. It is evident that the any solid obstacles, such as the rigid wall of the inner cylinder 

or the outer container, increase the hydrodynamic mass and reduce the natural frequencies. This 

tendency is prominent for the specific mode number with n=1 and m'=0, as the radial liquid 

movement is maximized in this mode. 

 

 

5. Conclusions 
 

This paper presents an analytical method for analyzing the free vibration of a liquid-contacting 

annular plate considering, whether or not the contained liquid is constrained by a rigid inner cylinder 

or outer container. The displacement potential functions that satisfy the Laplace equation and liquid 

boundary conditions are obtained to describe the liquid motions. The fluid-structure coupling at the 

interface between the annular plate and the liquid is taken into account. The wet dynamic 

displacement of the annular plate is expressed as a combination of dry modal functions, and the  
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(a) n=0, m’=1 (b) n=0, m’=2 

 
 

(c) n=1, m’=0 (d) n=1, m’=1 

Fig. 7 Vector plots of mode shape in a liquid-contacting annular plate for Case C 

 

  
(a) n=0, m’=1 (b) n=0, m’=2 

  

(c) n=1, m’=0 (d) n=1, m’=1 

Fig. 8 Vector plots of mode shape in a liquid-contacting annular plate for Case D 

 

 

Rayleigh-Ritz method is applied to derive a matrix equation for extracting the natural frequencies 

of the system. The effect of radial liquid boundary conditions on the dynamic characteristics of the 

system is investigated for four cases: the outer bounded liquid case, the outer and inner bounded 

liquid case, the inner bounded liquid case, and the radially unbounded case. The accuracy of the 

theoretical formulation is validated by comparing the results with the finite element analysis. It is 

found that the radial liquid bounding effect on the natural frequencies is negligible for the 
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axisymmetric vibrational mode, but becomes relatively significant for the mode with n=1 and m'=0. 

Furthermore, the study reveals that the hydrodynamic mass is largest for the outer and inner bounded 

liquid case, regardless of the vibration mode. 

 

 

Acknowledgement 
 

This work was supported by the National Research Foundation of Korea (NRF) grant funded by 

the Korea government (MSIT) (No. NRF- 2020M2D7A1079180). 

 

 

References 
 
Amabili, M. (1996), “Effect of finite fluid depth on the hydroelastic vibrations of circular and annular plates”, 

J. Sound Vib., 193(4), 909-925. https://doi.org/10.1006/jsvi.1996.0322. 

Amabili, M., Frosali, G. and Kwak, M.K. (1996), “Free vibrations of annular plates coupled with fluids”, J. 

Sound Vib., 191(5), 825-846. https://doi.org/10.1006/jsvi.1996.0158. 

Askari, E., Jeong, K.H. and Amabili, M. (2013), “Hydroelastic vibration of circular plates immersed in a 

liquid-filled container with free surface”, J. Sound Vib., 332(12), 3064-3085. 

https://doi.org/10.1016/j.jsv.2013.01.007. 

Askari, E., Jeong, K.H., Ahn, K.H. and Amabili, M. (2020), “A mathematical approach to study fluid-coupled 

vibration of eccentric annular plates”, J. Fluid. Struct., 98, 103129. 

https://doi.org/10.1016/j.jfluidstructs.2020.103129. 

Bauer, H. and Komatsu, K. (2000), “Coupled frequencies of a frictionless liquid in a circular cylindrical tank 

with an elastic partial surface cover”, J. Sound Vib., 230(5), 1147-1163. 

https://doi.org/10.1006/jsvi.1999.2662. 

Chen, G.W., Liao, C.Y., Lin, Y.Z. and Ma, C.C. (2021), “Analytic solution to the coupled characteristics of a 

rectangular plate partially immersed in a finite fluid container”, J. Sound Vib., 515, 116446. 

https://doi.org/10.1016/j.jsv.2021.116446. 

Escaler, X. and De La Torre, O. (2018), “Axisymmetric vibrations of a circular Chladni plate in air and fully 

submerged in water”, J. Fluid. Struct., 82, 432-445. https://doi.org/10.1016/j.jfluidstructs.2018.07.017. 

Hosseini, M., Goudarzi. M.A. and Soroor. A. (2017), “Reduction of seismic sloshing in floating roof liquid 

storage tanks by using a suspended annular baffle”, J. Fluid. Struct., 71, 40-55. 

http://dx.doi.org/10.1016/j.jfluidstructs.2017.02.008. 

Jeong, K.H. (2006), “Hydroelastic vibration of two annular plates coupled with a bounded compressible fluid”, 

J. Fluid. Struct., 22(8), 1079-1096. https://doi.org/10.1016/j.jfluidstructs.2006.07.001. 

Jeong, K.H. and Kim, K.J. (2005), “Hydroelastic vibration of a circular plate submerged in a bounded 

compressible fluid”, J. Sound Vib., 283(1-2), 153-172. https://doi.org/10.1016/j.jsv.2004.04.029. 

Kim, Y.W. and Lee, Y.S. (2005), “Coupled vibration analysis of liquid-filled rigid cylindrical storage tank with 

an annular plate cover”, J. Sound Vib., 279(1-2), 217-235. https://doi.org/10.1016/j.jsv.2003.10.032. 

Kwak, M.K. and Amabili, M. (1999), “Hydroelastic vibration of free-edge annular plates”, ASME J. Vib. 

Acoust., 121, 26-32. https://doi.org/10.1115/1.2893944. 

Kwak, M.K. and Han, S.B. (2000), “Effect of fluid depth on the hydroelastic vibration of free-edge circular 

plate”, J. Sound Vib., 230(1), 171-185. https://doi.org/10.1006/jsvi.1999.2608. 

Liang, C.C., Tai, Y.S. and Li, P.L. (1999), “Natural frequencies of annular plates having contact with fluid”, J. 

Sound Vib., 228(5), 1167-1181. https://doi.org/10.1006/jsvi.1999.2463. 

Lin, G.Z., Yang, Y., He, Z.G. and Jiao, P.C. (2022), “Hydrodynamic optimization in high-acceleration 

underwater motions using added-mass coefficient”, Ocean Eng., 263, 112274. 

https://doi.org/10.1016/j.oceaneng.2022.112274. 

145



 

 

 

 

 

 

Kyeong-Hoon Jeong 

Wang, P.G., Zhao, M. and Du, X.L. (2019), “A simple added mass model for simulating elliptical cylinder 

vibrating in water under earthquake action”, Ocean Eng., 179, 351-360. 

https://doi.org/10.1016/j.oceaneng.2019.02.046. 

Zhang, J.R., Wei, K. and Qin, S.Q. (2022), “An efficient numerical model for hydrodynamic added mass of 

immersed column with arbitrary cross section”, Ocean Eng., 187, 106192. 

https://doi.org/10.1016/j.oceaneng.2019.106192. 

 

 

CC 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

146



 

 

 

 

 

 

Liquid boundary effect on free vibration of an annular plate coupled with a liquid 

Appendix 
 

1. Mode shapes coefficients of clamped annular plate 

 

     1

1
I K I K J I K I K J I K I K Jda R R da a a da da a R R a a R da

nm nm nm nm nm nm nm nm nm nm nm nm nm nm nm nm
nm

C
T

 = − + − + −
 

, 

     2

1
Y K Y K J Y K Y K J Y K Y K JR da da R a da a a da R a R R a da

nm nm nm nm nm nm nm nm nm nm nm nm nm nm nm nm
nm

C
T

 = − + − + −
 

, 

     3

1
I Y I Y J I Y I Y J I Y I Y JR da da R a da a a da R a R R a da

nm nm nm nm nm nm nm nm nm nm nm nm nm nm nm nm
nm

C
T

 = − + − + −
 

, 

( ) ( ) ( )I K I K Y I K I K Y I K I K YR da da R a R a a R da da a a da R
nm nm nm nm nm nm nm nm nm nm nm nm nm nm nm nmT = − − − + − , 

J J ( )a
nm n nm a= ,  J J '( )da

nm n nm a= ,  J J ( )R
nm n nm R= ,  J J '( )dR

nm n nm R= ,  

Y Y ( )a
nm n nm a= ,  Y Y '( )da

nm n nm a= , Y Y ( )R
nm n nm R= , Y Y '( )dR

nm n nm R= , 

I I ( )a
nm n nm a= ,    I I ' ( )da

nm n nm a= ,  I I ( )R
nm n nm R= ,  I I '( )dR

nm n nm R= , 

K K ( )R
nm n nm R= , K K '( )da

nm n nm a= , K K ( )R
nm n nm R= , K K '( )dR

nm n nm R=  

 

2. Integral coefficients 

 

Case A 

1 1 ( ) J ( ) J ( ) JR dR a da a da
nms nms nm ns nm nm ns nm ns nm nsR a a        = − +

  , 

2 1 ( ) Y ( ) Y ( ) YR dR a da a da
nms nms nm ns nm nm ns nm ns nm nsR a a        = − +

 
, 

3 2 ( ) I ( ) I ( ) IR dR a da a da
nms nms nm ns nm nm ns nm ns nm nsR a a        = − +

  , 

4 2 ( ) K ( ) K ( ) KR dR a da a da
nms nms nm ns nm nm ns nm ns nm nsR a a        = − +

  , 2 2( ) / 2R R
ns ns nsE R  =  

 

Case B 

 

1 1 ( ) J ( ) J ( ) J ( ) JdR R dR R dR a da a da
nms ns nms nm ns nm ns nm ns nm ns nm ns nm nsR R a a           = − − +

   

1 ( ) J ( ) J ( ) J ( ) JdR R dR R dR a da a da
ns nms nm ns nm ns nm ns nm ns nm ns nm nsR R a a          − − − +

  , 

 2 1 ( ) Y ( ) Y ( ) Y ( ) YdR R dR R dR a da a da
nms ns nms nm ns nm ns nm ns nm ns nm ns nm nsR R a a          = − − +  

 1 ( ) Y ( ) Y ( ) Y ( ) YdR R dR R dR a da a da
ns nms nm ns nm ns nm ns nm ns nm ns nm nsR R a a         − − − + , 

 3 2 ( ) I ( ) I ( ) I ( ) IdR R dR R dR a da a da
nms ns nms nm ns nm ns nm ns nm ns nm ns nm nsR R a a          = − − +  

 2 ( ) I ( ) I ( ) I ( ) IdR R dR R dR a da a da
ns nms nm ns nm ns nm ns nm ns nm ns nm nsR R a a         − − − + , 

 4 2 ( ) K ( ) K ( ) K ( ) KdR R dR R dR a da a da
nms ns nms nm ns nm ns nm ns nm ns nm ns nm nsR R a a          = − − +  

 2 ( ) K ( ) K ( ) K ( ) KdR R dR R dR a da a da
ns nms nm ns nm ns nm ns nm ns nm ns nm nsR R a a         − − − + , 
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 2 2 2 2 2 2 21
( ) ( ) ( ) ( ) ( ) ( )

2

dR dR R R dR dR R
ns ns ns ns ns ns ns nsG R       

 
= + + 

 
 

 2 2 2 2 2 2 21
( ) ( ) ( ) ( ) ( ) ( )

2

dR da a a dR dR a
ns ns ns ns ns ns nsa       

 
− + + 

 
 

 

Case C 

 

1 1 ( ) J ( ) J ( ) J ( ) JH R dR R dR a da a da
nms ns nms nm ns nm ns nm ns nm ns nm ns nm nsR R a a           = − − +

   

1 ( ) J ( ) J ( ) J ( ) JH R dR R dR a da a da
ns nms nm ns nm ns nm ns nm ns nm ns nm nsR R a a          − − − +

  , 

2 1 ( ) Y ( ) Y ( ) Y ( ) YH R dR R dR a da a da
nms ns nms nm ns nm ns nm ns nm ns nm ns nm nsR R a a           = − − +

 
 

1 ( ) Y ( ) Y ( ) Y ( ) YH R dR R dR a da a da
ns nms nm ns nm ns nm ns nm ns nm ns nm nsR R a a          − − − +

  , 

3 2 ( ) I ( ) I ( ) I ( ) IH R dR R dR a da a da
nms ns nms nm ns nm ns nm ns nm ns nm ns nm nsR R a a           = − − +

   

2 ( ) I ( ) I ( ) I ( ) IH R dR R dR a da a da
ns nms nm ns nm ns nm ns nm ns nm ns nm nsR R a a          − − − +

  , 

4 2 ( ) K ( ) K ( ) K ( ) KH R dR R dR a da a da
nms ns nms nm ns nm ns nm ns nm ns nm ns nm nsR R a a           = − − +

   

2 ( ) K ( ) K ( ) K ( ) KH R dR R dR a da a da
ns nms nm ns nm ns nm ns nm ns nm ns nm nsR R a a          − − − +

  , 

   
2

2 2 2 2 2 2( )
( ) ( ) ( ) ( )

2

H
dH H H da a ans

ns ns ns ns ns ns nsF H a


      = + − +
 

 

( ) ( )2 2H H dH dH H H H da da a a a
ns ns ns ns ns ns ns ns ns ns ns nsH a            − + − +

 
 

   
2

2 2 2 2 2 2( )
( ) ( ) ( ) ( )

2

H
dH H H da a ans
ns ns ns ns ns nsH a


      + + − +

 
 

 

Case D 

 

 2 2
1 1 ( ) J ( ) J ( ) J ( ) JdR R R dR a da da a

nms nms ns ns nm nm ns nm nm ns nm ns ns nmR R R a a a            = − + −
    , 

 2 2
2 1 ( ) Y ( ) Y ( ) Y ( ) YdR R R dR a da da a

nms nms ns ns nm nm ns nm nm ns nm ns ns nmR R R a a a            = − + −
    , 

 2 2
3 2 ( ) I ( ) I ( ) I ( ) IdR R R dR a da da a

nms nms ns ns nm nm ns nm nm ns nm ns ns nmR R R a a a            = + + +
    , 

 2 2
4 2 ( ) K ( ) K ( ) K ( ) KdR R R dR a da da a

nms nms ns ns nm nm ns nm nm ns nm ns ns nmR R R a a a            = + + +
    , 

2 2 2( ) ( ) / 2H dH
ns ns nsQ H = , 

1 2 2

1
nms

ns nm


 

=
−

, 2 2 2

1
nms

ns nm


 

=
+

, 
2

2
1

( )

R
ns

ns

n

R



= − , 

2

2
1

( )

a
ns

ns

n

a



= − , 

2

2
1

( )

H
ns

ns

n

H



= − ,   

J ( )R
ns n ns R = ,  J '( )dR

ns n ns R = ,   J ( )a
ns n ns a = ,   J '( )da

ns n ns a = ,  J ( )H
ns n ns H = ,  

J '( )dH
ns n ns H = , 
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Y ( )R
ns n ns R = ,   Y '( )dR

ns n ns R = ,   Y ( )a
ns n ns a = ,   Y '( )da

ns n ns a = ,   Y ( )H
ns n ns H = ,  

Y '( )dH
ns n ns H =  
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