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Abstract.  This paper considers a delamination analysis of a statically undetermined inhomogeneous beam structure 
of rectangular section with viscoelastic behavior under torsion. The beam is built in at its two ends. The beam has two 
longitudinal inhomogeneous layers with a delamination crack between them. A notch is made in the upper crack arm. 
The external torsion moment applied on the beam is a function of time. Under these conditions, the beam has one 
degree of indeterminacy. In order to derive the strain energy release rate, first, the static indeterminacy is resolved. 
Then the strain energy release rate is obtained by analyzing the balance of the energy with considering the 
viscoelastic behavior. The strain energy release rate is found also by analyzing the compliance of the beam for check-
up. Solution of the strain energy release rate in a beam without a notch in the upper crack arm is derived too. In this 
case, the beam has two degrees of static indeterminacy (the torsion moment in the upper crack arm is treated as an 
additional internal redundant unknown). A parametric investigation of the strain energy release rate is carried-out. 
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1. Introduction 
 

Continuously inhomogeneous materials are a wide range of structural materials whose 

properties vary smoothly in the solid. The fact that the properties (elastic, viscoelastic, 

thermoelastic, etc.) are smooth functions of one or more coordinates makes the analysis of the 

mechanical behavior of various structural members and components built-up of continuously 

inhomogeneous materials more difficult in comparison with their homogeneous counterparts. 

Typical examples of continuously inhomogeneous materials are the functionally graded structural 

materials (Antonella Sola et al. 2016, Avcar and Mohammed 2018, Butcher et al. 1999, Gasik 

2010, Han et al. 2001, Hedia et al. 2014, Hirai and Chen 1999, Mahamood and Akinlabi 2017). A 

functionally graded material is an inhomogeneous solid continuum that combines two or more 

constituent materials. During manufacturing, the constituent materials are continuously mixed. 

The microstructure and the ratio of constituent materials change smoothly along one or more 
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directions in the solid (Ç allioglu et al. 2011, Ç allioglu et al. 2015, Demir et al. 2013, El-Galy et al. 
2019, Rabenda 2015, Rabenda and Michalak 2015, Rabenda 2016, Saiyathibrahim et al. 2016, 
Shrikantha and Gangadharan 2014, Wu et al. 2014). There are technologies for manufacturing of 
functionally graded materials which allow for tailoring of microstructure and material properties in 
order to obtain a desired profile of variation of the properties in a structural member or a 
component of engineering mechanism or device (Markworth et al. 1995, Miyamoto et al. 1999, 

Nemat-Allal et al. 2011, Sofiyev and Avcar 2010, Sofiyev et al. 2012, Toudehdehghan et al. 2017, 
Uslu Uysal 2016). Therefore, it is not surprising that the wide application of functionally graded 
materials, especially in recent decades, contributes significantly for the advance in such key areas 
of the modern engineering as aeronautics, nuclear energetics, car industry, microelectronics, etc. 

Analyzing of various fracture problems in continuously inhomogeneous (functionally graded) 
structural members and components under different loading conditions plays an important role in 
process of design of engineering structures in view of guaranteeing of their strength, stability, 

integrity, reliable functioning and economic efficiency (Dolgov 2005, Dolgov 2016). Lapses and 
negligence in assessing of fracture behavior may have heavy consequences for the safety and 
durability of the structure including catastrophic collapse.    

This paper aims to analyze the delamination in an inhomogeneous statically undetermined 
beam structure of rectangular section loaded in torsion. The beam is made of two longitudinal 
inhomogeneous layers. The delamination is between layers. The beam considered has viscoelastic 
behaviour under external torsion moment that increases with time. Taking into account the 
viscoelastic behaviour is of great importance since very often engineering structures exhibit such 

behaviour under loading that is a function of time. The need of this paper follows from the fact 
that previous studies are concerned mainly with delamination analyses of inhomogeneous beams 
with circular cross-section subjected to pure torsion (Rizov 2018, Rizov 2020, Rizov 2020a, Rizov 
2021, Rizov and Altenbach 2022). Delamination of inhomogeneous beams of rectangular cross-
section under torsion also has been analyzed recently (Rizov 2022). However, the analysis 
presented in (Rizov 2022) deals with delamination of a statically determined cantilever beam. Due 
to the widespread application of statically undetermined beams in various engineering structures, 

the present paper is focused on delamination analysis of a beam that is built in at its two ends. In 
the present paper, solutions of the strain energy release rate are derived for two statically 
undetermined beam configurations under torsion (with and without a notch in the upper crack 
arm). The compliance method is applied in order to check the solutions. A parametric investigation 
is performed by using the solutions obtained.   
 
 

2. Delaminated inhomogeneous beam built in at its two ends       
 
The viscoelastic beam structure in Fig. 1 is under consideration in this paper. The section of the 

beam is a rectangle of width, 𝑏, and thickness, ℎ. The beam length is designated by𝑙. The beam is 
made of two adhesively bonded longitudinal layers. The thickness of the upper and lower layer is 

designated by ℎ1 and ℎ2, respectively. A delamination crack of length, 𝑎1 + 𝑎2, is located between 

layers as shown in Fig. 1. A notch of depth, ℎ1, is made in the upper crack arm. As a result of this, 
the upper crack arm is free of stresses. The beam is clamped in its two ends. An external torsion 
moment, 𝑇, is applied in section, 𝐵4, of the beam. The variation of 𝑇 with time, 𝑡, is written as 

                                     𝑇 = 𝑣𝑇𝑡 ,                                                                       (1) 
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Fig. 1 Inhomogeneous viscoelastic beam with a delamination loaded in torsion 

 

 

Fig. 2 Viscoelastic mechanical model 

 
 

where 𝑣𝑡 is a parameter that controls the torsion moment. Under torsion, the beam in Fig. 1 is a 
statically undetermined structure with one degree of indeterminacy.    

The viscoelastic behaviour of the upper layer of the beam is analyzed by using the viscoelastic 
mechanical model shown in Fig. 2.  

The model is under shear stress, 𝜏, that varies with time according to the following law 

                                    𝜏 = 𝑣𝜏𝑡,                                                                            (2) 

where the parameter, 𝑣𝜏, controls the shear stress. The stress-strain-time relationship of the model 
in Fig. 2 is found by solving its differential equation of equilibrium. The result is 

                            𝛾(𝑡) = 𝛽2 (1− 𝑒
−
𝐺2
𝛽1

𝑡
)+ 𝛽3𝑡,                                                             (3) 

where  

                                 𝛽1 = 𝜂 + 𝜂
𝐺2

𝐺1
,                                                                    (4) 

                             𝛽2 =
1

𝐺2
(
𝑣𝜏𝜂

𝐺1
−

𝑣𝜏𝛽1

𝐺2
),                                                              (5) 

                                   𝛽3 =
𝑣𝜏

𝐺2
.                                                                        (6) 

In formulae (3), (4), (5) and (6), 𝐺1 and 𝐺2 are the shear moduli of the two springs, 𝜂 is the 
coefficient of viscosity of the dashpot in the model (Fig. 2).   

The time-dependent shear modulus, 𝐺*, of the upper layer is written as 
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                                   𝐺* =
𝜏

𝛾
.                                                                        (7) 

By combining of (2), (3) and (7), one obtains  

                          𝐺* = [ 𝛽2𝑟 (1 − 𝑒
−
𝐺2
𝛽1

𝑡
)+ 𝛽3𝑟 ]

−1

,                                              (8) 

where  

                              𝛽2𝑟 =
1

𝑡𝐺2
(
𝜂

𝐺1
−

𝛽1

𝐺2
),                                                              (9) 

                                   𝛽3𝑟 =
1

𝐺2
.                                                                     (10) 

The viscoelastic behaviour of the lower layer of the beam is modelled also by applying 

relationship (3). For this purpose, 𝐺1, 𝐺2 and 𝜂 are replaced with 𝐺1𝐿 , 𝐺2𝐿 and 𝜂𝐿 , respectively. 

Here, 𝐺1𝐿 , 𝐺2𝐿 and 𝜂𝐿  are the shear moduli and the coefficient of viscosity of the viscoelastic 

model of the lower layer. The time-dependent shear modulus, 𝐺*𝐿, of the lower layer is found by 

replacing of 𝐺1 , 𝐺2  and 𝜂  with 𝐺1𝐿 , 𝐺2𝐿  and 𝜂𝐿  in (8). It should be mentioned that the time-

dependent moduli, 𝐺* and 𝐺*𝐿, are used in the delamination analysis developed in this paper.     
The two layers of the beam exhibit continuous material inhomogeneity in longitudinal 

direction. The following laws are used for treating the distribution of the material properties in the 
upper layer along the beam length 

                           𝐺1 = 𝐺1𝑃𝑒
𝑔1

𝑥1
𝑙 ,                                                                   (11) 

                           𝐺2 = 𝐺2𝑃𝑒
𝑔2

𝑥1
𝑙 ,                                                                   (12) 

                            𝜂 = 𝜂𝑃𝑒
𝑔3

𝑥1
𝑙 ,                                                                    (13) 

where  

                                   0 ≤ 𝑥1 ≤ 𝑙.                                                                     (14) 

In formulae (11), (12), (13) and (14), 𝑥1 is the longitudinal centroidal axis of the beam, 𝐺1𝑃, 
𝐺2𝑃 and 𝜂𝑃  are the values of 𝐺1 , 𝐺2 and 𝜂 at the left-hand end of the beam, 𝑔1 , 𝑔2 and 𝑔3  are 
parameters which control the distribution of material properties.  

The distribution of material properties in the lower layer is treated also by (11), (12) and (13). 

For this purpose, of 𝐺1 , 𝐺2 , 𝜂 , 𝑔1 , 𝑔2  and 𝑔3  are replaced with 𝐺1𝐿 , 𝐺2𝐿 , 𝜂𝐿 , 𝑓1 , 𝑓2  and 𝑓3 , 
respectively.  

The strain energy release rate, 𝐺, for the delamination problem shown in Fig. 1 is derived by 
analyzing the balance of the energy. For this purpose, first, the static indeterminacy is resolved. 

The torsion moment, 𝑇𝑃, in the left-hand clamping is treated as redundant unknown. The static 
indeterminacy is resolved by using the theorem of Menabrea 

                                    
∂𝑈⥂

∂𝑇𝑃
= 0,                                                                      (15) 

where 𝑈 is the strain energy in the beam. 𝑈 is found as 

                             𝑈 = 𝑈1 + 𝑈2 + 𝑈3 +𝑈4,                                                        (16) 

where 𝑈1, 𝑈2, 𝑈3 and 𝑈4 are the strain energies in beam portion, 𝐵1𝐵2, in the lower crack arm and 

in beam portions, 𝐵3𝐵4 and 𝐵4𝐵5, respectively (Fig. 1). The analysis is carried-out in coordinate 
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system, 𝑥𝑧 (Fig. 1).   
The strain energy in beam portion, 𝐵1𝐵2, is written as 

                           𝑈1 = ∫
−𝑎1
−𝑙1

𝑇𝑃
2⥂

2𝐺*𝐷𝐼
𝑑𝑥,                                                     (17) 

where 𝑙1 is the length of this portion, 𝐺*𝐷𝐼 is rigidity in torsion of the beam. 𝐺*𝐷𝐼 is calculated as 
(Muskhelishvili 1996) 

𝐺∗𝐷𝐼 =
8

3
(𝐺∗ℎ1 + 𝐺∗𝐿ℎ2) (

𝑏

2
)
3
+ (

4

𝜋
)
5
(
𝑏

2
)
4
∑ [

𝐺*
2𝑐ℎ(𝑗ℎ2)+𝐺*𝐿

2 𝑐ℎ(𝑗ℎ1)

𝑄

∞
𝑖=0 −  

(𝐺*
2+𝐺*𝐿

2 )𝑐ℎ(𝑗ℎ1)𝑐ℎ(𝑗ℎ2)

𝑄
] − (

4

𝜋
)
5
(
𝑏

2
)
4
𝐺*𝐺*𝐿 ∑ {

𝑐ℎ(𝑗ℎ1)+𝑐ℎ(𝑗ℎ2)

𝑄
−

𝑐ℎ[ℎ(ℎ1−ℎ2)]−1

𝑄
}∞

𝑖=0           (18) 

where    

                        𝑄 = (2𝑖 + 1)5[𝐺*𝑐ℎ(𝑗ℎ2)𝑠ℎ(𝑗ℎ1) + 𝐺*𝐿𝑐ℎ(𝑗ℎ1)𝑠ℎ(𝑗ℎ2)],                                  (19) 

                                 𝑗 =
(2𝑖+1)𝜋

𝑏
.                                                                    (20) 

It should be noted that 𝐺*𝐷𝐼 is a function of time and 𝑥 since the shear moduli, 𝐺* and 𝐺*𝐿 , 

depend on time and 𝑥.   
The strain energy in the lower crack arm is derived as 

                              𝑈2 = ∫
𝑇𝑃
2

2𝐺*𝐿𝐼2

𝑎2
−𝑎1

𝑑𝑥,                                                            (21) 

where the moment of inertia, 𝐼2, of this crack arm is determined as (Muskhelishvili 1996) 

                         𝐼2 =
ℎ2 𝑏3

3
− (

4

𝜋
)
5
(
𝑏

2
)
4
∑

𝑡ℎ(𝑗ℎ2)

(2𝑖+1)5
∞
𝑖=1 .                                              (22) 

The strain energies in the beam portions, 𝐵3𝐵4 and 𝐵4𝐵5, are derived as 

                               𝑈3 = ∫
𝑙2
𝑎2

𝑇𝑃
2

2𝐺*𝐷𝐼
𝑑𝑥                                                           (23) 

and 

                              𝑈4 = ∫
𝑙−𝑙1
𝑙2

(𝑇𝑃 −𝑇)2

2𝐺*𝐷𝐼
𝑑𝑥,                                                       (24) 

respectively.  

After substituting of the strain energy, 𝑈, in (15), the equation is solved with respect to 𝑇𝑃.  
By analyzing the balance of the energy, the strain energy release rate for increase of 

delamination at the left-hand delamination tip (at section, 𝐵2, of the beam) is found as 

                             𝐺 =
1

𝑏
(𝑇

∂𝜙

∂𝑎1
−

∂𝑈

∂𝑎1
),                                                            (25) 

where 𝜙 is the angle of twist of section, 𝐵4 (Fig. 1). In order to derive the strain energy release rate 
by using (25), the angle of twist has to be presented as a function of the crack length. For this 

purpose, the integrals of Maxwell-Mohr applied for calculating of 𝜙 in the statically undetermined 
system are written in the form 

    𝜙 = ∫
𝑇𝑃

𝐺*𝐷𝐼

−𝑎1
−𝑙1

𝑇𝑃

𝑇
𝑑𝑥 + ∫

𝑇𝑃

𝐺*𝐿⥂𝐼2

𝑎2
−𝑎1

𝑇𝑃

𝑇
𝑑𝑥 + ∫

𝑇𝑃

𝐺*𝐷𝐼

𝑙2
𝑎2

𝑇𝑃

𝑇
𝑑𝑥 + ∫

𝑇𝑃−𝑇

𝐺*𝐷𝐼

𝑙−𝑙1
𝑙2

𝑇𝑃−𝑇

𝑇
𝑑𝑥,           (26) 
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where 𝑇𝑃/𝑇 and (𝑇𝑃 − 𝑇)/𝑇 are the torsion moments in the beam portions induced by the unit 
loading for determination of the angle of twist.  

By combining of (16), (25) and (26), one obtains 

                          𝐺 =
1

2𝑏
(−

𝑇𝑃
2

𝐺*𝐷⥂𝐼
+

𝑇𝑃
2

𝐺*𝐿𝐼2
),                                                     (27)  

where the material properties involved in 𝐺*𝐷𝐼 and 𝐺*𝐿𝐼2 are found at 𝑥1 = 𝑙1 − 𝑎1 . The strain 
energy release rate can be calculated by using (27) at various values of time. 

In order to verify (27), the strain energy release rate is derived also by analyzing the 

compliance, 𝐶, of the beam. For this purpose, the compliance is determined as 

                                    𝐶 =
𝜙

𝑇
.                                                                     (28) 

The strain energy release rate is written as 

                                  𝐺 =
𝑇2

2𝑏

𝑑𝐶

𝑑𝑎1
.                                                                 (29) 

By combining of (26), (28) and (29), one obtains 

                         𝐺 =
1

2𝑏
(−

𝑇𝑃
2

𝐺*𝐷𝐼
+

𝑇𝑃
2

𝐺*𝐿𝐼2
),                                                         (30) 

where the material properties are calculated at 𝑥1 = 𝑙1 − 𝑎1. The fact that (30) is match of (27) 
proves the correctness of the present analysis. 

The strain energy release rate for increase of delamination at the right-hand delamination tip 

(located in section, 𝐵3, of the beam (Fig. 1)) found by analyzing the balance of the energy has the 
following form 

                           𝐺 =
1

𝑏
(𝑇

∂𝜙

∂𝑎2
−

∂𝑈

∂𝑎2
).                                                            (31) 

By using of (16), (26) and (31), one derives 

                          𝐺 =
1

2𝑏
(

𝑇𝑃
2

𝐺*𝐿𝐼2
−

𝑇𝑃
2

𝐺*𝐷𝐼
),                                                            (32) 

where the material properties involved in 𝐺*𝐷𝐼 and 𝐺*𝐿𝐼2 are found at 𝑥1 = 𝑙1 + 𝑎2. 
By analyzing the compliance of the beam, the strain energy release rate for increase of 

delamination at the right-hand delamination tip is written as    

                            𝐺 =
𝑇2

2𝑏

𝑑𝐶

𝑑𝑎2
.                                                                    (33) 

By substituting of (26) and (26) in (33), one obtains 

                          𝐺 =
1

2𝑏
(

𝑇𝑃
2

𝐺*𝐿𝐼2
−

𝑇𝑃
2

𝐺*𝐷𝐼
).                                                           (34) 

The material properties in (34) are found at 𝑥1 = 𝑙1 +𝑎2. Expression (34) coincides with (32) 
which proves the correctness of the analysis. 

The strain energy release rate is obtained also assuming that there is not a notch in the upper 
crack arm in the beam in Fig. 1. In this case, the beam has two degrees of indeterminacy. The 

torsion moments in the left-hand clamping and in the upper crack arm, 𝑇𝑃 and 𝑇1, are treated as 
redundant unknowns. The static indeterminacy is resolved by using the theorem of Menabrea 

                                   
∂𝑈

∂𝑇𝑃
= 0,                                                                    (35) 
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∂𝑈

∂𝑇1
= 0.                                                                  (36) 

The strain energy in the beam is found as 

  𝑈 = ∫
𝑇𝑃
2

2𝐺*𝐷𝐼
𝑑𝑥

𝑎1
−𝑙1

+∫
𝑇1
2

2𝐺*𝐼1
𝑑𝑥

𝑎2
−𝑎1

+∫
𝑇2
2

2𝐺*𝐿𝐼2
𝑑𝑥

𝑎2
−𝑎1

+ ∫
𝑇𝑃
2

𝐺*𝐷𝐼
𝑑𝑥

𝑙2
𝑎2

+∫
(𝑇𝑃−𝑇)

2

𝐺*𝐷𝐼
𝑑𝑥

𝑙−𝑙1
𝑙2

,       (37) 

where 𝑇2 is the torsion moment in the lower crack arm. The moment of inertia, 𝐼1, of the upper 
crack arm is determined as (Muskhelishvili 1996) 

                      𝐼1 =
ℎ1 𝑏3

3
− (

4

𝜋
)
5
(
𝑏

2
)
4
∑

𝑡ℎ(𝑗ℎ1)

(2𝑖+1)5
∞
𝑖=1 .                                               (38) 

By using the equation of equilibrium of the torsion moments in the upper and lower crack arms, 
one derives  

                                𝑇2 = 𝑇𝑃 − 𝑇1.                                                            (39) 

By combining of (37) and (39), one obtains the following expression for the strain energy 

 𝑈 = ∫
𝑇𝑃
2

2𝐺*𝐷𝐼
𝑑𝑥

𝑎1
−𝑙1

+ ∫
𝑇1
2

2𝐺*𝐼1
𝑑𝑥

𝑎2
−𝑎1

+ ∫
(𝑇𝑃−𝑇1)

2

2𝐺*𝐿𝐼2
𝑑𝑥

𝑎2
−𝑎1

+ ∫
𝑇𝑃
2

𝐺*𝐷𝐼
𝑑𝑥

𝑙2
𝑎2

+ ∫
(𝑇𝑃−𝑇)

2

𝐺*𝐷𝐼
𝑑𝑥

𝑙−𝑙1
𝑙2

.     (40) 

After substituting of the strain energy in (35) and (36), the two equations are solved with 

respect to 𝑇𝑃 and 𝑇1. 
By analyzing the energy balance, the strain energy release rate for increase of delamination at 

the left-hand delamination tip is derived as 

                     𝐺 =
1

2𝑏
(−

𝑇𝑃
2

𝐺*𝐷𝐼
+

(𝑇𝑃−𝑇1)
2

𝐺*𝐿𝐼2
+

𝑇1
2

𝐺*𝐼1
),                                             (41) 

where the material properties involved in 𝐺*𝐷𝐼, 𝐺*𝐼1 and 𝐺*𝐿𝐼2 are found at 𝑥1 = 𝑙1 − 𝑎1. 
By applying the compliance method, the strain energy release rate for increase of delamination 

at the left-hand delamination tip is found as 

                     𝐺 =
1

2𝑏
(−

𝑇𝑃
2

𝐺*𝐷𝐼
+

(𝑇𝑃−𝑇1)
2

𝐺*𝐿𝐼2
+

𝑇1
2

𝐺*𝐼1
).                                            (42) 

Here, the material properties in 𝐺*𝐷𝐼, 𝐺*𝐼1 and 𝐺*𝐿𝐼2 are determined at 𝑥1 = 𝑙1 − 𝑎1. Formulas 
(42) and (41) are identical. This fact is a control of the solution of the strain energy release rate for 
increase of delamination at the left-hand delamination tip in the beam configuration without notch 
in the upper crack arm.    

The analysis of the balance of the energy yields the following expression for the strain energy 

release rate at increase of the delamination at the right-hand delamination tip in the beam without a 
notch in the upper crack arm 

                       𝐺 =
1

2𝑏
(
𝑇1
2

𝐺*𝐼1
+

(𝑇𝑃−𝑇1)
2

𝐺*𝐿𝐼2
−

𝑇𝑃
2

𝐺*𝐷𝐼
).                                            (43) 

In (43), the material properties involved in 𝐺*𝐷𝐼, 𝐺*𝐼1 and ⥂ 𝐺*𝐿𝐼2 are found at 𝑥1 = 𝑙1 + 𝑎2. 
By using the compliance method, one derives 

                       𝐺 =
1

2𝑏
(
𝑇1
2

𝐺*𝐼1
+

(𝑇𝑃−𝑇1)
2

𝐺*𝐿𝐼2
−

𝑇𝑃
2

𝐺*𝐷𝐼
),                                            (44) 

where the material properties are obtained at 𝑥1 = 𝑙1 + 𝑎2. Formula (44) is match of (43) which is 
a check-up of the solution of the strain energy release rate for increase of the delamination at the  
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Fig. 3 The strain energy release rate displayed as a function of time (curve 1-for beam configuration 

with notch in the upper crack arm and curve 2-at beam configuration without notch) 

 

 

Fig. 4 The strain energy release rate displayed as a function of 𝑔3 (curve 1-at 𝑔1 = 0.5, curve 2-at 

𝑔1 = 1.0 and curve 3-at 𝑔1 = 2.0) 

 
 
right-hand delamination tip in the beam without a notch in the upper crack arm.     

 
 
3. Parametric investigation 
 

A parametric investigation of the strain energy release rate for the delamination problem in Fig. 

1 is carried-out. The following data are used in the parametric investigation: 𝑏 = 0.030 m, ℎ =
0.040 m, 𝑙 = 0.650 m, 𝑙1 = 0.250 m, 𝑙2 = 0.300 m and  𝑣𝑇 = 0.8 × 10−5 Nm/s. 

The evolution of the strain energy release rate with time is displayed in Fig. 3 for both beam 
configurations (with and without notch in the upper crack arm). The solution of the strain energy 

release rate at increase of delamination at the left-hand delamination tip (in section, 𝐵2, of the 
beam) is used. The strain energy release rate and the time in Fig. 3 are presented in non-
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dimensional form by using the formulae 𝐺𝑁 = 𝐺/(𝐺1𝑃𝑏) and 𝑡𝑁 = 𝑡𝐺1𝑃/𝜂𝑃 , respectively. One 
can observe in Fig. 3 that the strain energy release rate for the beam configuration with notch in 
the upper crack arm is higher than that in the beam configuration without notch (this finding can 
be explained by the circumstance that the beam configuration with notch in the upper crack arm is 
more deformable in comparison to the beam configuration without notch).   

The influence of parameters, 𝑔1 and 𝑔3, on the strain energy release rate is analyzed.  
The results of this analysis are displayed in Fig. 4 where the strain energy release rate in non-

dimensional form is plotted against 𝑔3 for three values of the parameter, 𝑔1.  

The curves in Fig. 4 indicate that the strain energy release rate reduces when 𝑔1 increases.  

It can be observed in Fig. 4 that increase of 𝑔3 causes also reduction of the strain energy release 
rate. This behavior is a consequence of the fact that the beam rigidity increases when parameters, 
𝑔1 and 𝑔3, increase.        

 

 

 

Fig. 5 The strain energy release rate displayed as a function of 𝑔2 (curve 1 - at ℎ1/ℎ = 0.2, curve 2 

- at ℎ1/ℎ = 0.4 and curve 3 - at ℎ1/ℎ = 0.6) 

 

 

Fig. 6 The strain energy release rate displayed as a function of ℎ1/ℎ ratio for the beam configuration 

without notch in the upper crack arm (curve 1-at increase of the delamination at the left-hand 
delamination tip and curve 2-at increase of the delamination at the right-hand delamination tip) 
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Fig. 7 The strain energy release rate displayed as a function of 𝑣𝑇 (curve 1 - at ℎ/𝑏 = 1.3, curve 2 - 

at ℎ/𝑏 = 1.5 and curve 3 - at ℎ/𝑏 = 1.7) 

 
 

The effect of parameter, 𝑔2, on the strain energy release rate is analyzed too.  

The change of the strain energy release rate with increase of 𝑔2 at three ℎ1/ℎ ratios is displayed 
in Fig. 5 for the beam configuration with notch in the upper crack arm. Here, again the strain 
energy release rate is presented in non-dimensional form. The inspection of curves in Fig. 5 

reveals that when 𝑔2 increases, the strain energy release rate reduces. One can observe in Fig. 5 

that increase of ℎ1/ℎ ratio generates increase of the strain energy release rate. This is due to fact 
that the rigidity of the lower crack arm decreases (the upper crack arm is free of stresses because 
of the notch). 

The influence of ℎ1/ℎ ratio on the strain energy release rate is analyzed also for the beam 
configuration without notch in the upper crack arm. The variation of the non-dimensional strain 

energy release rate with increase of ℎ1/ℎ ratio is displayed in Fig. 6. It is evident from Fig. 6 that 
the strain energy release rate has maximum when the crack is near the mid-plane of the beam 
structure. Also, one can observe in Fig. 6 that the strain energy release rate at increase of the 
delamination at the left-hand delamination tip is higher than that at increase of the delamination at 

the right-hand delamination tip (in section, 𝐵3, of the beam). This is due to the fact that the values 
of material properties increase from the left-hand end of the beam towards the right-hand end of 

the beam.    

The effects of the parameter, 𝑣𝑇, and ℎ/𝑏 ratio on the strain energy release rate are illustrated 
in Fig. 7 where the dependency of the non-dimensional strain energy release rate on the parameter, 
𝑣𝑇, is shown at three values of ℎ/𝑏 ratio. It can be observed in Fig. 7 that increase of 𝑣𝑇 induces 

increase of the strain energy release rate. When ℎ/𝑏 ratio increases, the strain energy release rate 
reduces (Fig. 7) which is explained by increase of the beam rigidity. 

 
 
4. Conclusions 
 

An analysis of the strain energy release rate for a delamination crack in a statically 
undetermined viscoelastic beam of rectangular section loaded in torsion is carried-out. The beam is 
made of two longitudinal layers which are inhomogenous along the beam length. The delamination 
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is located between the layers. A vertical notch is made in the upper crack arm. The strain energy is 
obtained by analyzing the energy balance. The compliance method is applied for check-up. The 
strain energy release rate is found also for the beam configuration without notch in the upper crack 
arm. The parametric investigation reveals that the strain energy release rate reduces when 

parameters, 𝑔1, 𝑔2  and 𝑔3 , increase. The increase of ℎ/𝑏 ratio generates also reduction of the 

strain energy release rate. The analysis indicates that when 𝑣𝑇 increases, the strain energy release 

rate increases too. The increase of ℎ1/ℎ ratio induces increase of the strain energy release rate for 
the beam configuration with notch in the upper crack arm. However, the strain energy release rate 
has maximum when the crack is near the mid-plane in the beam without notch in the upper crack 
arm. It is found also that the strain energy release rate at increase of delamination at the left-hand 
delamination tip is higher in comparison with that at increase of delamination at the right-hand 
delamination tip. It should be mentioned that besides for fracture in layered inhomogeneous beam 
configurations, this study can also be applied in analyzing the fracture behavior of laminated glass 

structures (Galic et al. 2022, Grozdanic et al. 2021) where the interlayer exhibits viscoelastic 
behavior and one of the glass panels is damaged (cracks through section).    
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