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Abstract.  The present work is concerned with the study of the influence of inhomogeneous initial stresses in a 
hollow cylinder containing a compressible inviscid fluid on the propagation of axisymmetric longitudinal waves 
propagating in this cylinder. The study is carried out using the so-called three-dimensional linearized theory of elastic 
waves in bodies with initial stresses to describe the motion of the cylinder and using the linearized Euler equations to 
describe the flow of the compressible inviscid fluid. It is assumed that the inhomogeneous initial stresses in the 
cylinder are caused by the internal pressure of the fluid. To solve the corresponding eigenvalue problem, the discrete-
analytic solution method is applied and the corresponding dispersion equation is obtained, which is solved 
numerically, after which the corresponding dispersion curves are constructed and analyzed. To obtain these 
dispersion curves, parameters characterizing the magnitude of the internal pressure, the ratio of the sound velocities in 
the cylinder material and in the fluid, and the ratio of the material densities of the fluid and the cylinder are 
introduced. Based on these parameters, the influence of the inhomogeneous initial stresses in the cylinder on the 
dispersion of the above-mentioned waves in the considered hydro-elastic system is investigated. Moreover, based on 
these results, appropriate conclusions about this influence are drawn. In particular, it is found that the character of the 
influence depends on the wavelength. Accordingly, the inhomogeneous initial stresses before (after) a certain value of 
the wavelength lead to a decrease (increase) of the wave propagation velocity in the zeroth and first modes. 
 

Keywords:  discrete-analytical method; hydro-elastic hollow cylinder-fluid system; inhomogeneous initial 
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1. Introduction 
 

To control oil, water and various types of chemical fluid production and transportation by 

pipelines requires the theoretical study of the corresponding dynamic problems of hydro-elastic 

systems consisting of the hollow cylinder and fluid. Similarly, such a study is required by the 
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corresponding biophysical problems related to the understanding of the flow of blood in a vein. 
Note that the studies on the dispersions of the waves propagating in the systems “hollow 
cylinder+fluid” have special importance among these studies. This is because the results of these 
studies form the theoretical basis for the non-destructive testing method for damage detection by 
acoustic and ultrasonic waves in pipelines transporting fluids. 

We now briefly review related investigations, beginning this review with the paper (Lamb 

1898) in which the dispersion of an axisymmetric wave propagating in a thin cylindrical shell 
containing a non-viscous compressible fluid was investigated. Note that in this work the motion of 
the shell was described in the framework of Kirchhoff-Love theory. In this description, the 
bending terms are omitted and the concrete results are presented for the low wavenumber cases. 
Note also that in this work the cases where the wave propagation velocity is smaller than the sound 
velocity in the fluid were considered, and approximate analytical expressions for the wave 
propagation velocity as a function of the wave number were obtained. In the context of the above 

assumptions, the paper (Lamb 1898) also considered the case where the cylindrical shell is 
immersed in a liquid. Moreover, in this work, the formulation of the problem for thick shells was 
developed in the framework of classical linear elastodynamics. 

A significant development of the research carried out in the paper (Lamb 1898) was made in 
the paper (Lin and Morgan 1956). In this work, the corresponding problems were studied using the 
refined first-order shell theory. According to this theory, the shear deformation of the cross-section 
and its rotational inertia are taken into account in establishing the equation of motion of the shell. 
In this framework, concrete numerical results are obtained on the influence of shear deformation 

and rotational inertia on the corresponding dispersion curves. 
Further development in this field focused on the use of more accurate models to describe the 

fluid flow and motion of a circular hollow cylinder and a review of the related investigations 
carried out until the last decade of the last century was made in the papers (Sinha et al. 1992) and 
(Plona et al. 1992). Note that in these papers, in addition to this review work, a theoretical study of 
the wave dispersion problems for the hydro-elastic system consisting of a hollow cylinder and a 
compressible inviscid fluid was carried out using the exact equations and relations of 

elastodynamics (Sinha et al. 1992). Experimental verification of the theoretical results (Plona et al. 
1992) was also performed. In addition, we note that some of the recent studies conducted in the 
papers (Ahmet 2008, Selvamani 2016, Sandhyarani et al. 2019) and others listed therein have 
investigated similar problems for the cases where the cylinder material was more complex. 
However, all these studies were carried out using classical linear elastodynamics, in the framework 
of which the initial stresses in the cylinder cannot be taken into account when studying the 
dispersion of the waves propagating in this cylinder in contact with the fluid. Note that in cases 

where the cylinders contain or transport fluids at high pressure and a certain flow rate, as well as in 
very deep subsea pipelines, these cylinders (or pipelines) are subjected to hydrostatic pressures 
from the fluid side. These pressures cause static stress-strain states in the cylinders before the 
corresponding wave propagation begins. Therefore, these static stress-strain states are considered 
as the initial stress-strain state with respect to the additional dynamic perturbation state causing the 
wave propagation in the hydro-elastic system “cylinder+fluid”, consideration of the influence of 
these initial stresses on the dispersion of waves cannot be done within the framework of the 
classical linear theory of elastodynamics, since this influence has a nonlinear character. For this 

purpose, the corresponding dynamic problems are modeled within the framework of geometrically 
nonlinear elastodynamics. Then, the corresponding field equations and relations are linearized with 
respect to the dynamic perturbations. As a result of this linearization, the so-called linearized 
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equations and relations are obtained for the study of the wave propagation problems in bodies with 
initial stresses. The initial stresses enter the coefficients of the obtained linearized equations and 
relations, and in this way, the influence of the initial stresses (or strains) on the dispersion of 
waves propagating in the bodies with initial stresses is considered. It should be noted that the 
above linearization procedures can be carried out both by means of approximate nonlinear shell 
theories and by means of the corresponding three-dimensional nonlinear exact equations of 

elastodynamics. 
From the historical aspect, some of the earlier and valuable investigations carried out within the 

framework of the Kirchhoff-Love shell theory were made in the papers (Atabek and Lew 1966) 
and (Atabek 1968). Note that in the paper (Atabek and Lew 1966), the hydro-elastic system 
consisting of incompressible Newtonian viscous fluid and a tube made of isotropic and physically 
linear material was considered. Under this consideration it was assumed that the cylindrical shell 
has homogeneous circumferential and longitudinal initial normal stresses (without indicating the 

reasons causing these stresses) and an attempt was made to investigate how these initial stresses 
influence the velocity of the waves propagated in this hydro-elastic system. Numerical results are 
presented for the low-wavenumber approximation case for which the outgoing and the incoming 
waves appear. In particular, as a result of the analyses of the numerical results, it is established that 
in the cases where the initial stresses are stretching their existence causes the propagation velocity 
of the outgoing waves to decrease. 

The paper (Atabek 1968) further developed the investigations carried out in the paper (Atabek 
and Lew 1966) for the case when the material of the cylindrical shell is an orthotropic one and the 

equation of motion of this shell is described in the framework of the uniformly distributed 
additional mass, a dashpot, and a spring model. Numerical results are also presented for the low 
wavenumber approximation and the influence of the anisotropy of the tube material on the wave 
propagation velocity is analyzed. 

A similar problem for the case when the material of the tube is a highly elastic incompressible 
material was considered in the work (Rachev 1978) and the fluid contained in the cylinder was 
modeled as an incompressible viscous Newtonian. The studies are performed using the 

corresponding exact so-called 3D linearized equations and relations. More systematic studies on 
the dispersion of waves in a homogeneously prestressed highly elastic cylinder in contact with 
incompressible viscous Newtonian fluids were carried out in the papers (Bagno and Guz 1982), 
(Bagno et al. 1994) and in the papers listed in the reviews (Bagno and Guz 1997) and (Bagno and 
Guz 2016). Note that in these works the investigations are carried out also within the framework of 
the exact equations and relations of the three dimensional linearized theory of elastic waves in 
initially stressed bodies  

With this, we limit ourselves here to the review of the studies related to the dynamics of the 
systems “hollow cylinder+fluid”. At the same time, we note that the corresponding review of the 
studies on the dynamics of the systems “plate+fluid” can be found in the articles listed (Akbarov 
2018, Akbarov and Huseynova 2019, 2020, Hazalic et al. 2018, Mandal and Maity 2015) and 
others listed therein. 

In recent years, new investigations have also been carried out on the other aspects of the 
dynamics of the hollow cylinder containing a fluid. As an example of such research, the research 
carried out in the works (Darıcık et al. 2022, Bochkarev and Lekomtsev 2022, Gao et al. 2022) 

and others listed therein.  
Wherein the paper (Darıcık et al. 2022) studies the stresses and deformations in a four-layer 

fiber-reinforced polymer composite pipe (hollow cylinder) caused by the pressurized sudden flow 
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of the fluid in this pipe. The aim of the paper’s study (Gao 2022) is to simulate fluid flow in pipes 
with different boundary conditions. A free-pressure fluid model based on the Navier-Stokes 
equation is used in the paper. The corresponding mathematical problems are solved using the 
numerical method. A problem called “Stability of Pipes” is used to compare the frequency and 
critical fluid velocity.  

The work (Bochkarev 2022) studies the dynamic behavior of laminated circular cylindrical 

composite shells interacting with a compressible inviscid fluid whose behavior is described by 
potential theory. The hydrodynamic pressure exerted by the fluid on the inner surface of the shell 
is calculated using the linearized Bernoulli equation. The semi-analytical finite element method is 
used to obtain numerical results about the natural vibration of the hydro-elastic system under 
consideration. 

From the above overview of the dispersion of waves in the systems “pre-stressed hollow 
cylinder+fluid”, it is clear that all these investigations were carried out within the framework of the 

assumption of homogeneity of the initial stresses in the cylinder. However, it is obvious that in 
many cases these stresses are inhomogeneous due to the internal or external fluid pressures, 
especially in the case of relatively thick cylinders. To the best of the authors’ knowledge, there has 
been no study of wave propagation in an inhomogeneously pre-stressed hollow cylinder containing 
a fluid until the paper (Akbarov et al. 2021). Therefore, in the paper (Akbarov et al. 2021), an 
approach to studying the dynamic problems for hydro-elastic systems consisting of an 
inhomogeneously pre-stressed hollow cylinder containing a compressible inviscid fluid was 
proposed. This approach is based on the discrete-analytic solution method of the governing field 

equations for the cylinder. However, in the work (Akbarov et al.2021), only a few concrete 
numerical results on the dispersion of the axisymmetric longitudinal waves propagating in the 
mentioned hydro-elastic system were considered. In the present work, in order to obtain a 
comprehensive knowledge of the influence of the inhomogeneous initial stresses in the cylinder on 
the dispersion of the axisymmetric waves propagating in the system considered, parametric 
numerical investigations are carried out. These investigations are based on the approach developed 
in the paper (Akbarov et al. 2021) and the significance of the results presented is not limited to the 

specific materials selected. Under these investigations, the motion of the cylinder is described by 
the three-dimensional linearized theory of elastic waves in initially stressed bodies, and the flow of 
the fluid is described by the linearized Euler equations for the compressible inviscid fluid. The 
corresponding dispersion equation is obtained and this equation is solved numerically as a result of 
which the corresponding dispersion curves are constructed and analyzed. To obtain these 
dispersion curves, parameters are introduced that characterize the magnitude of the internal 
hydrostatic pressure, the ratio of the sound velocities in the cylinder material and in the fluid, and 

the ratio of the fluid and cylinder densities. Namely, these parameters are used to illustrate the 
influence of the inhomogeneous initial stresses in the cylinder on the dispersion of the above-
mentioned waves in the considered hydro-elastic system. 
 
 

2. Mathematical formulation of the problem 
 

Consider the hydro-elastic system consisting of an infinite hollow cylinder filled with the 

compressible barotropic inviscid fluid. Associate the cylindrical 𝑂𝑟𝜃𝑧 and Cartesian 𝑂𝑥1𝑥2𝑥3  

(𝑥3 = 𝑧) (Fig. 1) system of coordinates with the central axis of the cylinder. We use the Lagrange 
coordinates for indicating the location of the points of the cylinder and the Euler coordinates for  
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Fig. 1 The sketch of the hydro-elastic system under consideration 

 
 

indicating the location of the fluid particles. We distinguish two states of the hydro-elastic system, 
in the first of which it is assumed that the fluid is at rest and acts on the interior of the cylinder 

with pressure 𝑝0 and the density of this fluid is 𝜌0, and this state is named as the initial state. We 
assume that the pressure of the fluid causes the initial axisymmetric static stress state in the 
cylinder. Below we will use the upper index “0” for indicating the quantities regarding this initial 
state in the cylinder and the stresses in this state, according to (Timoshenko and Goodier 1951), 
can be determined through the following expressions which are obtained from the solution of the 
corresponding Lame problem in the classical linear theory of elasticity. 

𝜎𝑟𝑟
0 =

𝑝0

(1+ℎ/𝑅)2−1
(1 −

𝑅2

𝑟2 (1 +
ℎ

𝑅
)

2
), 𝜎𝜃𝜃

0 =
𝑝0

(1+ℎ/𝑅)2−1
(1 +

𝑅2

𝑟2 (1 +
ℎ

𝑅
)

2
) , 

𝜎𝑧𝑧
0 = 𝜈(𝜎𝑟𝑟

0 + 𝜎𝜃𝜃
0 ).                                                      (1) 

Note that the conventional notation is used in (1) and some parameters which enter into these 
expressions are indicated in Fig. 1. 

We assume that after the foregoing initial state appears, the system gets a certain dynamical 

perturbation as a result of which the axisymmetric longitudinal waves propagate therein (the 
second state). The problem consists of how the initial stresses determined by the expressions in (1) 
influence the propagation of these waves, i.e., the dispersion of these waves. As mentioned before, 
to determine this influence we try to use the exact linearized 3D equations and relations of the 
theory of elastic waves in bodies with initial stresses and the linearized equations of motion of 
barotropic inviscid fluids. 

Thus, according to the monographs (Eringen and Suhubi 1975, Guz 2004, Akbarov 2015), and 

others listed therein, we write the 3D linearized field equations and relations of the elastic wave 
propagation which are satisfied in the region occupied by the cylinder.  

The equations of motion 

𝜕𝑡𝑟𝑟

𝜕𝑟
+

𝜕𝑡𝑧𝑟

𝜕𝑧
+

1

𝑟
(𝑡𝑟𝑟 − 𝑡𝜃𝜃) = 𝜌

𝜕2𝑢𝑟

𝜕𝑡 2 , 
𝜕𝑡𝑟𝑧

𝜕𝑟
+

1

𝑟
𝑡𝑟𝑧 +

𝜕𝑡𝑧𝑧

𝜕𝑧
= 𝜌

𝜕2𝑢𝑧

𝜕𝑡 2 ,                   (2) 

where  

𝑡𝑟𝑟 = 𝜎𝑟𝑟 + 𝜎𝑟𝑟
0 (𝑟)

𝜕𝑢𝑟

𝜕𝑟
, 0 ( ) z

rz rz rr
u

t r
r


= +


  , 𝑡𝜃𝜃 = 𝜎𝜃𝜃 + 𝜎𝜃𝜃

0 (𝑟)
𝑢𝑟

𝑟
, 

(a) 

(b) 
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  𝑡𝑧𝑟 = 𝜎𝑧𝑟 + 𝜎𝑧𝑧
0 (𝑟)

𝜕𝑢𝑟

𝜕𝑧
,𝑡𝑧𝑧 = 𝜎𝑧𝑧 + 𝜎𝑧𝑧

0 (𝑟)
𝜕𝑢𝑧

𝜕𝑧
.                                    (3) 

The elasticity relations 

        𝜎(𝑗𝑗) = 𝜆(𝜀𝑟𝑟 + 𝜀𝜃𝜃 + 𝜀𝑧𝑧) + 2𝜇𝜀(𝑗𝑗) , (𝑗𝑗) = 𝑟𝑟; 𝜃𝜃; 𝑧𝑧, 𝜎𝑟𝑧 = 2𝜇𝜀𝑟𝑧              (4) 

The strain-displacement relations 

             𝜀𝑟𝑟 =
𝜕𝑢𝑟

𝜕𝑟
 , 𝜀𝜃𝜃 =

𝑢𝑟

𝑟
, 𝜀𝑧𝑧 =

𝜕𝑢𝑧

𝜕𝑧
, 𝜀𝑟𝑧 =

1

2
(

𝜕𝑢𝑟

𝜕𝑧
+

𝜕𝑢𝑧

𝜕𝑟
).                               (5) 

The Eqs. (2)-(5) compose the complete system of the linearized field equations for describing 

the motion of the cylinder. Note that in (2) and (3) the notation 𝑡𝑟𝑟, 𝑡𝑟𝑧 , 𝑡𝜃𝜃, 𝑡𝑧𝑟and 𝑡𝑧𝑧 shows the 
components of the non-symmetric Kirchhoff stress tensor. The other notation used in (2)-(5) is 
conventional.  

Now, according to (Guz 2009), consider the linearized field equations for the barotropic 
compressible inviscid fluid flow. 

The continuity equation 

                         
𝜕𝜌’

𝜕𝑡
+ 𝜌0 (

𝜕𝑉𝑟

𝜕𝑟
+

𝑉𝑟

𝑟
+

𝜕𝑉𝑧

𝜕𝑧
) = 0 ;                                                   (6) 

Linearized equations of the fluid flow 

          
𝜕𝑉𝑟

𝜕𝑡
= −

1

𝜌0

𝜕𝑝’

𝜕𝑟
 , 

𝜕𝑉𝑧

𝜕𝑡
= −

1

𝜌0

𝜕𝑝’

𝜕𝑧
.                                                    (7)  

The state equation 

                  𝑎0
2 =

𝜕𝑝’

𝜕𝜌’
 
,                                                                        (8) 

where 𝑎0 is the sound speed in the fluid, 𝜌’ and 𝑝’ are the perturbations of the fluid density and the 

fluid pressure, respectively, and 𝑉𝑟 , and 𝑉𝑧 are the components of the velocity vector. 
In this way, we obtain the complete system of Eqs. (6)-(8) through which the flow of the fluid 

is described. Now we attempt to formulate the corresponding boundary and compatibility 
conditions. In connection with this, we can write the following boundary conditions on the 
external surface of the cylinder.  

      𝑡𝑟𝑟|𝑟=𝑅+ℎ = 0, 𝑡𝑟𝑧|𝑟=𝑅+ℎ = 0.                                                      (9) 

Using the notation indicated in Fig. 1, we can write the following compatibility conditions. 

         𝑡𝑟𝑟|𝑟=𝑅 = −𝑝’, 𝑡𝑟𝑧|𝑟=𝑅 = 0, 
𝜕𝑢𝑟

𝜕𝑡
|

𝑟=𝑅
= 𝑉𝑟|𝑟=𝑅.                                     (10) 

Moreover, the following conditions on the boundedness of the quantities related to the fluid at 
the central axis of the cylinder must be satisfied. 

              {|𝑝’|, |𝜌’|, |𝑉𝑟|, |𝑉𝑧|}|𝑟=0 < ∞ .                                                   (11) 

The first and second conditions in (10) imply continuity of the force vector at the fluid-cylinder 

interface. According to this continuity condition, the perturbation of the radial normal stress 𝑡𝑟𝑟 in 
the cylinder is set equal to the perturbation of the radial normal stress of the fluid, which is equal 

to −𝑝′ at the interface (the first condition). Since the fluid is assumed to be non-viscous, the shear 
stress in the fluid is zero and, according to the continuity of the force vector, the shear stress in the 
cylinder at the interface is also set equal to zero (the second condition in (10)). The third condition 
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in (10) means the equality of the normal velocities of the components of the hydro-elastic system 
at the interface. This condition can also be considered as a generalization of the well-known 
impermeability condition for inviscid fluids. However, for inviscid fluids, such a condition does 
not satisfy the velocities in the tangent direction to the interface, i.e., in the case considered here 

for the velocities in the direction of the 𝑂𝑧 axis. In other words, for the inviscid fluids, the fluid 

velocity 𝑉𝑧  is not equal to the 
𝜕𝑢𝑧

𝜕𝑡
 at the fluid-cylinder interface. 

Recall that we consider the problem of axisymmetric wave propagation, where all the sought 

quantities of the problem do not depend on the coordinate 𝜃, and the stress 𝑡𝑟𝜃, the displacement 

𝑢𝜃, and the velocity 𝑉𝜃 are set equal to zero. Therefore, the stress 𝑡𝑟𝜃, the displacement 𝑢𝜃, and the 

velocity 𝑉𝜃 are not involved in the conditions in (9), (10), and (11). 
Note that in the problem under consideration the sought values depend only on two spatial 

coordinates 𝑟 and 𝑧. Nevertheless, it is noted above that the “three-dimensional linearized theory 
of elastic waves in bodies with initial stresses” is used to study the problem. This is because in all 
the corresponding references (see, for example, (Guz 2004, Akbarov 2015) and many other 
references listed there) this term is used as it is above, although the problem is two-dimensional in 
spatial coordinates. In these references and in the present paper, the use of the above term means 
that the equations of motion for the pre-stressed cylinder are not obtained by linearizing the 
nonlinear equations and relations of the various approximate shell theories, but from the nonlinear 
equations and relations of the exact equations and relations of elastodynamics. 

This completes the mathematical formulation of the problem under consideration. 

 
 

3. The solution method of the formulated problem 
 

In general, the solution to the dynamic problems of the hydro-elastic system requires the 
involvement of various types of numerical and approximate-analytical solution methods, a review 
of which can be found in the paper (Kumar and Sriram 2020). In this sense, in the present paper, 

we prefer to use the approximate-analytical method, i.e., the so-called discrete-analytical method 
proposed and employed in the papers (Akbarov and Bagirov 2019, Akbarov et al. 2021) for the 
solution to the system of Eqs. (2)-(5). The essence of this method is to reduce the solution of the 
system of equations with variable coefficients to the solution of a certain number of corresponding 
equations with constant coefficients. Now, step by step, we will consider the application of this 
method. 

 

3.1 Dividing the region occupied by the cylinder into sub-regions 
 
Based on the paper (Akbarov and Bagirov 2019, Akbarov et al. 2021), we divide the region 

[𝑅, 𝑅 + ℎ]  into 𝑁  number of sub-regions (or sub-layers) with ℎ/𝑁  thickness and within the 

framework of the 𝑛 − 𝑡ℎ sub-layer the relation (𝑅 + (𝑛 − 1)ℎ/𝑁 ≤ 𝑟 ≤ (𝑅 + 𝑛ℎ/𝑁) takes place, 
where 1 ≤ 𝑛 ≤ 𝑁. Taking the insignificance of the initial stress changes within each sublayer into 
consideration, we assume that these stresses can be taken approximately as constants within these 

sub-layers, the values of which are determined by the following relations 

𝜎𝑟𝑟
0 (𝑟) ≈ 𝜎𝑟𝑟

0 (𝑟𝑛), 𝜎𝜃𝜃
0 (𝑟) ≈ 𝜎𝜃𝜃

0 (𝑟𝑛), 𝜎𝑧𝑧
0 (𝑟) ≈ 𝜎𝑧𝑧

0 (𝑟𝑛), 

                        𝑟𝑛 = 𝑅 + (𝑛 − 1)ℎ/𝑁 + ℎ/(2𝑁).                                           (12) 
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After the foregoing division procedure, we formulate the contact and boundary conditions 
which are satisfied between the sub-layers and on the face of the sub-layers. 

Taking the relations in (10) and (11) into consideration, the contact conditions on the sub-
layers’ interface, the boundary conditions on the outer face of the outer sub-layer and the 
compatibility conditions on the inner face of the inner sub-layer can be written as follows. 

𝑡𝑟𝑟
1 |𝑟=𝑅 = −𝑝’, 𝑡𝑟𝑧

1 |𝑟=𝑅 = 0, 
𝜕𝑢𝑟

1

𝜕𝑡
|

𝑟=𝑅
= 𝑉𝑟|𝑟=𝑅 , 𝑡𝑟𝑟

1 |𝑟=𝑅+ℎ/𝑁 = 𝑡𝑟𝑟
2 |𝑟=𝑅+ℎ/𝑁, 

𝑡𝑟𝑧
1 |𝑟=𝑅+ℎ/𝑁 = 𝑡𝑟𝑧

2 |𝑟=𝑅+ℎ/𝑁 , 𝑢𝑟
1|𝑟=𝑅+ℎ/𝑁 = 𝑢𝑟

2|𝑟=𝑅+ℎ/𝑁, 

𝑢𝑧
1|𝑟=𝑅+ℎ/𝑁 = 𝑢𝑧

2|𝑟=𝑅+ℎ/𝑁, ..., 

𝑡𝑟𝑟
𝑛−1|𝑟=𝑅+(𝑛−1)ℎ/𝑁 = 𝑡𝑟𝑟

𝑛 |𝑟=𝑅+(𝑛−1)ℎ/𝑁 , 𝑡𝑟𝑧
𝑛−1|𝑟=𝑅+(𝑛−1)ℎ/𝑁 = 𝑡𝑟𝑧

𝑛 |𝑟=𝑅+(𝑛−1)ℎ/𝑁, 

𝑢𝑟
𝑛−1|𝑟=𝑅+(𝑛−1)ℎ/𝑁 = 𝑢𝑟

𝑛|𝑟=𝑅+(𝑛−1)ℎ/𝑁 ’𝑢𝑧
𝑛−1|𝑟=𝑅+(𝑛−1)ℎ/𝑁 = 𝑢𝑧

𝑛|𝑟=𝑅+(𝑛−1)ℎ/𝑁 , ... , 

𝑡𝑟𝑟
𝑁 |𝑟=𝑅+ℎ = 0, 𝑡𝑟𝑧

𝑁 |𝑟=𝑅+ℎ = 0.                                              (13) 

The upper indices in 1,2, . . . , 𝑁  in (13) indicate the number of sublayers. The number of 

relations in (13) is equal to 4𝑁 + 1  where the value of 𝑁  is defined from the convergence 
requirement of the numerical results and the upper indices in these relations indicate the number of 
the corresponding sub-layer.  

Thus, within the assumptions (12) and (13), we consider the solution to the system of equations 
(2)-(5). 

 

3.2 Solution procedure to the system of Eqs. (2)-(5) within each sublayer 
 

First of all, we note that the assumption (12) allows us to reduce the system of Eqs. (2)-(5) with 
variable coefficients to the corresponding system of equations with constant coefficients within the 
framework of each sub-layer. Consequently, taking the assumption (12) into account, we obtain the 
following system of equations with constant coefficients from the Eqs. (2) and (3), which are 
satisfied within the framework of each sublayer separately. 

𝜕𝜎𝑟𝑟
𝑛

𝜕𝑟
+ 𝜎𝑟𝑟

0 (𝑟𝑛)
𝜕2𝑢𝑟

𝑛

𝜕𝑟2
+

𝜕𝜎𝑧𝑟
𝑛

𝜕𝑧
+ 𝜎𝑧𝑧

0 (𝑟𝑛)
𝜕2𝑢𝑟

𝑛

𝜕𝑧2
+

1

𝑟
(𝜎𝑟𝑟

𝑛 − 𝜎𝜃𝜃
𝑛 ) + 

𝜎𝑟𝑟
0 (𝑟𝑛)

1

𝑟

𝜕𝑢𝑟
𝑛

𝜕𝑟
− 𝜎𝜃𝜃

0 (𝑟𝑛)
𝑢𝑟

𝑛

𝑟2
= 𝜌

𝜕2𝑢𝑟
𝑛

𝜕𝑡 2
, 

𝜕𝜎𝑟𝑧
𝑛

𝜕𝑟
+ 𝜎𝑟𝑟

0 (𝑟𝑛)
𝜕2𝑢𝑧

𝑛

𝜕𝑟2
+

1

𝑟
𝜎𝑟𝑧

𝑛 + 𝜎𝑟𝑟
0 (𝑟𝑛)

1

𝑟

𝜕𝑢𝑧
𝑛

𝜕𝑟
+

𝜕𝜎𝑧𝑧
𝑛

𝜕𝑧
+ 

                           𝜎𝑧𝑧
0 (𝑟𝑛)

𝜕2𝑢𝑧
𝑛

𝜕𝑧 2 = 𝜌
𝜕2𝑢𝑧

𝑛

𝜕𝑡 2 .                                                      (14) 

Rewriting the relations (4) and (5) with the corresponding upper indices within the framework 
of each sub-layer separately and connecting those with (14) we obtain the complete system of 
equations for determination of the sought quantities within the scope of each layer. 

Now we attempt to solve these systems of equations and for this purpose we use the well -

known classical Lame decomposition which can be found in each monograph related to 
elastodynamics (see, for instance the monograph (Eringen and Suhubi 1975)). Note that this 
decomposition for the axisymmetric problems can be written as follows. 

      𝑢𝑟
𝑛 =

𝜕𝛷𝑛

𝜕𝑟
+

𝜕2𝛹𝑛

𝜕𝑟𝜕𝑧
 , 𝑢𝑧

𝑛 =
𝜕𝛷𝑛

𝜕𝑧
−

𝜕2𝛹𝑛

𝜕𝑟2 −
𝜕𝛹𝑛

𝑟𝜕𝑟
.                                    (15) 

Thus, using the expressions (15), (4) and (3) and doing some cumbersome mathematical 
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manipulations, we obtain the following equations for determination of the potentials 𝛷𝑛 and 𝛹𝑛 

(1 +
𝜎𝑟𝑟

0 (𝑟𝑛)

𝜆+2𝜇
)

𝜕2𝛷𝑛

𝜕𝑟2 + (1 +
𝜎𝜃𝜃

0 (𝑟𝑛)

𝜆+2𝜇
)

𝜕𝛷𝑛

𝑟𝜕𝑟
+ (1 +

𝜎𝑧𝑧
0 (𝑟𝑛)

𝜆+2𝜇
)

𝜕2𝛷𝑛𝑖

𝜕𝑧 2 =
1

(𝑐1)2

𝜕2𝛷𝑛

𝜕𝑡 2 , 

          (1 +
𝜎𝑟𝑟

0 (𝑟𝑛)

𝜇
)

𝜕2𝛹𝑛

𝜕𝑟2 + (1 +
𝜎𝜃𝜃

0 (𝑟𝑛)

𝜇
)

𝜕𝛹𝑛

𝑟𝜕𝑟
+ (1 +

𝜎𝑧𝑧
0 (𝑟𝑛)

𝜇
)

𝜕2𝛹𝑛

𝜕𝑧 2 =
1

(𝑐2 )2

𝜕2𝛹𝑛

𝜕𝑡 2 ,               (16) 

where 𝑐1 = √(𝜆 + 2𝜇)/𝜌 and 𝑐2 = √𝜇/𝜌  are the speeds of the dilatation and distortion wave 

propagation velocities, respectively, of the cylinder’s material.  

If we assume that 𝜎𝑧𝑧
0 (𝑟𝑛) = 0,  𝜎𝑟𝑟

0 (𝑟𝑛) = 0  and 𝜎𝜃𝜃
0 (𝑟𝑛) = 0 , then the equations in (16) 

coincide with the corresponding equations in classical elastodynamics (see, for instance (Eringen 
and Suhubi 1975)). 

Representing the functions ,n 𝑢𝑟
𝑛, ,nu 𝜎𝑟𝑟

𝑛 , 𝜎𝜃𝜃
𝑛  and 𝜎𝑧𝑧

𝑛  with the multiplying sin( 𝑘𝑧 − 𝜔𝑡) and 

the functions ,n 𝑢𝑧
𝑛 and 𝜎𝑟𝑧

𝑛  with the multiplying cos( 𝑘𝑧 − 𝜔𝑡), and denoting the amplitudes of 

these quantities with the same symbols, the following equations for the amplitudes of the 

potentials 𝛷𝑛 and 𝛹𝑛 are obtained. 

(1 +
𝜎𝑟𝑟

0 (𝑟𝑛)

𝜆+2𝜇
)

𝑑2𝛷𝑛

𝑑(𝑘𝑟)2
+ (1 +

𝜎𝜃𝜃
0 (𝑟𝑛)

𝜆+2𝜇
)

𝑑𝛷𝑛

𝑘𝑟𝑑(𝑘𝑟)
+ (

1

(𝑐1)2

𝜔2

𝑘2
− 1 −

𝜎𝑧𝑧
0 (𝑟𝑛)

𝜆+2𝜇
)𝛷𝑛 = 0, 

         (1 +
𝜎𝑟𝑟

0 (𝑟𝑛)

𝜇
)

𝑑2𝛹𝑛

𝑑(𝑘𝑟)2 + (1 +
𝜎𝜃𝜃

0 (𝑟𝑛)

𝜇
)

𝑑𝛹𝑛

𝑘𝑟𝑑(𝑘𝑟)
+ (

1

(𝑐2 )2

𝜔2

𝑘2 − 1 −
𝜎𝑧𝑧

0 (𝑟𝑛)

𝜇
)𝛹𝑛 = 0.          (17) 

Introducing the notation  

𝛼(𝑟𝑛) =
1+𝜎𝜃𝜃

0 (𝑟𝑛)/𝜇

1+𝜎𝑟𝑟
0 (𝑟𝑛)/𝜇

 , 𝛽(𝑟𝑛) =
1+𝜎𝑧𝑧

0 (𝑟𝑛)/𝜇

1+𝜎𝑟𝑟
0 (𝑟𝑛)/𝜇

, 𝑟1
𝑛 = 𝑘𝑟√

𝑐2

(𝑐2)2(1+𝜎𝑟𝑟
0 (𝑟𝑛)/𝜇)

− (𝛽(𝑟𝑛))2 , 𝑐 = 𝜔/𝜅, 

𝛼1(𝑟𝑛) =
1+𝜎𝜃𝜃

0 (𝑟𝑛)/(𝜆+2𝜇)

1+𝜎𝑟𝑟
0 (𝑟𝑛)/(𝜆+2𝜇)

, 𝛽1(𝑟𝑛) =
1+𝜎𝑧𝑧

0 (𝑟𝑛)/(𝜆+2𝜇)

1+𝜎𝑟𝑟
0 (𝑟𝑛)/(𝜆+2𝜇)

 

                𝑟2
𝑛 = 𝑘𝑟√

𝑐2

(𝑐1 )2(1+𝜎𝑟𝑟
0 (𝑟𝑛)/(𝜆+2𝜇))

− (𝛽1(𝑟𝑛))2,                                  (18) 

we simplify the expressions of the equations in (17) as follows. 

       
2

1
2

2 2 2

( )

( )

n n
nrd d

d r r dr
+ +
 

𝛷𝑛 = 0,  
2

2
1 1 1

( )

( )

n n
nrd d

d r r dr
+ +
 

𝛹𝑛 = 0.                  (19) 

According to (Watson 1966), we use the representation 

               𝛷𝑛(𝑟2) = (𝑟2)(1−𝛼1(𝑟𝑛))/2𝛷1
𝑛(𝑟2), 𝛹𝑛(𝑟1) = (𝑟1)(1−𝛼(𝑟𝑛))/2𝛹1

𝑛(𝑟1)                   (20) 

and substituting them into the Eq. (19), the following Bessel equations are obtained for the 

unknown functions 𝛷1
𝑛(𝑟2) and 𝛹1

𝑛(𝑟1). 

𝑑2𝛷1

(𝑖)𝑛𝑖

𝑑(𝑟2
(𝑖)

)2
+

1

𝑟2
(𝑖)

𝑑𝛷1

(𝑖)𝑛𝑖

𝑑𝑟2
(𝑖) + (1 −

(1−(𝛼1
(𝑖)

(𝑟𝑛𝑖
)))2/4

(𝑟2
(𝑖)

)2
)𝛷1

(𝑖)𝑛𝑖 = 0, 

          
𝑑2𝛹1

(𝑖)𝑛𝑖

𝑑(𝑟1
(𝑖)

)2
+

1

𝑟1
(𝑖)

𝑑𝛹1

(𝑖)𝑛𝑖

𝑑𝑟1
(𝑖) + (1 −

(1−(𝛼
(𝑖)

(𝑟𝑛𝑖
)))2/4

(𝑟1
(𝑖)

)2
)𝛹1

(𝑖)𝑛𝑖 = 0.                            (21)  

Thus, using the solutions to the equations in (21) determined through the Bessel functions and 
substituting them into the presentations in (20) we find the following expressions for the potentials 

𝛷𝑛 and 𝛹𝑛. 
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𝛷𝑛 = 𝐴1
𝑛(𝑟2)𝛾1(𝑟𝑛)𝐸𝛾1(𝑟𝑛)(𝑟2

𝑛𝑖) + 𝐴2
𝑛(𝑟2)𝛾1(𝑟𝑛)𝐹𝛾1(𝑟𝑛)(𝑟2

𝑛), 

𝛹𝑛 = 𝐵1
𝑛(𝑟1)𝛾(𝑟𝑛)𝐸𝛾(𝑟𝑛)(𝑟1

𝑛) + 𝐵2
𝑛(𝑟1)𝛾(𝑟𝑛)𝐹𝛾(𝑟𝑛)(𝑟1

𝑛),                           (22) 

where  

𝛾1(𝑟𝑛) = (1 − 𝛼1(𝑟𝑛))/2, 𝛾(𝑟𝑛) = (1 − 𝛼(𝑟𝑛))/2 

𝐸𝛾1(𝑟𝑛)(𝑟2
𝑛) = {

𝐽𝛾1(𝑟𝑛)(𝑟2
𝑛)𝑖𝑓(𝑟2

𝑛)2/𝑟2 > 0

𝐼𝛾1(𝑟𝑛)(𝑟2
𝑛)𝑖𝑓(𝑟2

𝑛)2/𝑟2 < 0
, 

𝐹𝛾1(𝑟𝑛)(𝑟2
𝑛) = {

𝑌𝛾1(𝑟𝑛)(𝑟2
𝑛)𝑖𝑓(𝑟2

𝑛)2/𝑟2 > 0

𝐾𝛾1(𝑟𝑛)(𝑟2
𝑛)𝑖𝑓(𝑟2

𝑛)2/𝑟2 < 0
, 

𝐸𝛾(𝑟𝑛)(𝑟1
𝑛) = {

𝐽𝛾(𝑟𝑛)(𝑟1
𝑛)𝑖𝑓(𝑟1

𝑛)2/𝑟2 > 0

𝐼𝛾(𝑟𝑛)(𝑟1
𝑛)𝑖𝑓(𝑟1

𝑛)2/𝑟2 < 0
, 

𝐹𝛾(𝑟𝑛)(𝑟1
𝑛𝑖) = {

𝑌𝛾(𝑟𝑛𝑖
)(𝑟1

𝑛)𝑖𝑓(𝑟1
𝑛)2/𝑟2 > 0

𝐾𝛾(𝑟𝑛)(𝑟1
𝑛)𝑖𝑓(𝑟1

𝑛𝑖)2/𝑟2 < 0
.                                       (23) 

In (23), 𝐽𝛿(𝑥)  and 𝐼𝛿(𝑥)  are the Bessel and modified Bessel functions of the first kind, 

however, 𝑌𝛿(𝑥) and 𝐾𝛿(𝑥) are also Bessel and modified Bessel functions of the second kind.   
 

3.3 The expressions for the displacements and stresses 
 
Thus, substituting the expressions in (22) and (23) into (15) and using the relations (4) and (5) 

we determine the following expressions for the displacements and stresses existing within each 
separate sublayer through which are expressed the contact, boundary and compatibility conditions 
satisfied between the sublayers.  

𝑢𝑟
𝑛(𝑟) =

𝐴1
𝑛 𝑑𝑟2

𝑛

𝑑𝑟
[𝛾1(𝑟𝑛)(𝑟2

𝑛)(𝛾1(𝑟𝑛)−1)𝐸𝛾1(𝑟𝑛)(𝑟2
𝑛) +(𝑟2

(𝑛
)𝛾1(𝑟𝑛) 𝑑𝐸𝛾1(𝑟𝑛)(𝑟2

𝑛)

𝑑𝑟2
𝑛 ]+

𝐴2
𝑛 𝑑𝑟2

𝑛

𝑑𝑟
[𝛾1(𝑟𝑛)(𝑟2

𝑛)(𝛾1(𝑟𝑛)−1)𝐹𝛾1(𝑟𝑛)(𝑟2
𝑛) +(𝑟2

𝑛)𝛾1(𝑟𝑛) 𝑑𝐹𝛾1(𝑟𝑛)(𝑟2
𝑛)

𝑑𝑟2
𝑛 ] +

𝐵1
𝑛 𝑑𝑟1

𝑛

𝑑𝑟
[𝛾(𝑟𝑛)(𝑟1

𝑛)(𝛾(𝑟𝑛)−1)𝐸𝛾(𝑟𝑛)(𝑟1
𝑛) +

(𝑟1
𝑛)𝛾1(𝑟𝑛) 𝑑𝐹𝛾(𝑟𝑛)(𝑟1

𝑛)

𝑑𝑟1
𝑛 ]+𝐵2

𝑛 𝑑𝑟1
𝑛

𝑑𝑟
[𝛾(𝑟𝑛)(𝑟1

𝑛)(𝛾(𝑟𝑛)−1)𝐹𝛾(𝑟𝑛)(𝑟1
𝑛) +(𝑟1

𝑛)𝛾(𝑟𝑛) 𝑑𝐹𝛾(𝑟𝑛)(𝑟1
𝑛)

𝑑(𝑟1
𝑛)

], 

𝑢𝑧
𝑛(𝑟) = 𝐴1

𝑛(𝑟2
𝑛)𝛾1(𝑟𝑛)𝐸𝛾1(𝑟𝑛)(𝑟2

𝑛) + 𝐴2
𝑛(𝑟2

𝑛)𝛾1(𝑟𝑛)𝐹𝛾1(𝑟𝑛)(𝑟2
𝑛) − 

𝐵1
𝑛[𝛾(𝑟𝑛)(𝛾(𝑟𝑛) − 1) (

𝑑𝑟2
𝑛

𝑑𝑟
)

2

𝐸𝛾(𝑟𝑛)(𝑟1
𝑛) + 𝛾(𝑟𝑛𝑖

)(𝑟1
𝑛)(𝛾(𝑟𝑛)−1) ×  

1

𝑟
𝐸𝛾(𝑟𝑛)(𝑟1

𝑛) + 2𝛾(𝑟𝑛) (
𝑑𝑟1

𝑛

𝑑𝑟
)

2 𝑑𝐸𝛾(𝑟𝑛)(𝑟1
𝑛)

𝑑(𝑟1
𝑛)

+
1

𝑟
(𝑟1

𝑛)𝛾(𝑟𝑛) ×  

𝑑𝑟1
𝑛

𝑑𝑟

𝑑𝐸𝛾(𝑟𝑛)(𝑟1
𝑛)

𝑑(𝑟1
𝑛)

+ (𝑟1
𝑛)𝛾(𝑟𝑛) (

𝑑𝑟1
𝑛

𝑑𝑟
)

2 𝑑2𝐸𝛾(𝑟𝑛)(𝑟1
𝑛)

𝑑(𝑟1
𝑛)2 ] −  

𝐵2
𝑛[𝛾(𝑟𝑛)(𝛾(𝑟𝑛) − 1) (

𝑑𝑟2
𝑛

𝑑𝑟
)

2

𝐹𝛾(𝑟𝑛)(𝑟1
𝑛) + 𝛾(𝑟𝑛)(𝑟1

𝑛)(𝛾(𝑟𝑛)−1) ×  

1

𝑟
𝐹𝛾(𝑟𝑛)(𝑟1

𝑛) + 2𝛾(𝑟𝑛) (
𝑑𝑟1

𝑛

𝑑𝑟
)

2 𝑑𝐹𝛾(𝑟𝑛)(𝑟1
𝑛)

𝑑(𝑟1
𝑛)

+
1

𝑟
(𝑟1

𝑛)𝛾(𝑟𝑛) ×  

𝑑𝑟1
𝑛

𝑑𝑟

𝑑𝐹𝛾(𝑟𝑛)(𝑟1
𝑛)

𝑑(𝑟1
𝑛)

+ (𝑟1
𝑛)𝛾(𝑟𝑛) (

𝑑𝑟1
𝑛

𝑑𝑟
)

2 𝑑2𝐹𝛾(𝑟𝑛)(𝑟1
𝑛)

𝑑(𝑟1
𝑛)2 ], 
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𝜎𝑟𝑟
𝑛 (𝑟)

𝜇
= 𝐴1

𝑛 {(
𝑑𝑟2

𝑛

𝑑𝑟
)

2

2 (1 +
𝜆
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) [𝛾1(𝑟𝑛)(𝛾1(𝑟𝑛) − 1)(𝑟2

𝑛)(𝛾1(𝑟𝑛)−2)𝐸𝛾1(𝑟𝑛)(𝑟2
𝑛) +

2𝛾1(𝑟𝑛)(𝑟2
𝑛)(𝛾1(𝑟𝑛)−1) 𝑑𝐸𝛾1(𝑟𝑛)(𝑟2

𝑛)

𝑑(𝑟2
𝑛)

+ (𝑟2
𝑛)𝛾1(𝑟𝑛) 𝑑2𝐸𝛾1(𝑟𝑛)(𝑟2
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𝜆

𝜇
(𝑟2

𝑛)𝛾1(𝑟𝑛)𝐸𝛾1(𝑟𝑛)(𝑟2
𝑛)} + 

𝐴2
𝑛 {(

𝑑𝑟2
𝑛

𝑑𝑟
)

2

2 (1 +
𝜆
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) [𝛾1(𝑟𝑛)(𝛾1(𝑟𝑛) − 1)(𝑟2

𝑛)(𝛾1(𝑟𝑛)−2)𝐹𝛾1(𝑟𝑛)(𝑟2
𝑛) +  

2𝛾1(𝑟𝑛)(𝑟2
𝑛)(𝛾1(𝑟𝑛)−1) 𝑑𝐹𝛾1(𝑟𝑛)(𝑟2

𝑛)

𝑑(𝑟2
𝑛)

+ (𝑟2
𝑛)𝛾1(𝑟𝑛) 𝑑2𝐹𝛾1(𝑟𝑛)(𝑟2

𝑛)
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𝜆

𝜇
(𝑟2

𝑛)𝛾1(𝑟𝑛)𝐹𝛾1(𝑟𝑛)(𝑟2
𝑛)} + 

𝐵1
𝑛 {(

𝑑𝑟1
𝑛

𝑑𝑟
)

2

2 (1 +
𝜆

2𝜇
) [𝛾(𝑟𝑛)(𝛾(𝑟𝑛) − 1)(𝑟1

𝑛)(𝛾(𝑟𝑛)−2)𝐸𝛾(𝑟𝑛)(𝑟1
𝑛) +  

2𝛾(𝑟𝑛)(𝑟1
𝑛)(𝛾(𝑟𝑛)−1) 𝑑𝐸𝛾(𝑟𝑛)(𝑟1

𝑛)

𝑑(𝑟1
𝑛)

+ (𝑟1
𝑛)𝛾(𝑟𝑛) 𝑑2𝐸𝛾(𝑟𝑛)(𝑟1

𝑛)

𝑑(𝑟1
𝑛)2

] +  

𝜆

𝜇
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𝑛
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1)(𝛾(𝑟𝑛) − 2)𝐸𝛾(𝑟𝑛)(𝑟1
𝑛) + 

3𝛾(𝑟𝑛)(𝛾(𝑟𝑛) − 1)(𝑟1
𝑛)(𝛾(𝑟𝑛)−2) (

𝑑𝑟1
𝑛

𝑑𝑟
)

3 𝑑𝐸𝛾(𝑟𝑛)(𝑟1
𝑛)

𝑑(𝑟1
𝑛)

+  

3𝛾(𝑟𝑛)(𝑟1
𝑛)(𝛾(𝑟𝑛)−1) (

𝑑𝑟1
𝑛

𝑑𝑟
)

3 𝑑2𝐸𝛾(𝑟𝑛)(𝑟1
𝑛)

𝑑(𝑟1
𝑛)2 + (𝑟1

𝑛)𝛾(𝑟𝑛) (
𝑑𝑟1

𝑛

𝑑𝑟
)

3

×  

𝑑3𝐸𝛾(𝑟𝑛)(𝑟1
𝑛)

𝑑(𝑟1
𝑛)3 −

1

(𝑟1
𝑛)2 𝛾(𝑟𝑛)(𝑟1

𝑛)(𝛾(𝑟𝑛)−1) (
𝑑𝑟1

𝑛

𝑑𝑟
)

3

𝐸𝛾(𝑟𝑛)(𝑟1
𝑛) −  

1

(𝑟1
𝑛)2 𝛾(𝑟𝑛)(𝑟1

𝑛)𝛾(𝑟𝑛) (
𝑑𝑟1

𝑛

𝑑𝑟
)

3 𝑑𝐸𝛾(𝑟𝑛)(𝑟1
𝑛)

𝑑(𝑟1
𝑛)

+ 𝛾(𝑟𝑛)(𝛾(𝑟𝑛) − 1) ×  

1

𝑟1
𝑛 (𝑟1

𝑛)(𝛾(𝑟𝑛)−2) (
𝑑𝑟1

𝑛

𝑑𝑟
)

3

𝐸𝛾(𝑟𝑛)(𝑟1
𝑛) + 2𝛾(𝑟𝑛) (
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𝑛

𝑑𝑟
)
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1

𝑟1
𝑛

𝑑𝐸𝛾(𝑟𝑛)(𝑟1
𝑛)

𝑑(𝑟1
𝑛)

+  

1

𝑟1
𝑛 (𝑟1

𝑛)𝛾(𝑟𝑛) (
𝑑𝑟1

𝑛

𝑑𝑟
)
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)(𝒓𝟏
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𝒏)
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𝒏)
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𝐹𝛾(𝑟𝑛)(𝑟1
𝑛) + 3𝛾(𝑟𝑛)(𝛾(𝑟𝑛) − 1)(𝑟1

𝑛)(𝛾(𝑟𝑛)−2) (
𝑑𝑟1

𝑛

𝑑𝑟
)

3 𝑑𝐹𝛾(𝑟𝑛)(𝑟1
𝑛)

𝑑(𝑟1
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𝑑3𝐹𝛾(𝑟𝑛)(𝑟1
𝑛)

𝑑(𝑟1
𝑛)3 −

1

(𝑟1
𝑛)2 𝛾(𝑟𝑛)(𝑟1

𝑛)(𝛾(𝑟𝑛)−1) (
𝑑𝑟1

𝑛

𝑑𝑟
)

3

𝐹𝛾(𝑟𝑛)(𝑟1
𝑛) −  

1

(𝑟1
𝑛)2

𝛾(𝑟𝑛)(𝑟1
𝑛)𝛾(𝑟𝑛) (

𝑑𝑟1
𝑛

𝑑𝑟
)

3 𝑑𝐹𝛾(𝑟𝑛)(𝑟1
𝑛)

𝑑(𝑟1
𝑛)

+ 𝛾(𝑟𝑛)(𝛾(𝑟𝑛) − 1) ×  

1

𝑟1
𝑛 (𝑟1

𝑛)(𝛾(𝑟𝑛)−2) (
𝑑𝑟1

𝑛

𝑑𝑟
)

3

𝐹𝛾(𝑟𝑛)(𝑟1
𝑛) + 2𝛾(𝑟𝑛) (

𝑑𝑟1
𝑛

𝑑𝑟
)

3 1

𝑟1
𝑛 ×  

           
𝒅𝒓𝟏

𝒏

𝒅𝒓
[𝜸(𝒓𝒏)(𝒓𝟏

𝒏)(𝜸(𝒓𝒏)−𝟏)𝑭𝜸(𝒓𝒏)(𝒓𝟏
𝒏) + (𝒓𝟏

𝒏)(𝜸(𝒓𝒏)−𝟏) 𝒅𝑭𝜸(𝒓𝒏)(𝒓𝟏
𝒏)

𝒅(𝒓𝟏
𝒏)

]}.                  (24) 

This completes the consideration of the solution procedure to the system of Eqs. (2)-(5). 

 
3.4 The solution to the field equations related to the fluid flow 
 
According to (Guz 2009), we use the following representations for the solution to the system of 

Eqs. (6) and (7) 

             𝜌’ = −𝑎0
−2𝜌0

𝜕

𝜕𝑡
𝛷𝑓, 𝑝’ = −𝜌0

𝜕

𝜕𝑡
𝛷𝑓, 𝑉𝑟 =

𝜕

𝜕𝑟
𝛷𝑓 , 𝑉𝑧 =

𝜕

𝜕𝑧
𝛷𝑓,                        (25) 

where the function 𝛷𝑓 satisfies the equation  

         [𝛥 −
1

𝑎0
2

𝜕2

𝜕𝑡 2] 𝛷𝑓 = 0 , 𝛥 =
𝜕2

𝜕𝑟2 +
1

𝑟

𝜕

𝜕𝑟
+

𝜕2

𝜕𝑧 2.                                       (26)  

Representing the functions 𝑉𝑧, 𝑝’ and 𝜌’ by multiplying sin( 𝑘𝑧 − 𝜔𝑡), and the functions  𝛷𝑓 

and 𝑉𝑟  by multiplying cos( 𝑘𝑧 − 𝜔𝑡) , the following equation from (26) for 𝛷𝑓1  (where 𝛷 =

𝛷𝑓1(𝑟) cos( 𝑘𝑧 − 𝜔𝑡)) is obtained. 

    (
𝑑2

𝑑𝑟3
2 +

1

𝑟3

𝑑

𝑑𝑟3
+ 1) 𝛷𝑓1(𝑟) = 0 ,                                                (27) 

where  
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         𝑟3 = 𝑘𝑟√(
𝑐

𝑎0
)

2
− 1 .                                                     (28) 

Taking the condition (11) into consideration, we find the solution to Eq. (27) as follows 

 𝛷𝑓1(𝑟) = {
𝐹𝐽0(𝑟3)𝑖𝑓𝑟3

2 > 0

𝐹𝐼0(𝑟3)𝑖𝑓𝑟3
2 < 0

                                              (29) 

where 𝐽0(𝑟3) (𝐼0(𝑟3)) is the first kind of Bessel (modified Bessel) function of the zeroth order and 

𝐹 is an unknown constant. 
Thus, substituting the function (29) through the relation 𝛷𝑓 = 𝛷𝑓1(𝑟) cos( 𝑘𝑧 − 𝜔𝑡) into the 

expressions in (25), the following expressions for the quantities related to the fluid are obtained. 

𝑝’ = 𝜌0(𝑉𝑧
0𝑘 + 𝜔) sin( 𝑘𝑧 − 𝜔𝑡) {

𝐹𝐽0(𝑟3)𝑖𝑓𝑟3
2 > 0

𝐹𝐼0(𝑟3)𝑖𝑓𝑟3
2 < 0

, 

𝜌’ = 𝑎0
−2𝜌0(𝑉𝑧

0𝑘 + 𝜔) sin( 𝑘𝑧 − 𝜔𝑡) {
𝐹𝐽0(𝑟3)𝑖𝑓𝑟3

2 > 0

𝐹𝐼0(𝑟3)𝑖𝑓𝑟3
2 < 0

, 

 𝑉𝑟 = 𝑘
𝑑𝑟3

𝑑𝑟
cos( 𝑘𝑧 − 𝜔𝑡) {

−𝐹𝐽1(𝑟3)𝑖𝑓𝑟3
2 > 0

𝐹𝐼1(𝑟3)𝑖𝑓𝑟3
2 < 0

,𝑉𝑧 = −𝑘 sin( 𝑘𝑧 − 𝜔𝑡) {
𝐹𝐽0(𝑟3)𝑖𝑓𝑟3

2 > 0

𝐹𝐼0(𝑟3)𝑖𝑓𝑟3
2 < 0

.    (30) 

In this way, we determine the analytical expressions for all the quantities related to the hollow 

cylinder and fluid. 

 
3.5 Obtaining the dispersion equation 
 

By direct verification, it is determined that in the foregoing solution procedure 4𝑁 + 1 number 

of unknown constants 𝐴1
𝑛 , 𝐴2

𝑛 , 𝐵1
𝑛 , 𝐵2

𝑛  (𝑛 = 1,2, . . . , 𝑁 ) and 𝐹  appear. As well as by direct 
verification, it is determined that the total number of the boundary, contact and compatibility 

conditions in (13) which contain these unknowns is also equal to 4𝑁 + 1. Consequently, from the 
conditions in (13), we obtain the system of linear homogeneous equations with respect to these 
unknowns. According to the usual procedure, equating to zero the determinant of the coefficient 
matrix of these equations’ system we obtain the following dispersion equation. 

      𝑑𝑒𝑡( 𝑎𝑛𝑚(𝑐/𝑐2, 𝑘𝑅, 𝑝𝑜/𝜇,
𝜌

𝜌0,ℎ/𝑅
, 𝑎0/𝑐2)) = 0, 𝑛; 𝑚 = 1,2, . . . ,4𝑁 + 1.                  (31) 

Here, we do not give the explicit expressions of the components 𝑎𝑛𝑚  of the coefficient matrix 

(𝑎𝑛𝑚) because these expressions can be easily determined from the expressions in (24) and (29). 
Note that the dispersion equation is solved numerically by employing the “bi-section” method. 
Now we consider the numerical results illustrating the influence of the inhomogeneous initial 

stresses in (1) on the dispersion of the axisymmetric longitudinal waves in the hydro-elastic system 
under consideration.  
 
 

4. Numerical results and discussions 
 

4.1 Testing the solution method and PC programs 
 

First, we attempt to test the used solution method and for this purpose, we consider the case  
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Fig. 2 Dispersion diagrams obtained for the zeroth and the first four modes and for various 

values of the ratio 𝑝0/𝜇 

 
 

which was also considered in the paper (Sinha et al. 1992), i.e., the case where the material of the 

cylinder is steel with the Lame constants 𝜆 = 1.075 × 1011  Pa and 𝜇 = 0.77 × 1011 Pa, and with 

material density 𝜌 = 7910 kg/m3 , and the fluid is water with sound speed velocity 𝑎0 =
1495 m/sec and density 𝜌0 = 1000 kg/m3. Moreover, as in the paper (Sinha et al. 1992), we 

assume that ℎ/𝑅 = 0.2  and note that under obtaining all numerical results which will be 

considered below it is assumed that 𝑁 = 50.   
Thus, consider the numerical results which are obtained within the scope of the foregoing 

assumptions and which test the reliability of the used solution method, calculation algorithm and 
corresponding PC programs. These results are illustrated in Fig. 2 which show the dispersion 

diagrams, i.e., the graphs of the dependencies between 𝜔ℎ/𝑐2 , where 𝑐2 = √𝜇/𝜌 , and 𝑘ℎ 

obtained for various values of the ratio 𝑝0/μ  which characterizes the magnitude of the 
inhomogeneous initial stresses. 

The graphs are obtained for the so-called zeroth mode and for the first four modes. Note that in 

Fig. 2 the results related to the case where 𝑝0/𝜇 = 0 which was also considered in the paper 
(Sinha et al. 1992) are drawn by dashed lines. Thus, comparison of the results obtained in the case 

where 𝑝0/𝜇 = 0 and given in Fig. 2 with the corresponding ones given in the paper (Sinha et al. 
1992) shows that they coincide completely with each other. Consequently, this gives a certain 
guarantee on the reliability of the proposed and used solution method and PC programs, according 

to which, the numerical results are obtained. Moreover, the results obtained in the case where 

𝑝0/𝜇 > 0 clearly show that under relatively great values of the dimensionless wavenumber 𝑘ℎ, the  

54



 

 

 

 

 

 

Parametric study of the wave dispersion in the hydro-elastic system consisting… 

  
(a) (b) 

Fig. 3 Dispersion curves constructed in the cases where (a) 105𝑝0/𝜇 = 1.0 and (b) 105𝑝0/𝜇 = 10.0 

 
 

internal fluid pressure on the inner surface of the cylinder causes to increase the wave propagation 
velocity in all the considered modes. Note that the zeroth mode is the mode with the slowest wave 

velocity and corresponds to the mode of the wave propagation in the “fluid cylinder”. 
We also consider the numerical results related to the dispersion curves obtained for the selected 

material properties for the cylinder and fluid. These curves are given in Fig. 3 which are obtained 

in the cases where 105𝑝0/𝜇 = 1.0 (Fig. 3(a)) and 105𝑝0/𝜇 = 10.0 (Fig. 3(b)). At the same time, 
in Fig. 3 the dispersion curves obtained for the empty cylinder are also given and these curves are 
drawn by the dashed lines. According to Fig. 3, it can be concluded that the existence of the fluid 
causes to decrease significantly the wave propagation velocity in the first, second, third and fourth 
modes. Moreover, it follows from Fig. 3 that the zeroth mode appears as a result of the existence 

of the fluid in the cylinder and this mode is sometimes called “quasi-Scholte” waves, and the wave 
propagation velocity in this mode approaches the wave propagation velocity of the corresponding 

Scholte wave as 𝑘𝑅 → ∞. We recall that the Schott wave is the near-surface non-dispersive wave 
(similar to the Stoneley wave) which appears near the interface plane between the semi-infinite 
fluid and semi-infinite elastic medium. The results illustrated in Fig. 3 also confirm in the 
qualitative sense the reliability of the solution method and calculation algorithm used in the 
present investigation.     

Finally, we illustrate the numerical results in terms of their convergence with respect to the 

number 𝑁 and, for this purpose, we consider the graphs in Fig. 4, which show the dispersion 
curves obtained for the pair steel+Glycerin in the zeroth (Fig. 4(a)) and first (Fig. 4(b)) modes and 
for the pair steel+water in the first mode (Fig. 4(c)). In the construction of the dispersion curves 
for the steel+Glycerin pair, the speed of sound and the density for the Glycerin are assumed to be 

𝑎0 = 1927 m/sec and 𝜌0 = 1260 kg/m3, respectively. As can be seen from Fig. 4, increasing the 

values of the number 𝑁 affects the character of the considered dispersion curves not only in a 

quantitative but also in a qualitative sense. However, above a certain value of the number 𝑁, the  
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(a) (b) 

 
(c) 

Fig. 4 Convergence of the numerical results with respect to the number 𝑁 for the steel+glycerin in the zeroth 

(a), and first (b) modes and for the steel+water pair (c) in the first mode 

 
 

influence of the further increase of the value of this number on the dispersion curves becomes 

insignificant. Note that these results and other related results show that the number 𝑁 = 50 is quite 

sufficient to obtain results with high accuracy. In determining this number, the criterion ∫ ((𝑐/
20

0.01

𝑐2)𝑁 − (𝑐/𝑐2)𝑁−1)𝑑(𝑘𝑅) ≤ 10−4  is used. Note that when considering the higher modes, the 

convergence of the numerical results leaves no doubt. This is because after is 𝑁 ≥ 20, the results 

obtained for each 𝑁 agree with an accuracy of less than 10−4. Moreover, no instability of the 
calculations was observed in the numerical results presented in this paper. 

This completes the testing of the solution method, calculation algorithm and PC programs 
applied under obtaining numerical results which will be considered and analyzed below. 

 
4.2 Parametric study of the influence of the initial stresses on the wave dispersion 
 

We introduce the dimensionless parameters 𝑐2/𝑎0, 𝜌0/𝜌 and ℎ/𝑅 (where 𝑐2 is the shear wave  
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(a) 

 
(b) 

Fig. 5 The influence of the rations 𝑐2/𝑎0 (a) and 𝜌0/𝜌 (b) on the dispersion curves of the zeroth mode 

 
 

propagation in the cylinder material, 𝑎0 is the sound speed in the fluid, 𝜌 is the density of the 

cylinder material, 𝜌0 is the density of the fluid, ℎ is the cylinder thickness, and 𝑅 is the inner 
radius of the cylinder’s cross section) and investigate their effect on the influence of the values of 

the ratio 𝑝0/𝜇  which characterize the magnitude of the inhomogeneous initial stresses in the 

cylinder (where 𝑝0 is the fluid pressure in the initial state and 𝜇 is the shear modulus of the plate 
material) on the dispersion curves, i.e., the graphs of the dependence between 𝑐/𝑐2 and 𝑘𝑅.  

It should be noted that the change of the selected dimensionless parameters influences not only 

the dynamic behavior of the hydro-elastic systems but also the convergence of the numerical 
methods used for the solution of these problems (see, for instance, the paper (Ha and Choi 2020)). 

Thus, we make this investigation for the zeroth, first, second and third modes and first, we  
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(a) (b) 

Fig. 6 The influence of the rations 𝑐2/𝑎0 (a) and 𝜌0/𝜌 (b) on the dispersion curves of the first mode 

 

 

 
(a) (b) 

Fig. 7 The influence of the rations 𝑐2/𝑎0 (a) and 𝜌0/𝜌 (b) on the dispersion curves of the second mode 

 
 

analyze the numerical results illustrating the character of the influence of the ratios 𝑐2/𝑎0 (under 

fixed 𝜌0/𝜌) and 𝜌0/𝜌 (under fixed 𝑐2/𝑎0) on the dispersion curves under the fixed value of ℎ/𝑅 

which for the cases under consideration is selected as ℎ/𝑅 = 0.5 (unless otherwise specified). For 
this purpose, consider the dispersion curves given in Figs. 5, 6, 7 and 8 which are related to the 
zeroth, first, second and third modes, respectively. In these figures, the graphs grouped by the 

letters a and b show the influence of the change of the ratios 𝑐2/𝑎0 and 𝜌0/𝜌 respectively on the 
dispersion curves. 

Thus, it follows from these results that in all the considered modes an increase in the values of  
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(a) (b) 

Fig. 8 The influence of the ratios (a) 𝑐2/𝑎0 and (b) 𝜌0/𝜌 on the dispersion curves of the third mode 

 

 
(a) 

Fig. 9 The influence of the magnitude of the inhomogeneous initial stresses on the dispersion curves 

obtained under ℎ/𝑅 = 0.5 

 
 

the ratio 𝑐2/𝑎0 causes a decrease in the values of the wave propagation velocity. Moreover, in the 

zeroth mode, an increase in the values of the ratio 𝜌0/𝜌 also causes a decrease in the velocity of 
the wave propagation velocity. However, in the first, second and third modes, the character of the 

influence of the ratio 𝜌0/𝜌  on the wave propagation velocity depends on the dimensionless 

wavenumber. In other words, there exists such a value of 𝑘𝑅 (denote it by (𝑘𝑅)’) before which,  
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(b) 

 
(c) 

Fig. 9 Continued 

 
 

i.e., under 𝑘𝑅 < (𝑘𝑅)’, the increase in the values of the ratio 𝜌0/𝜌 causes an increase in the wave 

propagation velocity, however, after that value, i.e., under 𝑘𝑅 > (𝑘𝑅)’ the increase in the values of 

the ratio 𝜌0/𝜌 causes a decrease in the wave propagation velocity. 
The results also show that in the quantitative sense the magnitude of the influence of the ratio 

𝑐2/𝑎0 on the wave propagation velocity is more considerable than that of the ratio 𝜌0/𝜌 At the 
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same time, these results show that in all the cases under consideration an increase in the values of 

the ratio 𝑝0/𝜇, i.e., an increase in the values of the pressure acting on the interior of the cylinder 
causes an increase in the magnitude of the influence of the initial stresses on the values of the 
wave propagation velocity.  

Now we consider in more detail numerical results illustrating how this internal pressure, i.e., 
the magnitude of the inhomogeneous initial stresses influences the dispersion curves in the 

qualitative and quantitative sense. For this purpose, we consider the case where 𝜌0/𝜌 = 1.0 and 

analyze the graphs given in Fig. 9 which are obtained in the cases where 𝑐2/𝑎0 = 0.5 (Fig. 9(a)), 

0.7 (Fig. 9(b)) and 2.0 (Fig. 9(c)) under various values of the ratio 𝑝0/𝜇 for the zeroth and first 
modes. It follows from these results that the dispersion curves related to the zeroth mode not only 
in the quantitative sense but also in the qualitative sense depend significantly on the values of 

𝑝0/𝜇 . As follows from these results, in the zeroth mode in the case where 𝑝0/𝜇 = 0  the 

dependence between 𝑐/𝑐2 and 𝑘𝑅 has non-monotonic character. However, by increasing the values 
of 𝑝0/𝜇 the dependence becomes monotonic. Moreover, these results show that the character of 

the influence of 𝑝0/𝜇 on the values of the wave propagation velocity in the zeroth mode depends 

on the dimensionless wavenumber 𝑘𝑅. There exists such a value of 𝑘𝑅 (denote it by (𝑘𝑅)*) before 

which, i.e., in the cases where 𝑘𝑅 < (𝑘𝑅) ∗ an increase in the values of 𝑝0/𝜇 causes a decrease in 
the wave propagation velocity in the zeroth mode, however, after which, i.e., in the cases where 

𝑘𝑅 > (𝑘𝑅) ∗ an increase in the values of 𝑝0/𝜇 causes an increase in the wave propagation velocity 
in the zeroth mode. At the same time, the magnitude of these “decreases” and “increases” grows 

monotonically with 𝑝0/𝜇. Besides all of these, the results show that as a result of the existence of 
inhomogeneous initial stresses in the cylinder, the cut off wavelength appears for the dispersion 

curves of the zeroth mode and the values of these wavelengths increase with 𝑝0/𝜇. 
Analyses of the dispersion curves related to the first mode show that in the relatively small 

values of 𝑐2/𝑎0 , i.e., in the cases where 𝑐2/𝑎0 =0.5 and 0.7, the wave propagation velocity 

increases with 𝑝0/𝜇 for all the values of 𝑘𝑅. However, the magnitude of this increase depends 
significantly on 𝑘𝑅, and there exists such a value of 𝑘𝑅 (denote it by (𝑘𝑅)1)) for 𝑘𝑅 < (𝑘𝑅)1 

where the influence of the initial stresses on the wave propagation velocity increase with 𝑘𝑅, 

however, for 𝑘𝑅 > (𝑘𝑅)1  this influence decreases monotonically with 𝑘𝑅, and this decreasing 

continues before a certain value of 𝑘𝑅 (denote it by (𝑘𝑅)2), and under 𝑘𝑅 = (𝑘𝑅)2 the magnitude 

of the influence becomes the minimum. At the same time, for the cases where 𝑘𝑅 > (𝑘𝑅)2, the 

influence starts to increase again with 𝑘𝑅.  
For instance, under 𝑐2/𝑎0= 0.5 in the cases where 𝑘𝑅 < 5 (i.e., (𝑘𝑅)1 = 5) the magnitude of 

the influence increases monotonically with 𝑘𝑅, however, under 5 < 𝑘𝑅 < 10 (i.e., (𝑘𝑅)2 = 10) 

this magnitude decreases monotonically with 𝑘𝑅. Finally, after 𝑘𝑅 = 10, i.e., in the cases where 

𝑘𝑅 > 10, the magnitude of the “increase” grows with 𝑘𝑅 . Note that similar results are also 

obtained for the cases where 𝑐2/𝑎0=0.7. However, under relatively great values of 𝑐2/𝑎0 , for 
instance in the case where 𝑐2/𝑎0 =2.0 (Fig. 8(c)) in the low wavenumber approximation, the 
existence of the inhomogeneous initial stresses causes to decrease the wave propagation velocity 

and the magnitude of this “decrease” increases with 𝑝0/𝜇 . Note that this conclusion in the 
qualitative sense agrees with the corresponding results obtained in the paper (Atabek and Lew 

1966) in which steel is taken as the cylinder material and water is taken as the fluid for which 
𝑐2/𝑎0 ≈ 2.11. However, in the paper (Atabek and Lew 1966), the numerical results related to the 
higher wavenumber approximation are not given. Thus, it follows from Fig. 9(c) that in the high 

wavenumber approximation, the existence of the inhomogeneous initial stresses in the cylinder  
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(a) (b) 

Fig. 10 Dispersion curves obtained for the case where ℎ/𝑅 = 0.2 under (a) 𝑐2/𝑎0=0.5, 𝜌0/𝜌 = 0.5 and (b) 

𝑐2/𝑎0=1.0, 𝜌0/𝜌 = 1.0 

 

  
(a) (b) 

 
(c) 

Fig. 11 Dispersion curves obtained for the case where ℎ/𝑅 = 0.3 and 𝜌0/𝜌 = 1.0 under (a) 𝑐2/𝑎0= 0.5, (b)  

𝑐2/𝑎0=1.0 and (c) 𝑐2/𝑎0=2.0 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

Fig. 12 The influence of the inhomogeneous initial stresses on the wave propagation velocity in the second 

and third modes 
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(g) (h) 

Fig. 12 Continued 

 
 
causes the wave propagation velocity to increase in the first mode and the magnitude of this 

“increase” grows monotonically with 𝑝0/𝜇. Here, we do not consider the corresponding results 

obtained for various 𝜌0/𝜌 because the effect of the change 𝜌0/𝜌 does not have as much effect as 

the change 𝑐2/𝑎0. 

Note that the foregoing results are obtained for the case where ℎ/𝑅 = 0.5, and for investigation 
of how the change of the ratio ℎ/𝑅 influences the dispersion curves, we consider the graphs given 

in Figs. 10 and 11 which are constructed in the cases where ℎ/𝑅 = 0.2 and 0.3, respectively. 

It follows from these results that under relatively small values of the ratio ℎ/𝑅  and under 

relatively small values of the ratio 𝑐2/𝑎0  (Fig. 10(a) and Fig. 11(a)), the influence of the initial 
inhomogeneous stresses on the dispersion curves becomes more considerable, not only for the 
zeroth approximation but also for the first approximation. According to the foregoing discussions, 

it can be concluded that under relatively small values of the ratio 𝑐2/𝑎0, the values of (𝑘𝑅)1 and 

(𝑘𝑅)2, which are indicated above, increase with decreasing of ℎ/𝑅. For instance, it follows from 

Fig. 10(a) that (𝑘𝑅)1 > 20  in the case where ℎ/𝑅 = 0.2, and it follows from Fig. 11(a) that 
(𝑘𝑅)1 > 12. At the same time, the results shown in Figs. 10(b), 11(b) and 11(c) illustrate that an 

increase in the values of the ratio 𝑐2/𝑎0 causes a decrease in the magnitude of the influence of the 
inhomogeneous initial stresses on the wave propagation velocity in the first mode for all the 

considered values of ℎ/𝑅. 
Besides all of these, the results given in Figs. 10 and 11 show that the inhomogeneous initial 

stresses in the cylinder cause the cut off wavelength to appear not only in the zeroth mode but also 
causes the cut off frequency to appear in the first mode and this appearance is more clearly 

observed in the relatively small values of the ratio ℎ/𝑅 and the values of these cut off frequencies 

increase with 𝑝0/𝜇. 

At the same time, it follows from Fig. 11(c) that under relatively great values of the ratio 𝑐2/𝑎0 
the character of the influence of the inhomogeneous initial stresses on the wave propagation 

velocity in the first mode depends on the values of 𝑘𝑅. This is because, in the low wavenumber 
approximation the initial stresses cause to decrease the wave propagation velocity in the first 
mode, however, in the moderate and high wavenumber approximations they cause to increase the 
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wave propagation velocity in the first mode. We recall that such results were also obtained for the 
Steel+Water system which is discussed above and these results agree in the qualitative sense with 
the corresponding results obtained in the paper (Atabek and Lew 1966). 

Finally, we consider the results which show the influence of the initial inhomogeneous initial 
stresses on the wave propagation velocity in the second and third modes. These results are given in 

Fig. 12 which are obtained in the cases where 𝑐2/𝑎0 = 0.3 (Fig. 12(a) and (b)), 0.5 (Fig. 12(c) and 

(d)), 0.7 (Fig. 12(e) and (f)) and 1.5 (Fig. 12(f) and (g)) under 𝜌0/𝜌 = 1.0 and ℎ/𝑅 = 0.5. In this 
figure the graphs grouped by letters a, c, e and g ((b), (d), (f) and (h)) relate to the second (to the 
third) mode. 

In the second and third modes the magnitude of the influence of the initial inhomogeneous 
stresses on the wave propagation velocity is not as much as in the zeroth and first approximation, 

therefore, for a clear illustration of the results in Fig. 12 the following parameter is used 

    𝜓 = 103(𝑐|𝑝0/𝜇>0 − 𝑐|𝑝0/𝜇=0)/𝑐2                                         (32) 

and through this parameter the specified influence is estimated. 
Thus, it follows from Fig. 12 that in all cases, the initial stresses cause to increase the wave 

propagation velocity in the second mode, however, in the third mode the character of the influence 

of the initial stresses on the wave propagation velocity depends on the values of the ratio 𝑐2/𝑎0 

and ℎ/𝑅. For instance, in the cases where 𝑐2/𝑎0 = 0.3 and 0.5 under relatively small values of 

𝑘𝑅, the initial stresses cause to decrease the wave propagation velocity, however, under relatively 
great values the initial stresses cause to increase the wave propagation velocity. At the same time, 

in the cases where 𝑐2/𝑎0 = 0.7 and 1.5, for almost all the considered values of 𝑘𝑅, the initial 
stresses cause to increase the wave propagation velocity.  

This completes the analyzes of the numerical results related to the parametric study of the 
influence of the inhomogeneous initial stresses in the hollow cylinder containing the compressible 
inviscid fluid on the dispersion of the axisymmetric waves propagating in this cylinder. 

 
 

5. Conclusions 
 
In the present work, the dispersion of axisymmetric longitudinal waves propagating in a hydro 

elastic system consisting of a hollow cylinder with inhomogeneous initial stresses and a non-
viscous compressible fluid in this cylinder has been studied. In the context of this study, the 
motion of the cylinder is described in the framework of the so-called three-dimensional linearized 
theory of elastic waves in bodies with initial stresses and the flow of the inviscid compressible 
fluid is described in the framework of the linearized Euler equations. It is assumed that the initial 

static inhomogeneous stresses in the cylinder occur as a consequence of the fluid pressure and that 
these stresses are determined by using the corresponding known expressions. The solution of the 
wave equations related to the cylinder is solved by using the discrete analytical solution method 
and the corresponding dispersion equation is obtained. The algorithm and the programs PC have 
been developed for the numerical solution of the dispersion equation and both this algorithm and 
the programs have been tested for the case when the material of the cylinder is steel and the fluid is 
water. In this particular case, the presented numerical results are compared with the corresponding 
results of other authors and in this way the reliability, accuracy and convergence of the used 

algorithm and programs are proved. 

We introduced the dimensionless parameters 𝑐2/𝑎0, 𝜌0/𝜌 and ℎ/𝑅 (where 𝑐2 is the shear wave 
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propagation in the cylinder material, 𝑎0 is the sound speed in the fluid, 𝜌 is the density of the 
cylinder material, 𝜌0 is the density of the fluid, ℎ is the cylinder thickness, and 𝑅 is the inner 
radius of the cylinder’s cross section) and we investigated their effect on the influence of the 

values of the ratio 𝑝0/𝜇 which characterizes the magnitude of the inhomogeneous initial stresses in 

the cylinder (where 𝑝0 is the fluid pressure in the initial state and 𝜇 is the shear modulus of the 

plate material) on the dispersion curves, i.e., the graphs of the dependence between 𝑐/𝑐2 and 𝑘𝑅. 
This influence is investigated for the zeroth, first, second and third modes. 

Numerical results are presented on the indicated influence and the following corresponding 
concrete conclusions are made. Here we attempt to formulate some of them: 

- The influence of the ratio 𝑐2/𝑎0 on the dispersion curves and on the magnitude of the effect of 

the initial stresses on the dispersion curves is more considerable than that of the ratio 𝜌0/𝜌; 

- An increase in the values of the ratios 𝑐2/𝑎0  and 𝜌0/𝜌  causes to decrease the wave 
propagation velocity and the magnitude of the influence of the inhomogeneous initial stresses 
on the wave propagation velocity; 

- A decrease in the values of the ratio ℎ/𝑅 causes to increase the magnitude of the influence of 
the inhomogeneous initial stresses on the wave propagation velocity and this magnitude 

increases monotonically with 𝑝0/𝜇; 
- The influence of the inhomogeneous initial stresses on the dispersion curves related to the 
zeroth mode changes these curves not only in the quantitative sense but also in the qualitative 

sense. There exists such a value of the dimensionless wavenumber 𝑘𝑅 (denoted by (𝑘𝑅) ∗) 

before which, i.e., under 𝑘𝑅 < (𝑘𝑅) ∗ an increase in the values of the ratio 𝑝0/𝜇 causes to 
decrease the wave propagation velocity in the zeroth mode, however, after which, i.e., under 

𝑘𝑅 > (𝑘𝑅) ∗ it causes to increase the wave propagation velocity in the zeroth mode and the 

value of (𝑘𝑅) ∗ does not depend on 𝑝0/𝜇;  
- The character of the influence of the inhomogeneous initial stresses on the wave propagation 

in the first mode depends not only on the ratio 𝑐2/𝑎0 and the dimensionless wavenumber 𝑘𝑅, 
but also on the ratio ℎ/𝑅; 
- The influence of the inhomogeneous initial stresses in the cylinder on the wave propagation 

velocity in the zeroth and first modes is more considerable than in the second and third modes; 
- In the relatively great values of the ratio 𝑐2/𝑎0 under low wavenumber approximation, initial 
inhomogeneous initial stresses cause the wave propagation velocity in the first mode to 

decrease. However, under moderate and high wavenumber approximations they cause the wave 
propagation velocity in the first mode to increase; 
- As a result of the existence of the inhomogeneous initial stresses, the cut off wavelength in the 
zeroth approximation and the cut off frequencies in the first mode appear. 
At the same time, in the body of the paper many other concrete conclusions are made related to 

the dynamics of the hydro-elastic system under consideration.  
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