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Abstract.  In this study, the vibration problem of thermo elastic carbon nanotubes conveying pulsating viscous nano 
fluid subjected to a longitudinal magnetic field is investigated via Euler-Bernoulli beam model. The controlling 
partial differential equation of motion is arrived by adopting Eringen’s non local theory. The instability domain and 
pulsation frequency of the CNT is obtained through the Galerkin’s method. The numerical evaluation of this study is 
devised by Haar wavelet method (HWM). Then, the proposed model is validated by analyzing the critical buckling 
load computed in present study with the literature. Finally, the numerical calculation of system parameters are shown 
as dispersion graphs and tables over non local parameter, magnetic flux, temperature difference, Knudsen number 
and viscous parameter. 
 

Keywords:  dynamic stability; Haar wavelet method; Knudsen number; nonlocal parameter; pulsating nano 

flow; viscous fluid 

 
 
1. Introduction 
 

The coupling effect of fluid and nano structures has been received more and more research and 

physical construction interest to engineers in order to acquire the interactive mechanical behaviour 

of this system. Fluid will not expose the actual speed while it is passing through the pipe owing to 

power systems changes. Thus, the pattern of flow becomes pulsatile inward through the pipe and 

the tube experience the pulsatile nature too and dynamic character of such type may be the 

efficient idea to handle this phenomenon. Nonlocal elasticity, as a prevalent size dependent 

phenomenon, has been presented by (Eringen 1983, Eringen and Edelen 1972). Fluid conveying 

nano systems via continuum based analysis has received much attention in recent years (Lee 2008, 

Wang 2009, Ghavanloo and Fazelzadeh 2011, Zhen et al. 2011, Wang et al. 2008, Kuang et al. 

2009, Ghavanloo et al. 2011). Both viscous and elastic character is being exposed by viscoelastic 

materials. These type of component will be very chaotic in mechanical waves via damping 

property. There are many models to describe the viscoelastic behaviour such as Maxwell (Xia and 

 

Corresponding author, Ph.D., E-mail: selvam1729@gmail.com 



 

 

 

 

 

 

R. Selvamani, M. Mahaveer Sree Jayan and Marin Marin 

Wang 2010, Rashidi et al. 2012, Hosseini and Sadeghi-Goughari 2016, Li et al. 2016, Karlicicet 
al. 2017, Murmu et al. 2012). The propulsion of magnetic field variants will have center of 
attention in drug delivery through short time and efficient waver by changing its intensity (Given 
2014, Kiani 2014, Kiani 2015, Zhang et al. 2006, Liu et al. 2018, Ibrahimbegovic et al. 2022, 
Hajdo et al. 2021, Nguyen et al. 2022, Ibrahimbegovic and Mejia-Nava 2021) investigated the 
effect of nano flow on vibration of nanotube conveying fluid using Knudsen and Knudsen-

dependent flow velocity on vibrations of a nanotube conveying fluid. They used Euler–Bernoulli 
plug-flow beam theory and modified no-slip condition of nanotube conveying fluid based on Kn 
(Knudsen number). Also, they considered the effect of slip condition, for a liquid and a gas flow. 

The energy and fastness of the particles is highly motivated by temperature growth. This type 
of method has been discussed vividly by many scientists (Raravikar et al. 2002, Schelling 
Keblinski 2003, Pipes and Hubert 2003, Zhang and wang 2005, Ni et al. 2002, Zhang and Shen 
2006. Zhang et al.2007). Paidoussis and Sundararajan (1975) conducted a dynamic survey on 

pulsating fluid conveying pipe via Bolotin’s and Floquet analysis. The analytical model of stability 
checking and support stimulation of PFCP (Pulsating Fluid Conveying Pipe) was constructed by 
Ariaratnam and Namachchivaya (1986). Noah and Hopkins (1980) carried out dynamic study of 
PFCP to expose the effect of flexibility on steady and pulsating waves. Jin and Song (2005) 
performed the physical parameter analysis on supported PFCP via numerical calculations and 
interpretations. Employing the internal resonance of the system, (Panda and Kar 2007, Panda and 
Kar 2008). Conducted a nonlinear bending analysis in a pinned–pinned PFCP in the frame of 
principal parametric resonance. Incorporating algorithm of fourth-order Runge–Kutta method, Ni 

et al. (2014) adopted coupled PFCP to verify the nonlinear bending characteristics. Again, owing 
to showcase the in and out plane pulsation frequency of curved PFCP, vibration studies were 
conducted by Ni et al. (2014). Zhang et al. (2017) carried out a dynamical survey and perturbation 
detail in multi-pulse dynamics of the cantilevered PFCP. Herein the principal of parametric 
resonance was taken in to account.  

Nowadays, differential and integro-differential equations conveniently solved by Haar wavelets 
method. The Haar wavelets are generated from pairs of piecewise constant functions and can be 

simply integrated. Furthermore, the Haar functions are orthogonal and it forms a good transform 
basis. Chen and Hsiao (1997) evaluated lumped and distributed system parameters via Haar 
wavelet method. The Haar wavelet method has been adjusted for solving wide class of differential 
and integral equations which are covering solid and fluid mechanics (Hein and Feklistova 2011), 
mathematical physical problems (Heydari et al. 2014, Hsiao 2015, Jin et al. 2014). The validity 
and accuracy of HWM was elaborated vividly and also evaluated analytically via shear  

 

 

 

Fig. 1 A PFC SWCNT with longitudinal magnetic load 
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deformation theory (Jena and Chakravarty 2019, Lepik and Estonian 2011, Jena et al. 2019). 
Literature review reveals the lack of availability of an analytical investigation concerning with, the 
vibration problem of thermo elastic pulsed viscous fluid conveying carbon nanotubes subjected to 
a longitudinal magnetic field via Haar wavelet theory. Thus, the authors aimed to construct an 
analytical model of the vibration problem of thermo elastic carbon nanotubes conveying pulsating 
viscous nano fluid stimulated by magnetic field through longitudinal axis via Haar wavelet method 

and a set of numerical examples are presented to showcase how each of the variant influences the 
viscous fluid conveying nanotube structure’s endurance. 

 
 

2. Mathematical formulation 
 

2.1 Erigen nonlocal continuum theory 
  

The relationship for linear, homogeneous, isotropic and non-local elastic with body forces are 
defined in constitutive form by (Eringen 1983) as 

𝛱𝑖𝑗 + 𝜌(𝑓𝑗 − 𝑢
..

𝑗) = 0,                                                            (1) 

    𝛱𝑖𝑗(𝑥) = ∫ 𝜋(𝑣
|𝑥 − 𝑥′|), 𝜏)𝛱𝑖𝑗

𝑐(𝑥′)𝑑𝑉(𝑥′),                                           (2) 

𝛱𝑖𝑗
𝑐 = 𝐶𝑖𝑗𝑘𝑙𝜀𝑘𝑙 .                                                               (3)  

𝑒𝑖𝑗(𝑥′) =
1

2
(
𝜕𝑢𝑖(𝑥)

𝜕𝑥𝑗′
+
𝜕𝑢𝑖(𝑥′)

𝜕𝑥𝑗′
).                                                   (4)   

where 𝛱𝑖𝑗,𝑖 , 𝜌, 𝑓𝑗, 𝑢𝑗 are the stress tensor, density, body force and displacement vector at a reference 

point x in the body via the time t, where 𝛱𝑐𝑖𝑗(𝑥′) is the classical stress tensor at any point 𝑥′ in the 

body, which is related to the linear strain tensor 𝑒𝑖𝑗(𝑥′). The kernel function which will add 

nonlocal effect in the relation is represented by 𝜋(|𝑥 − 𝑥′|, 𝜏) is the nonlocal attenuation function 

at x which is created by the local strain at 𝑥′. Eq. (2) denotes the volume integral over the region of 

the body v. With the internal and external characteristic length 𝑎 and 𝑙, respectively, the attenuation 
function has the form  

𝜋(|𝑥 − 𝑥′|, 𝜏), 𝜏 =
𝑒𝑜𝑎

𝑙
.                                                    (5)   

The material constant 𝑒0  is to be found for each and every material and “|𝑥 − 𝑥 ,|” is the 
Euclidian distance. Further, Eq. (2) is rewritten as  

 (1 − 𝜏2𝑙2𝛻2)𝛱𝑖𝑗(𝑥) = 𝛱𝑖𝑗
𝑐(𝑥) = 𝐶𝑖𝑗𝑘𝑙𝑒𝑘𝑙(𝑥),                                      (6)  

where 𝐶𝑖𝑗𝑘𝑙  is the elastic modulus tensor and 𝑒𝑖𝑗  is the strain tensor. Where 𝛻2 denotes the second-

order spatial gradient applied on the stress tensor 𝛱𝑖𝑗 and 𝜏 = 𝑒𝑜𝑎/𝑙. Eringen exposed 𝑒𝑜 = 0.39 

by the matching of the dispersion curves via non-local theory for place wave and born-Karman 

model of lattice dynamics at the end of the Brillouin zone (𝑘𝑎 = 𝜋), where 𝑎  is the distance 
between atoms and k is the wave number in the phonon analysis.  
 

 

3. Basic formulation 
 

The classical controlling equations of fluid conveying CNT which poses the force term, 
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magnetic field, thermal load, fluid flow can be designed via Euler-Bernoulli beam in the partial 
form as 

 
𝜕𝑆

𝜕𝑥
+𝑁𝑡

𝜕2𝑦

𝜕𝑥2
−
𝜕𝑦

𝜕𝑡
[𝐶 + 𝜌𝐴

𝜕𝑦

𝜕𝑡
] + 𝑞𝑧

𝜕2𝑦

𝜕𝑥2
+ 𝐹𝑝 + 𝐹𝑚 = 𝑚𝑐

𝜕2𝑦

𝜕𝑡2
,                           (7)  

where 𝑆,𝐹𝑝 and 𝐹𝑚 represents the shear force, fluid flow force and the longitudinal magnetic field 

force, respectively. The transverse force 𝑆  and moment of bending 𝑀  of viscoelastic tube via 
Euler-Bernoulli beam model is reached as (Paidoussis 1998) 

𝑆 =
𝜕𝑀

𝜕𝑋
= (𝐸 − 𝐶

𝜕

𝜕𝑡
)𝐼

𝜕3𝑦

𝜕𝑥3
.                                                      (8)   

the thermal loading force 𝑁𝑡 is arrived as  

 𝑁𝑡 =
𝐸𝐴𝛼𝑥𝑇

(1−2𝑣)

𝜕2𝑦

𝜕𝑥2
.                                                            (9)   

Here in 𝐸, 𝐴, 𝜐, 𝛼𝑥 and 𝑇 are the Young modulus, tube cross section, poison ratio of the CNT, 
thermal expansion and the temperature changes respectively. The Lorentz force induced 

longitudinal magnetic flux 𝑞𝑍 (Selvamani et al. 2020) 

 𝑞𝑧 = 𝜂𝐴𝐻𝑥
2 𝜕

2𝑦

𝜕𝑥2
.                                                           (10)   

The viscos-fluid flow force on the CNT is achieved as (Mahaveer Sree Jayan et al. 2020) 
(Amiri et al. 2018) 

𝐹𝑝 = 𝑚𝑓 (2𝑈𝑥
𝜕2𝑦

𝜕𝑥𝜕𝑡
+ 𝑈𝑥

2 𝜕
2𝑦

𝜕𝑥2
+
𝜕2𝑦

𝜕𝑡2
) + (𝜇𝑒𝐴𝑓

𝜕2𝑦

𝜕𝑥2
(
𝜕𝑦

𝜕𝑥𝜕𝑡
+𝑈𝑥

𝜕𝑦

𝜕𝑥
)).                    (11a)  

here 𝑚𝑓, Ux, 𝐴𝑓 and 𝜇𝑒 are the fluid mass, fluid viscosity possessing slip boundary condition, fluid 

flow cross section and modified viscosity, respectively. Modified fluid velocity 𝜇𝑒 and fluid bulk 

viscosity 𝜇0 via the rarefaction coefficient 𝐶𝑟(𝐾𝑛) =
1

(1+𝛼𝐾𝑛)
 is taken as 

𝜇𝑒(𝐾𝑛) = 𝜇0
1

(1+𝛼𝐾𝑛)
.                                                     (11b)   

herein (𝐾𝑛) is the Knudsen number and𝛼is defined as  

𝛼 =
2

𝜋
𝛼0[tan

−1( 𝛼1𝐾𝑛
𝑅)].                                                      (11c)   

Where the values of 𝛼1 and 𝑅 is assumed as 4 and 0.4, respectively and 𝛼0 is  

lim
𝑘𝑛→∞

𝛼 = 𝛼0 = (
64

3𝜋((1−
4

𝑏
)
).                                                   (11d)    

the parameter 𝑏 is set to be -1for the case of slip boundary. Owing to use slip boundary condition, 
the velocity correction factor VCF is adopted as  

𝑉𝐶𝐹 =
𝑈𝑥

𝑈𝑥(𝑛𝑜−𝑠𝑙𝑖𝑝)
=

1

𝐶𝑟(𝐾𝑛)
(4(

2−𝜎𝑣

𝜎𝑣
)) (

𝐾𝑛

(1+𝛼𝐾𝑛)
) + 1.                          (11e)  

The magnitude of 𝐹𝑚 
is considered as in (Azrar et al. 2015) 

𝐹𝑚 = 𝑀𝑓
𝜕𝑈𝑥

𝜕𝑡
(𝐿 − 𝑥) (

𝜕2𝑦

𝜕𝑥2
).                                                 (12)   
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Where 𝐿 is length of the tube and bending stiffness 𝐸𝐼 can be modified as (Lei et al. 2012) 

𝐸𝐼∗ = 𝐸𝐼 + 𝑄𝑠𝐸𝑠 ,                                                         (13)   

here 𝑄𝑠 =
𝜋

8
(𝑑 + ℎ)3 and 𝐸𝑠  is the Young’s modulus of surface and ℎ is the effective thickness of 

SWCNTs, respectively and the diameter is 𝑑 =
3𝑛𝑎

𝜋
 (Li et al. 2016). As per bending moment M 

which is in Eq. (8) takes the form as 

𝑀 = ∫ 𝑧 
𝐴

𝛱𝑥𝑥𝑑𝐴,                                                          (14)   

According to Eq. (6), the non-local form of 1-D nanotube is taken as 

𝛱𝑥𝑥 − (𝑒0𝑎)
2 𝜕

2𝛱𝑥𝑥

𝜕𝑥2
= 𝐸𝑒𝑥𝑥 ,                                                (15)   

where 𝑒𝑥𝑥  is the strain in axial mode, (𝑒0𝑎) is a nonlocal parameter. Eq. (15) is rewritten via 
temperature terms as  

 𝛱𝑥𝑥 (1 − (𝑒0𝑎)
2 𝜕2

𝜕𝑥2
) = 𝐸(𝑒𝑥𝑥 − 𝛼𝑇).                                        (16)  

Where 𝑒𝑥𝑥 through small bending model is showcased as 

𝑒𝑥𝑥 = −𝑧
𝜕2𝑦

𝜕𝑥2
,                                                              (17)   

By employing Eq. (16) and (17) in to Eq. (14) gives 

𝑀(1 − (𝑒0𝑎)
2 𝜕2

𝜕𝑥2
) = 𝐸𝐼∗

𝜕2𝑦

𝜕𝑥2
,                                               (18)   

By substituting Eq. (14) into Eq. (18) leads to 

𝑀 − (𝑒0𝑎)
2 [(𝜌𝐴)

𝜕2𝑦

𝜕𝑡2
+ 𝑞𝑧 −𝑓(𝑥) + 𝐸𝐴𝛼𝑇] = 𝐸𝐼

∗
𝜕2𝑦

𝜕𝑥2
. 

𝑆 − (𝑒0𝑎)
2 [(𝜌𝐴)

𝜕3𝑦

𝜕𝑥2𝜕𝑡2
+
𝜕2𝑞𝑧

𝜕𝑥2
−
𝜕𝑓(𝑥)

𝜕𝑥
+ 𝐸𝐴𝛼𝑇] = 𝐸𝐼∗

𝜕3𝑦

𝜕𝑥3
.                        (20) 

 

According to Eq. (7), motion equation takes the form

 

(1 + 𝐶
𝜕𝑦

𝜕𝑡
)𝐸𝐼

𝜕4𝑦

𝜕𝑥4
+ [

𝐸𝐴𝛼𝑇− 𝑅 + 𝜌𝐴(1− 2𝑣) +

𝑀𝑓
𝜕𝑈𝑥
𝜕𝑡

(𝐿 − 𝑥) − 𝜂𝑠𝐴𝐻𝑥
2 𝜕

2𝑦

𝜕𝑥2
+𝑀𝑓𝑈𝑥

2]
𝜕2𝑦

𝜕𝑥2
+ 

(𝑚+𝑀𝑓)
𝜕2𝑦

𝜕𝑡2
+ 2𝑚𝑓𝑈𝑥

𝜕2𝑦

𝜕𝑥𝜕𝑡
+ 𝑟𝐴(𝑈𝑥

𝜕2𝑦

𝜕𝑥3
+

𝜕2𝑦

𝜕𝑥2𝜕𝑡
) − 

(𝜏)2(
𝐸𝐴𝛼𝑇

𝜕4𝑦

𝜕𝑥4
+𝑚

𝜕2𝑦

𝜕𝑥2𝜕𝑡2
+𝑀𝑓

𝜕2𝑦

𝜕𝑥𝜕𝑡
+𝑀𝑓𝑈𝑥

2 𝜕
4𝑦

𝜕𝑥4

+2𝑀𝑓𝑈𝑥
𝜕4𝑦

𝜕𝑥2𝜕𝑡
−𝜂𝑠𝐴𝐻𝑥

2 𝜕
4𝑦

𝜕𝑥4

) = 0.                        (21) 

 

Using Eq. (11e) into Eq. (21) poses 

(1 + 𝐶
𝜕𝑦

𝜕𝑡
)𝐸𝐼

𝜕4𝑦

𝜕𝑥4
+ 
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[
 
 
 𝐸𝐴𝛼𝑇 −𝑅 + 𝜌𝐴(1− 2𝑣) +𝑀𝑓

𝜕𝑈𝑥𝑎𝑣𝑔(𝑠𝑙𝑖𝑝)

𝜕𝑡
(𝐿 − 𝑥) −

𝜂𝑠𝐴𝐻𝑥
2 𝜕

2𝑦

𝜕𝑥2
+𝑀𝑓(𝑉𝐶𝐹)𝑈𝑥

2𝑎𝑣𝑔(𝑠𝑙𝑖𝑝) ]
 
 
 𝜕2𝑦

𝜕𝑥2
+ 

(𝑚 +𝑀𝑓)
𝜕2𝑦

𝜕𝑡2
+2𝑚𝑓(𝑉𝐶𝐹)𝑈𝑥𝑎𝑣𝑔(𝑠𝑙𝑖𝑝)

𝜕2𝑦

𝜕𝑥𝜕𝑡
+ 

𝑟𝐴(𝑈𝑥𝑎𝑣𝑔(𝑠𝑙𝑖𝑝)
𝜕2𝑦

𝜕𝑥2
+

𝜕3𝑦

𝜕𝑥2𝜕𝑡
) − 

(𝜏)2

(

 
 
𝐸𝐴𝛼𝑇

𝜕4𝑦

𝜕𝑥4
+𝑚

𝜕4𝑦

𝜕𝑥2𝜕𝑡2
+𝑀𝑓

𝜕4𝑦

𝜕𝑥2𝜕𝑡2
+

𝑀𝑓(𝑉𝐶𝐹)𝑈𝑥
2𝑎𝑣𝑔(𝑠𝑙𝑖𝑝)

𝜕4𝑦

𝜕𝑥4

+2𝑀𝑓(𝑉𝐶𝐹)𝑈𝑥𝑎𝑣𝑔(𝑠𝑙𝑖𝑝)
𝜕4𝑦

𝜕𝑥3𝜕𝑡
−𝜂𝑠𝐴𝐻𝑥

2 𝜕
4𝑦

𝜕𝑥4)

 
 
= 0.                        (22)  

the following dimensionless quantities are determined for simple calculation 

,
x

L
=

𝑦

𝐿
= 𝜂, 𝛿 = (

𝐸𝐼∗

𝑀𝑓+𝑚
)

1

2 𝑡

𝐿2
, 𝜏 =

𝑒0𝑎

𝑙
, 𝑢 = (

𝑀𝑓

𝐸𝐼∗
)

1

2 𝐿𝑈𝑥 , 𝛾 = (
𝐸𝐼∗

𝑀𝑓+𝑚
)

1

2 𝐶

𝐿2
, 𝑇 =

𝑁𝐿2

𝐸𝐼∗
−
𝜌𝐴𝐿2

𝐸𝐼∗
(1 −

2𝑣), 𝛽 =
𝛾𝐴

√𝐸𝐼∗𝑀𝑓
,

1

2

,r

f

M
M

M m

 
=   + 

𝑁𝑇
−

=
𝑁𝑇𝐿

2

𝐸𝐼∗
,
 
𝑀𝑞 =

𝜂𝐴𝐻𝑥
2𝐿2

𝐸𝐼∗
.

 

Hence, Eq. (22) in non-dimensional form 

𝛾𝜉//
∗

+ 𝜉// + [𝑢2 + 𝑁𝑡 − 𝑇−𝑀𝑞 +𝑀𝑟𝑢
∗
(1 − 𝜂)] 𝜉// + 𝜉

∗∗

+ 2𝑀𝑟𝑢𝜉//
∗

−𝛽 (𝑢𝜉// +𝑀𝑟𝜉//
∗

) − 

𝜏2 (𝜉//
∗

+ 𝑢2𝜉// +𝑁𝑡𝜉
// −𝑀𝑞𝜉

// +2𝑀𝑟𝑢𝜉//
∗

) = 0.                             (23)  

Where ( )/ =
𝜕( )

𝜕𝜂

/
, ( )∗ =

𝜕( )

𝜕𝛿

/
. The internal pulsating axial flow is taken in to the account and 

the flow velocity under harmonically undulate form is as (Azrar 2015) 

𝑢 = 𝑢𝑜[1 + 𝛹 cos(𝛺𝑡)].                                                   (24)     

where 𝑢0  is the mean flow velocity, 𝛹is the amplitude of the harmonic undulation and 𝛺  its 
frequency. Galerkin method is adopted to detach Eq. (24) as 

𝜂(𝜉, 𝛿) = ∑ 𝜒𝑖(𝜉)
2
𝑖=1 𝜑𝑖(𝛿),                                                 (25)     

here 𝜒𝑖(𝜂), 𝜑𝑖(𝛿)(𝑖 = 1,2. , , , , , , ) are explains the eigen functions corresponding to clamped side 
and in generalized terms of coordinates. By relaying Eqs. (24) and (25) into Eq. (23) results the 
characteristics of orthogonal mode shapes via first order 4-dimensional differential equations as 

𝑘
.

= 𝐵𝑘 + 𝜓 𝛺 𝛲1𝑘 sin(𝛺𝛿) − 𝜓 𝛺 𝛲2𝑘 cos(𝛺𝛿) − 𝛾𝛲3𝑘.                        (26)  

where 𝑘 = [𝑘1,𝑘2,, 𝑘3,, 𝑘4,]
𝑇 , 𝑘3, = 𝑘1,   𝑘4 =

.

𝑘2,   𝛾 = 𝜓𝛾
_
,
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4. Fundamentals of Haar wavelet theory 
 

The Haar function can be defined as 

ℎ𝑖(𝑡) = {

1, 𝑓𝑜𝑟 𝑡 ∈ [𝜉1(𝑖), 𝜉2(𝑖)],

−1, 𝑓𝑜𝑟 𝑡 ∈ [𝜉2(𝑖), 𝜉3(𝑖)],

0, otherwise,

                                             (27a)  

where the higher magnitude of square waves 𝑖 = 𝑚 + 𝑘 + 1,  𝑚 = 2𝑗 which belongs to [𝑋, 𝑌], k is 

the specific square wave point. So, we have the following terms in the interval [𝑋, 𝑌] (Jena and 
Chakraverty 2019) (Lepik and Estonian 2011) 

𝜉1(𝑖) = 𝑋 + 𝑘
𝑌 − 𝑋

2𝑗
,
 

𝜉2(𝑖) = 𝑋 + (2𝑘 + 1)
𝑌 −𝑋

2𝑗+1
, 

𝜉3(𝑖) = 𝑋 + (𝑘 + 1)
𝑌−𝑋

2𝑗
.                                                  (27b)   

where 𝑗 and 𝑘 are known as the wavelet’s dilatation and translation, respectively 𝑗 = 0,1,2. , . . . 𝐽 
and 𝑘 = 0,1, . . . , 2𝐽 − 1. where 𝐽 is maximum resolution level of wavelets. Eq. (27a) is valid for 

𝑖 > 2. For 𝑖 = 1, ℎ𝑖(𝑡) = 1 for 𝑡 ∈ [𝑋, 𝑌] and 0 in the rest. Every function φ(t)∈[X, Y] which is 
square integrable and finite has the form via Haar wavelet as 

𝜙(𝑡) = ∑ 𝑎𝑖ℎ𝑖(𝑡)
2𝑗+1
𝑡=1 .                                                     (27c) 

Hence Eq. (27a) read as   

𝑃𝑛,𝑖(𝑡) =

{
 
 

 
 

0, 𝑓𝑜𝑟 𝑡 ∈ [𝑋, 𝜉𝑞(𝑖)),

(𝑡 − 𝜉𝑞(𝑖)
𝑛, 𝑓𝑜𝑟 𝑡 ∈ [𝜉𝑞(𝑖), (𝜉2(𝑖))),

(𝑡 − (𝜉𝑞(𝑖))
𝑛 − 2(𝑡 − (𝜉2(𝑖))

𝑛, 𝑓𝑜𝑟 𝑡 ∈ [𝜉2(𝑖), (𝜉3(𝑖)),

(𝑡 − (𝜉𝑞(𝑖))
𝑛 −2(𝑡 − (𝜉2(𝑖))

𝑛 + 𝑡 − (𝜉3(𝑖))
𝑛, 𝑓𝑜𝑟 𝑡 ∈ [𝜉3(𝑖), 𝑌).

(27d) 

Eq. (27d) is valid for 𝑖 > 1. For 𝑖 = 1 , 𝜉1 = 𝑋, 𝜉2 = 𝜉3 = 𝑌 and

 
 𝑃𝑛,𝑖(𝑡) =

1

𝑛!
(𝑡 − 𝑋)𝑛,                                                   (27e)   

herein collocation points are developed as  

 𝑡𝑘 = 𝐴 + (𝑘 − 0.5)
𝑌−𝑋

2𝐽+1
,⇌⇌ 𝑘 = 1,2, . . . . . . . . 2𝐽+1.                              (27f)  

where 𝐻, 𝑃1, 𝑃2, 𝑃3, 𝑃4, . . . . . . . 𝑃𝑛 are Haar square with dimension 2𝐽+1 and the components in this 

matrices are evaluated as 𝐻(𝑖, 𝑘) = 𝐻𝑡(𝑡𝑘) and 𝑃𝑛(𝑖, 𝑘) = 𝑝𝑛,𝑡(𝑡𝑘). 
 

4.1 Haar wavelet method  
 

As in Haar wavelet theory, the highest-order derivative in Eq. (22) can be modelled as (Jena 
and Chakraverty 2019): 

𝜕4𝑦

𝜕𝑥4
= ∑ 𝑐𝑖ℎ𝑖 = 𝑐𝑇𝐻2𝐽+1

𝑖=1 ,                                             (28a)   
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Through four time successive integration  

 
𝜕2𝑦

𝜕𝑥2
(𝑥) = ∑ 𝑐𝑖𝑃2,𝑖(𝑥) + 𝑥

𝜕3𝑦

𝜕𝑥3
(0) +

𝜕2𝑦

𝜕𝑥2
,2𝐽+1

𝑖=1                                    (28b)  

 
𝜕2𝑦

𝜕𝑥2
(𝑥) = ∑ 𝑐𝑖𝑃2,𝑖(𝑥) + 𝑥

𝜕3𝑦

𝜕𝑥3
(0) +

𝜕2𝑦

𝜕𝑥2
,2𝐽+1

𝑖=1                                    (28c)  

𝜕𝑦

𝜕𝑥
(𝑥) = ∑ 𝑐𝑖𝑃3,𝑖(𝑥) +

𝑥2

2
𝑥
𝜕3𝑦

𝜕𝑥3
(0) +

𝜕𝑦

𝜕𝑥
(0),2𝐽+1

𝑖=1                                (28d)  

𝑦(𝑥) = ∑ 𝑐𝑖𝑃4,𝑖(𝑥) +
𝑥3

6

𝜕3𝑦

𝜕𝑥3
(0) +

𝑥2

2

𝜕2𝑦

𝜕𝑥2
(0) + 𝑥

𝜕𝑦

𝜕𝑥
(0) + 𝑦(0).2𝐽+1

𝑖=1                  (28e)  

here 𝐶 = (𝑐1, 𝑐2 , 𝑐3 , 𝑐4. . . . . . . . . . . . 𝑐2
𝐽+1)𝑇  and 𝐷 = ((𝑑1 =

𝜕3𝑦

𝜕𝑥3
(0)) , (𝑑2 =

𝜕2𝑦

𝜕𝑥2
(0)) ,

(𝑑3 =
𝜕𝑦

𝜕𝑥
(0)) , (𝑑4 = 𝑦(0)))

𝑇

 The constant of integration 𝑑1, 𝑑3, 𝑑3  and 𝑑4  can be reached via 

specific boundary conditions 

Inserting Eq. (28a)-(28e) in controlling Eq. (22), we arrived as 

(1 + 𝐶
𝜕𝑦

𝜕𝑡
) 𝐶𝑇𝐻 + [

𝐸𝐴𝛼𝑇 − 𝑅 + 𝜌𝐴(1 − 2𝑣) + 𝑀𝑓
𝜕𝑈𝑥𝑎𝑣𝑔(𝑠𝑙𝑖𝑝)

𝜕𝑡
(𝐿 − 𝑥) −

𝜂𝑠𝐴𝐻𝑥
2 +𝑀𝑓(𝑉𝐶𝐹)𝑈𝑥

2𝑎𝑣𝑔(𝑠𝑙𝑖𝑝)

] (𝐶𝑇𝑝2 + 𝑥𝑑1 + 𝑑1)

+ (𝑚 +𝑀𝑓)
𝜕2𝑦

𝜕𝑡2
+
𝜕

𝜕𝑡
(2𝑚𝑓(𝑉𝐶𝐹)𝑈𝑥𝑎𝑣𝑔(𝑠𝑙𝑖𝑝))(𝐶

𝑇𝑝3 +
𝑥2

2
𝑑1 + 𝑥𝑑2+𝑑3) + 

(𝑟𝐴𝑈𝑥𝑎𝑣𝑔(𝑠𝑙𝑖𝑝)(𝐶
𝑇𝑝2 + 𝑥𝑑1 + 𝑑1)

𝜕2𝑦

𝜕𝑥2
+
𝜕

𝜕𝑡
𝑟𝐴((𝐶𝑇𝑝2 + 𝑥𝑑1 + 𝑑1))) − (𝜏)

2 

(

 
 
(𝐸𝐴𝛼𝑇)𝐶𝑇𝐻 +

𝜕2𝑦

𝜕𝑡2
𝑚((𝐶𝑇𝑝2 + 𝑥𝑑1 + 𝑑1)) + 𝑀𝑓(𝐶

𝑇𝑝2 + 𝑥𝑑1 + 𝑑1)
𝜕2𝑦

𝜕𝑡2
+

(𝑀𝑓(𝑉𝐶𝐹)𝑈𝑥
2𝑎𝑣𝑔(𝑠𝑙𝑖𝑝))𝐶𝑇𝐻 ⇌ +

𝜕

𝜕𝑡
2𝑀𝑓(𝑉𝐶𝐹)𝑈𝑥𝑎𝑣𝑔(𝑠𝑙𝑖𝑝) (𝐶

𝑇𝑝3 +
𝑥2

2
𝑑1 + 𝑥𝑑2+𝑑3))

−(𝜂𝑠𝐴𝐻𝑥
2)𝐶𝑇𝐻 )

 
 
= 0.

 

(29)  

Herein, the following boundary conditions are taken for numerical calculations   

(𝑖).   𝑦(0) = 0,
𝜕2𝑦

𝜕𝑥2
(0) = 0 and 𝑦(𝐿) = 0,

𝜕2𝑦

𝜕𝑥2
(𝐿) = 0,. Hinged-Hinged (H-H), 

(𝑖𝑖).   𝑦(0) = 0,
𝜕𝑦

𝜕𝑥
(0) = 0 and 𝑦(𝐿) = 0,

𝜕2𝑦

𝜕𝑥2
(𝐿) = 0,. Clamped-Hinged (C-H)  

(𝑖𝑖𝑖).   𝑦(0) = 0,
𝜕𝑦

𝜕𝑥
(0) = 0 and 𝑦(𝐿) = 0,

𝜕𝑦

𝜕𝑥
(𝐿) = 0,. Clamped–Clamped (C-C)  

(𝑖𝑣).   𝑦(0) = 0,
𝜕𝑦

𝜕𝑥
(0) = 0 and 

𝜕2𝑦

𝜕𝑥2
(𝐿) = 0,

𝜕3𝑦

𝜕𝑥3
(𝐿) = 0.. Clamped – Free (C-F)  

By using each of the particular boundary condition as mentioned above, the integration 

constants 𝐷𝑇 = (𝑑1, 𝑑3, 𝑑3, 𝑑4) can be determined and using these values in Eq. (29), then we can 
receive a generalized Eigenvalue problem as 

[𝐴]{𝐶𝑇} = 𝜏2[𝐵]{𝐶𝑇}.                                                (30)   

Where the matrix [A] represents mass and the matrix [B] is for stiffness and 𝐶𝑇 =

28
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(𝑐1, 𝑐3, 𝑐3, 𝑐4 . . . . . . . . 𝑐2𝐽+1).. 
 

 
5. Results and discussion 
 

The obtained variants are allocated and verified numerically to expose the scientific importance 
of various parameters on the stability of SWCNT with viscous fluid conveying environment. The 
nonlocal and viscous parameters, Knudsen number, magnetic flux, temperature difference and 
boundary influence on the dynamics of CNT are analysed and verified via tables and dispersion 
graphs. The physical constants taken for this study is given in (Table1). 

The excitation frequency of non-dimensional form is presented as below 
 
 

                          Table 1 Material properties (Lee and Chang 2008, Li et al. 2016) 

Parameters Value 

𝐸𝐼 1.1122 × 10−25 N m9

 
𝛼0 −1.5× 10−6 C−1

 
𝜌 2.3 g/cm3

 
𝑒0 0.31 nm 
𝑎  0.142 N/m

 
𝐸𝑠  35.3 N/m 
𝜇  4𝜋× 10−7 N/m 

𝐻𝑥 𝐴/𝑚 2 × 108 A/m 
𝜎 1.02 × 106(s/m)

 
𝜏𝑑 0 s 
𝑢0 2.0 

𝛾 0.001
 

 

 

Fig. 2 Distributions of nondimentional pulsation frequency versus nondimensional pulsation 

amplitude via different nonlocal parameter with 𝛽 = 0.3
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Fig. 3 Distributions of nondimentional pulsation frequency versus nondimensions pulsation 

amplitude via different nonlocal parameter with 𝛽 = 0.5
 

 
Table 2 Verification of critical buckling load parameter by HWM with Jana and Chakraverty (2019) (𝑒0𝑎 =
0.5, 𝑘𝑤 = 0,

 
𝐻𝑎 = 2 𝛽 = 0.2 ,

 
𝐾𝑛 = 0.1 and 𝐿 = 20) via Hinged boundary condition 

 Jana and Chakraverty (2019) Present 

𝐽 𝑁 = 2𝐽+1 𝐻𝑊𝑀 𝐻𝑊𝑀 

1. 4 2.314765 2.3145 

2. 8 2.303851 2.3013 

3. 16 2.301451 2.3012 

4. 32 2.300871 2.3011 

5. 64 2.300728 2.3009 

6. 128 2.300692 2.3008 

7. 256 2.300683 2.3004 

8. 512 2.300681 2.2983 

 
 

𝛺 = 𝜔𝑒𝑥𝐿
2 (
𝜌1𝐴

𝐸1𝐼
)
0.5

 

The present study is validated in Table 1 through the critical buckling load by Haar wavelet 

method via ,5.00 =e 𝑒0𝑎 = .5  , 𝐻𝑥 = 0.2, 𝛽 = 0.2  , 𝐾𝑛 = 0.1  and 𝐿 = 20  for Hinged-Hinged 

boundary condition with article in the literature (Jena et al. 2019). Results predict the reasonable 
agreement with the literature. Table 2 exhibit the convergence of mean flow velocity, viscous 

parameter and different boundary conditions on the non-dimensional pulsation frequency via 𝐽 =
1 − 5. From Table 2, it is seen that the frequencies are increasing for the amplified values of mean 

flow velocity, viscous parameter and decreasing with increasing maximal resolution values(𝐽). 
This leads to the conclusion that the stability of the fluid conveying CNT structure becomes weak 
by rising the resolution values while increase the flow velocity, viscous parameter the dynamic  
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Fig. 4 Distributions of nondimentional pulsation frequency versus nondimensional pulsation 

amplitude via different Knudsen number with 𝛽 = 0.3
 

 

 

Fig. 5 Distributions of nondimentional pulsation frequency versus nondimensional pulsation 

amplitude via different Knudsen number with 𝛽 = 0.5
 

 
 

behaviour of the system develops. Among the boundary conditions, the C-C boundary reached 
higher pulsation frequency than the other three boundaries. 

Figs. 2 and 3 presents to study the development of non-dimensional pulsation frequency of 
fluid conveying CNT with non-dimensional pulsation amplitude for the different non local 

parameters via two different viscous parameter 𝛽 = 0.3  and 𝛽 = 0.5 . The values of non-
dimensional pulsation frequency decreases from higher frequency to the lower one with rising 

𝑒0𝑎/𝑙 and with in the higher range of non-dimensional pulsation amplitude the trend is reversed.  
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Fig. 6 Distributions of non-dimensions pulsation frequency versus flow velocity via different 

boundary conditions with 𝑘𝑛 = 0.001&𝛽 = 0.3 
 

 

Fig. 7 Distributions of non-dimensions pulsation frequency versus flow velocity via different 

boundary conditions with 𝑘𝑛 = 0.01&𝛽 = 0.5
 

 
 

More over, the influence of non local and viscous effct is more in larger values of non dimensional 

pulsation frequency which leads to the enhanced stability of viscous fluid conveying CNT. Figs. 4 
and 5 shows the distribution of non-dimensional pulsation frequency of fluid conveying CNT 

against non-dimensional pulsation amplitude for various Knudsen number via 𝛽 = 0.3 and 𝛽 =
0.5 . From the Figs. 4 and 5, it is noticed that, the non-dimensional pulsation frequency 
displacement rises towards positive values as non-dimensional pulsation amplitude increases for 

various viscous parameter and also, the rising Knudsen number reducing the pulsation frequency  
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Fig. 8 Distributions of non-dimensional amplitute versus excitation frequency with 𝑘𝑛 =
0.01&𝛽 = 0.5

 
 

 

Fig. 9 Distributions of non-dimensional amplitute versus excitation frequency with 𝑘𝑛 =
0.01&𝛽 = 1.0

 
 
 
for both the case of viscous parameter.  

Figs. 6 and 7 demonstrates the variation of the non-dimensional pulsation frequency against 
flow velocity for the Hinged-Hinged, Clamped-Clamped and Hinged-Clamped boundaries of fluid 

conveying CNT with different 𝑘𝑛&𝛽 values. Here, the wave propagation is vanishing from the 
positive values in the lower period of flow velocity and return to rise in the higher range of flow 
velocity in the three boundaries. But, the wave trend is experiencing crossing over nature in the 

amplified values of 𝑘𝑛&𝛽 in Fig. 7. 

33



 

 

 

 

 

 

R. Selvamani, M. Mahaveer Sree Jayan and Marin Marin 

 

Fig. 10 Distributions of non-dimensional ampplitute versus excitation frequency with 𝑘𝑛 =
0.01&𝛽 = 0.5

 
 

 

Fig. 11 Distributions of non-dimensional amplitute versus excitation frequency with 𝑘𝑛 =
0.01&𝛽 = 1.0

 
 
 
In Figs. 8-9, the variation of dimensionless amplitude against excitation frequency with 

different types of magnetic flux via various viscous parameter 𝛽 = 0.3 and 𝛽 = 0.5 has been 
explored. The raise in excitation frequency results amplification in dimensionless amplitude until it 

attains to the resonance frequency, afterward, the dimensionless frequency will get damped. Also, 
the dimensionless amplitude gets higher value in higher values of Knudsen number and lower 
magnetic flux. Figs. 10-11, studies the variation of dimensionless amplitude against excitation 

frequency with different types of nonlocal parameters via various viscous parameter 𝛽 = 0.3 and  
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𝛽 = 0.3

 
Fig. 12 3D Distributions of flow velocity via 𝑒0𝑎 and 𝐻𝑥  with 𝑘𝑛 = 0.001 

 

 

𝛽 = 0.5 

Fig. 13 3D Distributions of flow velocity via 𝑒0𝑎 and 𝐻𝑥  with 𝑘𝑛 = 0.01 
 
 

𝛽 = 0.5. The raise in excitation frequency shows the same trend as in magnetic flux, but raise in 
non-local parameter weakens the dimensionless amplitude. Also, it is noticeable that, the 
resonance frequency is Ω~1. 

The 3D curves display the physical variant non dimensional pulsation frequency and flow 

velocity of fluid conveying CNT with both magnetic flux and nonlocal values 𝐻𝑥&𝑒0𝑎 via various 

𝑘𝑛&𝛽. These figures manifests the dependence of the non-dimensional pulsation frequency and 
flow velocity with the driving physical constants.  
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𝛽 = 0.3 

Fig. 15 3D Distributions of dimensionless pulsation frequency via 𝑒0𝑎 and 𝐻𝑥  with 𝑘𝑛 = 0.01
 

 

 

6. Conclusions 
   

Presented paper was developed to expose a reliable and efficient mathematical analytical model 
and solution of dispersion equation for the vibration of thermo elastic carbon nanotubes conveying 
pulsating viscous nano fluid subjected to a longitudinal magnetic field via Euler-Bernoulli beam 
model. The controlling partial differential equation of motion is arrived by adopting Eringen’s non 
local theory. The pulsation frequency of the CNT is obtained through the Galerkin’s method. The 

numerical evaluation of this study is devised by Haar wavelet method (HWM). Then, the proposed 
model is validated by analysing the critical buckling load computed in present study with the 
literature and good consistency is reached. Finally, the numerical calculation of system parameters 
are shown as dispersion graphs and tables over non local parameter, magnetic flux, Knudsen 
number and viscous parameter. Based on the simulation results, the conclusions are as follows: 

• The values of non-dimensional pulsation frequency decreases from higher frequency to the 
lower one with rising non local parameter and with in the higher range of non-dimensional 

pulsation amplitude the trend is reversed. 
• The non-dimensional pulsation frequency rises when increases the viscous parameter and 
reducing its magnitude while rising Knudsen number.  
• The flow velocity attains higher amplitude in lower temperature difference and receives 
higher dynamic responses in increasing viscous parameter and Knudsen number. 
• The increase of magnetic flux results amplification in the non-dimensional pulsation 
frequency. Also, the C-C boundary achieves higher pulsation frequency. 
• It is clear that increasing in excitation frequency causes a normalized amplitude variation in 

all kind of physical variants. 
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