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Abstract.  In the present work, a new photothermoelastic model based on Moore-Gibson-Thompson theory has 
been constructed. The governing equations for orthotropic photothermoelastic plate are simplified for two-dimension 
model. Laplace and Fourier transforms are employed after converting the system of equations into dimensionless 
form. The problem is examined due to various specified sources. Moving normal force, ramp type thermal source 
and carrier density periodic loading are taken to explore the application of the assumed model. Various field 
quantities like displacements, stresses, temperature distribution and carrier density distribution are obtained in the 
transformed domain. The problem is validated by numerical computation for a given material and numerical 
obtained results are depicted in form of graphs to show the impact of various theories of thermoelasticity along with 
impact of moving velocity, ramp type and periodic loading parameters. Some special cases are also explored. The 
results obtained in this paper can be used to design various semiconductor elements during the coupled thermal, 
plasma and elastic wave and other fields in the material science, physical engineering. 
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1. Introduction 
 

Analysis of mechanical and thermal interaction within a solid medium is of emended 

significance in various scientific fields. There are few examples such as high energy particle 

accelerated devices, modern aeronautical and astronomical engineering and different system 

exploited in nuclear and industrial applications with the consideration of second sound effect in 

thermoelastic model plays a significant role in analysing elastic body with in a variety of scientific 

and technological fields. In contradiction with physical observation the infinite thermal 

propagation speed is observed through conventional uncoupled theories. 

The coupled thermoelasticity proposed by Biot (1956) in order to eradicate the classic 

uncoupled principle’s inherent paradox. This paradox suggests that elastic changes have no 

temperature influence. The heat equations for both diffusion theories indicate that the heat wave 
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propagation rates are unlike physical observations. Generalized thermoelasticity theories are 

designed to solve the weaknesses and shortcomings inherent in classic dynamic thermoelasticity 

coupled theory, which enables the thermal signal to propagate with unlimited speed. 

 The generalized thermoelasticity theory takes the effect of the coupling between strain rate and 

temperature into account, but the resulting coupling equations are hyperbolic. Thus, the 

inconsistency in the classic combined theory is removed with regard to the infinite speed of heat 

propagation. One of the generalized theories of thermoelasticity updated, which included the 

implementation of a new law of thermal conductivity to replace the Fourier conventional law was 

proposed by Lord and Shulman (1967). This amended legislation involves heat flow and its time-

related partial derivative. 

Green and Naghdi (1991, 1992, 1993) derived three models in thermoelasticity which are 

labelled as GN-I, II and III models. The linearized form of model-I reduces to classical heat 

conduction theory whereas linearized version of model-II and III permit propagation of thermal 

waves at finite speed.GN-II (1993) shows a feature which makes it different from other 

thermoelastic models as it does not allow dissipation of thermal energy. The model GN-III (1992) 

contains the thermal displacement gradient alongwith temperature gradient among the constitutive 

variables and admits the dissipation of energy. 

Tzou (1995) proposed the dual-phase heat conduction law which is a more common one with 

two different phase delays, one in the heat flow vector and the second in the temperature gradient, 

which takes into account the effects of the microstructure on the heat transmission mechanism, in 

order to evaluate the delayed reaction caused by the microstructure effects over time. One of the 

most recent advances in the theory of thermoelasticity is the three-phase lags suggested by 

Roychoudhari (2007). This model also has phase delays of thermal displacement gradients, in 

addition to the phase lags in the hot flux vector and temperature gradient. These two suggestions, 

involving different derivatives as the Taylor spectrum approaches the heat flow and temperature 

gradients, assume that the suggestion by Roychoudhari seeks to restore Green and Naghdi models 

if various Taylor approaches are taken into account.  

Othman et al. (2009) examine the transient wave caused by a line heat source with a uniform 

velocity inside isotropic homogeneous thermoelastic perfectly conducting half-space permeated 

into a uniform magnetic field. Sharma (2010) investigated the boundary value problems in 

generalized thermodiffusive elastic medium. Abbas (2011) employed the theory of 

thermoelasticity with energy dissipation to study plane waves in a fiber-reinforced anisotropic 

thermoelastic half-space. Sharma et al. (2012) studied the propagation of Lamb waves in a 

homogeneous isotropic thermoelastic micropolar solid with two temperature bordered with layers 

or half-spaces of inviscid liquid.   

Abbas (2014a) obtained thermoelastic damping and frequency shift of a thermoelastic hollow 

sphere in the context of generalized thermoelasticity theory. Abbas (2014b) considered the infinite 

fiberreinforced anisotropic plate with time fractional ordered derivative by using Green and 

Naghdi type II theory of thermoelasticity. Abo-Dahab and Lotfy (2015) investigated a thermal 

shock problem in a fiber reinforce fractional ordered thermoelastic half space with rotation and 

uniform magnetic field. Marin et al. (2015) presented the domain of influence theorem in 

anisotropic generalized thermoelastic material. Abbas (2015) examine a problem of spherical 

cavity due to ramp type heating in a fractional order thermoelastic diffusion infinite medium by 

employing eigen value approach. Hobiny and Abbas (2018) obtained an analytic solution for the 

hyperbolic bio heat model under a new heat source. 

Semiconducting materials have been widely applied in modern engineering applications with 
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the present development of technologies. When a semiconductor surface is exposed to a beam of 

laser, some electrons will be excited. In this case, the photo-excited free carriers will be produced 

with non-radiative transitions, and a recombination between electron and hole plasma occurs. 

Many efforts are made to explore the nature of semiconductors in last few years and the technique 

adopted is photo acoustic and photo thermal technology.  

 Photoacoustic (PA) and photothermal (PT) science and technology have extensively developed 

new methods in the investigation of semiconductors and microelectronic structures during the last 

few years. PA and PT techniques were recently established as diagnostic methods with good 

sensitivity to the dynamics of photoexcited carrier (Mandelis 1987, Almond and Patel 1996, 

Mandelis and Michaelian 1997, Nikolic and Todorovic 1989). Photogeneration of electron-hole 

pairs, i.e., the carriers-diffusion wave or plasma wave, generated by an absorbed intensity 

modulated laser beam, may, play a dominant role in PA and PT experiments for most 

semiconductor materials. Depth dependent plasma waves contribute to the generation of periodic 

heat and mechanical vibrations, i.e., thermal and elastic waves. This mechanism of elastic wave 

generation is a specific of semi-conductors. The electronic deformation mechanism is based on the 

fact that photogenerated plasma in the semiconductor causes deformation of the crystal lattice, i.e., 

deformation of the potential of the conduction and valence bands in the semiconductor. Thus, 

photoexcited carries may cause local strain in the sample. This strain in turn may produce plasma 

waves in the semiconductor in a manner analogous to thermal wave generation by local periodic 

elastic deformation.  

 Many problems of deformation and wave propagation are investigated by different authors due 

to its academic importance and physical application. Lotfy and Othman (2011) examine the effect 

of variable thermal conductivity during the photo thermal diffusion problem of semiconductor 

medium due to mechanical and thermal source. Lofty (2019) describe the effect of variable 

thermal conductivity during a photothermal-diffusion process. Lotfy et al. (2020) expressed the 

novel mathematical model under the effect of Thomson heating of a semi-infinite semiconductor 

elastic medium in the presence of magnetic field subjected to a laser pulse. Khasim et al. (2020) 

investigated wave propagation in a photohermoelastic half space with refined multi dual phase lag 

due to mechanical and thermal loading. Mahdy et al.  (2020) investigated electromagnetic hall 

current and fractional heat order for micro- temperature in photothermoelastic half space subjected 

to thermomechanical loading. 

 Jahangir et al. (2020) discussed the reflection of thermoelastic waves in semiconducting 

medium. Zenkour (2020) constructed the generalized photothermoelastic problem of beam with 

modified multi-phase-lag photothermoelasticity theory. Hobiny et al. (2021) investigated two-

dimensional photothermoelastic problem in semi-conductor material influenced by ramp-type 

heating. Zakaria et al.  (2021) constructed a modified generalized fractional photothermeolastic 

model on the basis of the fractional calculus technique. Sharma and Kumar (2021) developed a 

dynamic mathematical model of photothermoelastic (semiconductor) medium to analyze the 

deformation due to inclined loads. Sharma and Kumar (2022) examined photothermoelastic 

deformation in dual phase lag model due to concentrated inclined load. Kumar et al.  (2022) 

investigated deformation due to thermomechanical carrier density loading in orthotropic 

photothermoelastic plate. Mohamed et al. (2022) constructed a model to understand the 

photothermal excitation process of optical thermal transfer and the interaction between elastic, 

plasma, thermal waves during a microstretch case. Saeed et al. (2022) examined the impact of the 

magnetic field on the non-homogeneous elastic semiconductor material. 

  The Moore-Gibson-Thompson equation has received immense level of interest in recent years. 
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Thompson (1972) developed this theory starting from a third-order differential equation, built in 

the context of some considerations related to fluid mechanics. Quintanilla (2019) proposed the 

modified heat equation after adding the relaxation parameter in the Green-Naghdi model of type-

III. Conti (2020a, 2020b) examine some problems in Moore-Gibson-Thompson thermoelastic 

model. Quintanilla (2020) presented Moore-Gibson-Thompson thermoelastic model with two 

temperature.  

 Bazarra (2020) examined some problem on Moore-Gibson-Thompson thermoelastic model. 

Marin (2020) presented mixed initial-boundary value problem in the context of the Moore-Gibson-

Thompson theory of thermoelasticity for dipolar bodies. Abouelregal et al. (2020) investigate the 

wave propagation in an isotropic and infinite body subjected to a continuous thermal line source 

based on Moore-Gibson-Thompson thermoelasticity theory. Abouelregal et al. (2021) obtained the 

solution of Moore-Gibson-Thompson equation for an unbounded medium with a cylindrical hole. 

Singh and Mukhopadhyay (2021) presented a Galerkin-type solution under the Moore-Gibson-

Thompson thermoelasticity theory. Abouelregal et al. (2021) presented modified Moore-Gibson-

Thompson photo-thermoelastic model for a rotating semiconductor half-space under magnetic 

field. Jangid et al. (2021) discussed the propagation of harmonic plane waves under the Moore-

Gibson-Thompson thermoelasticity theory. Kumar and Mukhopadhyay (2020) discussed the 

thermoelastic damping in microbeam resonators based on Moore-Gibson-Thompson thermoelastic 

model. 

 The problem of solid mechanics should not be restricted to the isotropic numerically. 

Increasing use of anisotropic media demands that the study of photothermoelastic problems should 

be extended to anisotropic medium also. Due to many applications of MGT of semiconductor 

elastic media in modern physics through photo elastic thermal excitation process are used in many 

industrial applications leads to investigate deformation in photothermoelastic due to various 

sources under MGT. In this paper, deformation due to thermomechanical and carrier density 

loading in orthotropic photothermoelastic plate under Moore-Gibson-Thompson thermoelastic 

model has been studied. Laplace and Fourier transform are employed to solve the problem. The 

analytical expressions of normal stress, temperature distribution and carrier density distribution are 

computed in the transformed domain. However, the resulting quantities are obtained in the 

physical domain by using numerical inversion technique. The variations of stress component, 

temperature distribution and carrier density distribution are depicted graphically to demonstrate the 

effect of Moore-Gibson-Thomson thermoelastic model (2019), Classical thermoelastic model 

(1983), Lord and Shulman’s model (1967) with one relaxation time, Green and Naghdi type-II 

model (1993) and Green and Naghdi type-III model (1992) along with different sources.  

 

 

2. Elementary equations  
 

The constitutive relation and the field equations for photothermoelastic based on Moore-

Gibson-Thompson thermoelastic model in absence of body forces, heat sources and carrier 

photogeneration sources are described by Todorovic (2003, 2005), Pellicer and Quintanilla (2020) 

𝑡𝑖𝑗 = 𝐶𝑖𝑗𝑘𝑙𝑒𝑘𝑙 − 𝛼𝑖𝑗𝑇 − 𝛾𝑖𝑗𝑁, (1) 

𝐶𝑖𝑗𝑘𝑙𝑒𝑘𝑙, − 𝛼𝑖𝑗𝑇,ℎ − 𝛾𝑖𝑗𝑁,ℎ = 𝜌𝑢̈𝑙 (2) 
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𝐾𝑖𝑗𝑇̇,𝑖𝑗 + 𝐾𝑖𝑗
* 𝑇,𝑖𝑗 = (1 + 𝜏𝑜

∂

∂𝑡
) [(𝜌𝐶𝑒𝑇̈ + 𝑇𝑜𝛼𝑖𝑗𝑒̇𝑖𝑗) −

𝐸𝑔

𝜏

∂𝑁

∂𝑡
]  (3) 

𝐷𝑖𝑗
* 𝑁,𝑖𝑗 =

∂𝑁

∂𝑡
+
𝑁

𝜏
− 𝜁

𝑇

𝜏
     (i, j, k, l ,h=1, 2, 3) (4) 

where  

𝜏𝑜  the thermal relaxation time, 𝐶𝑖𝑗𝑘𝑙  elastic parameters, 𝛼𝑖𝑗  are coefficient of linear thermal 

expansion, 𝛾𝑖𝑗 coefficient of electronic deformation, 𝑢𝑖 components of displacement, T-the 

temperature distribution, 𝑇𝑜 the reference temperature, 𝑁 = 𝑛 − 𝑛𝑜 , 𝑛𝑜 equilibrium carrier 

concentration, 𝐸𝑔  the semiconductor energy gap,  𝜌-the medium density, 𝑡𝑖𝑗  the components of 

stress tensor, 𝐾𝑖𝑗 thermal conductivity, 𝐾𝑖𝑗
*  thermal conductivity rate, 𝐶𝑒the specific heat, 𝜁 =

∂𝑛𝑜

∂𝑇
 

the thermal activation coupling parameter,  𝜏 -the photogenerated carrier lifetime, t-the time 

variable, 𝐷𝑖𝑗
*  the coefficients of carrier diffusion, 𝑒𝑘𝑙 the components of elastic strain. 

The following cases arise: 

Photothermoelasticity under Moore-Gibson-Thompson model in which 𝐾1, 𝐾3, 𝐾1
*, 𝐾3

* and 𝜏𝑜 

all are positive is limited to the following cases as: 

(i) Classical thermoelastic (CTE) model is possible when  

𝜏𝑜 = 𝐾1
* = 𝐾3

* = 0

 (ii) Lord and Shulman’s (LS) model can be attained as a limited case when  

𝐾1
* = 𝐾3

* = 0. 

(iii)The introduced model makes it possible to obtain Green and Naghdi of type-II (GN-II) 

model when  

𝜏𝑜 = 𝐾1 = 𝐾3 = 0. 

(iv) Green and Naghdi  type- III (GN-III) model can be obtained when 

𝜏𝑜 = 0. 
 

 

3. Formulation of the problem 
 

An infinite orthotropic photothermoelastic plate under Moore-Gibson-Thompson (MGTE) 

model is considered. A plate having finite thickness 2d is homogeneous, isotropic and thermal 

conducting with initial uniform temperature 𝑇𝑜. The middle plane of the plate coincide with 𝑥1 −
𝑥2  plane such that −𝑑 ≤ 𝑥3 ≤ 𝑑  and −∞ < 𝑥1, 𝑥2 < ∞, the origin of the coordinate system is 

taken at any point of the middle plane. The boundary surface 𝑥3 = ±𝑑 is subjected to 

thermomechanical and carrier density loading. Let the 𝑥1 − 𝑥3  plane be taken as the plane of 

incidence and restrict our analysis to this plane, so that the physical field variables are function of 

𝑥1, 𝑥2, 𝑡 . Thus, the displacement components, temperature distribution and carrier density 

distribution are given by  

  
𝑢 = (𝑢1(𝑥1, 𝑥3, 𝑡), 0, 𝑢3(𝑥1, 𝑥3, 𝑡)), 𝑇 = 𝑇(𝑥1, 𝑥3, 𝑡) and 𝑁 = 𝑁(𝑥1, 𝑥3, 𝑡), (5) 

We have used appropriate plane of symmetry, following Slaughter (2002) on the set of Eqs. 

(1)-(4) to derive the equations for orthotropic photothermoelastic solid for two dimensional 

problem with the aid of Eq. (5), take the following form 
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


+




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( )
2

3

2

3
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3
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1

2

55132

3
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2

332

1
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2

55
t
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CC

x
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x

u
C




=




−




−




++




+




 , (7) 

𝐾1
∂3𝑇

∂𝑥1
2 ∂𝑡

+ 𝐾3
∂3𝑇

∂𝑥3
2 ∂𝑡

+ 𝐾1
*
∂2𝑇

∂𝑥1
2 + 𝐾3

*
∂2𝑇

∂𝑥3
2 = (1 + 𝜏𝑜

∂

∂𝑡
) 

[(𝜌𝐶𝑒
∂2𝑇

∂𝑡2
+ 𝑇𝑜 (𝛼1

∂3𝑢1
∂𝑡2 ∂𝑥1

+ 𝛼3
∂3𝑢3
∂𝑡2 ∂𝑥3

) −
𝐸𝑔

𝜏

∂𝑁

∂𝑡
)], 

(8) 

𝐷1
* ∂

2𝑁

∂𝑥1
2 + 𝐷3

* ∂
2𝑁

∂𝑥3
2 =

∂𝑁

∂𝑡
+
𝑁

𝜏
− 𝜁

𝑇

𝜏
, (9) 

𝑡33 = 𝐶13
∂𝑢1

∂𝑥1
+ 𝐶33

∂𝑢3

∂𝑥3
− 𝛼3𝑇 − 𝛾3𝑁, (10) 

𝑡31 = 𝐶55 (
∂𝑢1

∂𝑥3
+
∂𝑢3

∂𝑥1
), (11) 

𝑡11 = 𝐶11
∂𝑢1

∂𝑥1
+ 𝐶13

∂𝑢3

∂𝑥3
− 𝛼1𝑇 − 𝛾1𝑁. (12) 

  where 

𝛼1 = 𝐶11𝛼1
* + 𝐶12𝛼2

* + 𝐶13𝛼3
* , ,*

333

*

223

*

1133  CCC ++= 𝛾1 = 𝐶11𝛾1
* + 𝐶12𝛾2

* + 𝐶13𝛾3
*, 

𝛾3 = 𝐶13𝛾1
* + 𝐶23𝛾2

* + 𝐶33𝛾3
*. 

𝛼1
* , 𝛼2

*  and  𝛼3
*  are linear thermal expansion coefficients, 𝛾1

*, 𝛾2
*  and  𝛾3

* are electronic 

deformation coefficients, 𝐾1, 𝐾3 are thermal conductivity, 𝐾1
*, 𝐾3

* are thermal conductivity rate and 

𝐷1
* and 𝐷3

* are carrier diffusion coefficients. 

In the above equations we use the contracting subscript notations (11→ 1, 22 → 2,33 → 3,23 →

4,31 → 5,12 → 6) to relate 𝐶𝑖𝑗𝑘𝑙  to 𝐶𝑚𝑛 . Also 𝐾𝑖𝑗𝛿𝑖𝑗 = 𝐾𝑖 , 𝐾𝑖𝑗
* 𝛿𝑖𝑗 = 𝐾𝑖

* and 𝐷𝑖𝑗
* 𝛿𝑖𝑗 = 𝐷𝑖

*, 𝑖
 
is not 

summed. 

For non-dimensionalization of equations, following variables are taken 

(𝑥1
' , 𝑥3

' , 𝑢1
' , 𝑢3

' ) = 𝜂1𝐶𝑜(𝑥1, 𝑥3, 𝑢1, 𝑢3) , (𝑡11
' , 𝑡33

' , 𝑡31
' ) =

1

𝐶11
(𝑡11, 𝑡33, 𝑡31), 

(𝑡 ', 𝜏𝑜
' , 𝜏 ') = 𝜂 𝐶1 𝑜

2(𝑡, 𝜏𝑜, 𝜏) , 𝑇
' =

𝛼1𝑇

𝜌𝐶𝑜
2, 𝑁 ' =

𝑁

𝑛𝑜
, 

(13) 

also 

𝜂1 =
𝜌𝐶𝑒

𝐾1
, 𝐶𝑜

2 =
𝐶11

𝜌
. 

Eqs. (6)-(12) reduced to the following form by taking into consideration Eq. (13) and after 

suppressing the prime as  

∂2𝑢1

∂𝑥1
2 + 𝑔1

∂2𝑢1

∂𝑥3
2 + 𝑔2

∂2𝑢3

∂𝑥1 ∂𝑥3
−

∂𝑇

∂𝑥1
− 𝑔3

∂𝑁

∂𝑥1
=

∂2𝑢1

∂𝑡2
 ,  (14) 
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∂2𝑢3

∂𝑥1
2 + 𝑔4

∂2𝑢3

∂𝑥3
2 + 𝑔5

∂2𝑢1

∂𝑥1 ∂𝑥3
− 𝑔6

∂𝑇

∂𝑥3
− 𝑔7

∂𝑁

∂𝑥3
=

1

𝑔1

∂2𝑢3

∂𝑡2
, 

∂3𝑇

∂𝑥1
2 ∂𝑡

+ 𝐾**
∂3𝑇

∂𝑥3
2 ∂𝑡

+ 𝑔10
∂2𝑇

∂𝑥1
2 + 𝑔11

∂2𝑇

∂𝑥3
2 = (1 + 𝜏𝑜

∂

∂𝑡
)  

(15) 

[𝑔12
∂2𝑇

∂𝑡2
+ 𝑔13

∂3𝑢1

∂𝑡2 ∂𝑥1
+ 𝑔14

∂3𝑢3

∂𝑡2 ∂𝑥3
+
𝑔15

𝜏

∂𝑁

∂𝑡
] ,  (16) 

∂2𝑁

∂𝑥1
2 + 𝐷

* ∂
2𝑁

∂𝑥3
2 = 𝑔8

∂𝑁

∂𝑡
+ 𝑔8

𝑁

𝜏
− 𝑔9

𝑇

𝜏
 ,  (17) 

𝑡33 = 𝑔16
∂𝑢1

∂𝑥1
+ 𝑔17

∂𝑢3

∂𝑥3
− 𝑔18𝑇 − 𝑔19𝑁 ,  (18) 

𝑡31 = 𝑔1 (
∂𝑢1

∂𝑥3
+
∂𝑢3

∂𝑥1
),  (19) 

𝑡11 =
∂𝑢1

∂𝑥1
+ 𝑔17

∂𝑢3

∂𝑥3
− 𝑇 − 𝑔3𝑁 .  (20) 

where 

𝑔1 =
𝐶55
𝐶11

, 𝑔2 =
𝐶13 + 𝐶55
𝐶11

'𝑔3 =
𝛾1𝑛𝑜
𝐶11

, 𝑔4 =
𝐶33
𝐶55

, 

𝑔5 =
𝐶13 + 𝐶55
𝐶55

, 𝑔6 =
𝛼3𝐶11
𝛼1𝐶55

, 𝑔7 =
𝛾3𝑛𝑜
𝐶55

, 𝑔8 =
1

𝜂1𝐷1
*
, 

𝑔9 =
𝜁𝜌𝐶𝑜

2

𝛼1𝐷1
*𝑛𝑜𝜂1

, 𝑔10 =
𝐾1
*

𝐾1𝜂1𝐶𝑜
2 , 𝑔11 =

𝐾3
*

𝐾1𝜂1𝐶𝑜
2 , 𝑔12 =

𝜌𝐶𝑒
𝐾1𝜂1

, 

𝑔13 =
𝑇𝑜𝛼1𝛼1
𝐾1𝜂1𝐶11

, 𝑔14 =
𝑇𝑜𝛼3𝛼1
𝐾1𝜂1𝐶11

, 𝑔15 = −
𝐸𝑔𝑛𝑜𝛼1

𝐾1𝜂1𝜌𝐶𝑜
2, 

𝑔16 =
𝐶13
𝐶11

𝑔17 =
𝐶33
𝐶11

, 𝑔18 =
𝛼3
𝛼1
, 𝑔19 =

𝛾3𝑛𝑜
𝐶11

, 

𝐾** =
𝐾3
𝐾1
, 𝐷* =

𝐷3
*

𝐷1
*
 

(21) 

Define Laplace and Fourier Transform as 

𝑓(𝑥1, 𝑥3,𝑝) = ∫ 𝑓(𝑥1, 𝑥3,𝑝)
∞

0

𝑒−𝑝𝑡𝑑𝑡, (22) 

𝑓(𝜉, 𝑥3,𝑝) = ∫ 𝑓̄
∞

−∞

(𝑥1, 𝑥3,𝑝)𝑒
𝑖𝜉𝑠1𝑑𝑥1. (23) 

Applying Laplace and Fourier transforms defined by Eqs. (22)-(23) on Eqs. (14)-(20), the 

following equations are obtained 

−𝜉2𝑢̂1 + 𝑔1
𝑑2𝑢1

𝑑𝑥3
2 − 𝑔2𝑖𝜉

𝑑𝑢3

𝑑𝑥3
+ 𝑖𝜉𝑇̂ + 𝑖𝜉𝑔3𝑁̂ = 𝑝2𝑢̂1, (24) 

−𝜉2𝑢̂3 + 𝑔4
𝑑2𝑢3

𝑑𝑥3
2 − 𝑔5𝑖𝜉

𝑑𝑢1

𝑑𝑥3
− 𝑔6

𝑑𝑇̂

𝑑𝑥3
− 𝑔7

𝑑𝑁̂

𝑑𝑥3
=

𝑝2

𝑔1
𝑢̂3 , (25) 
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(𝑝2𝑔12𝑇̂ − 𝑖𝜉𝑝
2𝑔13𝑢̂1 + 𝑝

2𝑔14
𝑑𝑢3

𝑑𝑥3
+
𝑝𝑔15

𝜏
𝑁̂), (26) 

−𝜉2𝑁̂ + 𝐷*
𝑑2𝑁̂

𝑑𝑥3
2 = 𝑔8𝑝𝑁̂ + 𝑔8

𝑁̂

𝜏
− 𝑔9

𝑇̂

𝜏
, (27) 

𝑡̂33 = −𝑔16𝑖𝜉𝑢̂1 + 𝑔17
𝑑𝑢3

𝑑𝑥3
− 𝑔18𝑇̂ − 𝑔19𝑁̂, (28) 

𝑡̂31 = 𝑔1 (
𝑑𝑢1

𝑑𝑥3
− 𝑖𝜉𝑢̂3), (29) 

𝑡̂11 = −𝑖𝜉𝑢̂1 + 𝑔17
𝑑𝑢3

𝑑𝑥3
− 𝑇̂ − 𝑔3𝑁̂. (30) 

After some algebraic calculation of Eqs. (24)- (27), determine the following 

(𝐷8 + 𝑅1𝐷
6 + 𝑅2𝐷

4 + 𝑅3𝐷
2 + 𝑅4)(𝑢̂1, 𝑢̂3, 𝑇̂, 𝑁̂) = 0. (31) 

where 

𝑅1 = −𝑟6 − 𝑟10 − 𝑟13 − 𝑟10 − 𝑟2𝑟5, 
𝑅2 = 𝑟1𝑟6 + 𝑟1𝑟10 + 𝑟1𝑟13 + 𝑟3𝑟11 + 𝑟6𝑟10 + 𝑟6𝑟13 + 𝑟7𝑟12 + 𝑟9𝑟14 + 
𝑟10𝑟13 + 𝑟2𝑟5𝑟10 − 𝑟1𝑟7𝑟12 + 𝑟2𝑟5𝑟13 − 𝑟2𝑟7𝑟11 − 𝑟3𝑟5𝑟12 − 𝑟7𝑟12𝑟10 − 𝑟9𝑟8𝑟12, 

,1295412105311982111072131052

14952129811210711061314961194

101131013114911163136110613

rrrrrrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrrR

++++−

−++−−−

−−−−−−=

 

𝑅4 = 𝑟1𝑟6𝑟9𝑟14 + 𝑟1𝑟6𝑟10𝑟11 + 𝑟3𝑟6𝑟10𝑟11 + 𝑟4𝑟6𝑟9𝑟11 
,  

(32) 

also 

𝑟1 =
𝜉2 + 𝑝2

𝑔1
, 𝑟2 =

−𝑖𝜉𝑔2
𝑔1

, 𝑟3 =
−𝑖𝜉

𝑔1
, 𝑟4 =

−𝑖𝜉𝑔3
𝑔1

, 

𝑟5 =
−𝑖𝜉𝑔5
𝑔4

, 𝑟6 =
𝑔1𝜉

2 + 𝑝2

𝑔1𝑔4
, 𝑟7 = −

𝑔6
𝑔4
, 𝑟8 = −

𝑔7
𝑔4
, 

𝑟9 =
𝑔9
𝜏𝐷*

, 𝑟10 =
𝜉2𝜏 + 𝑔8(𝑝𝜏 + 1)

𝜏𝐷*
, 𝑟11 =

−𝑖𝜉𝑝2𝑔13(1 + 𝑝𝜏𝑜)

𝑝𝐾** + 𝑔11
, 

𝑟12 =
(1 + 𝑝𝜏𝑜)𝑝

2𝑔14
𝑝𝐾** + 𝑔11

, 𝑟13 =
𝜉2(𝑝 + 𝑔10) + 𝑝

2𝑔12(1 + 𝑝𝜏𝑜)

𝑝𝐾** + 𝑔11
, 

𝑟14 =
𝑝𝑔15(1 + 𝑝𝜏𝑜)

𝜏(𝑝𝐾** + 𝑔11)
. 

(33) 

The general solution of Eq. (31) is written as 

(𝑢̂1, 𝑢̂3, 𝑇̂, 𝑁̂) = ∑ (1, 𝛼1𝑗 , 𝛽1𝑗 , 𝛾1𝑗)
4
𝑗=1 𝐶𝑗 𝑐𝑜𝑠ℎ𝑚𝑗 𝑥3 . (34) 

where 𝑚𝑗(𝑗 = 1,2,3,4)  are roots of 𝐷8 + 𝑅1𝐷
6 + 𝑅2𝐷

4 + 𝑅3𝐷
2 + 𝑅4 = 0 and coupling 

parameters are 

𝛼1𝑗 = ∑
𝑅9𝑚𝑗

5+𝑅10𝑚𝑗
3+𝑅11𝑚𝑗

𝑅5𝑚𝑗
6+𝑅6𝑚𝑗

4+𝑅7𝑚𝑗
2+𝑅8

4
𝑗=1  , (35) 
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𝛽1𝑗 = ∑
𝑅12𝑚𝑗

4+𝑅13𝑚𝑗
2+𝑅14

𝑅5𝑚𝑗
6+𝑅6𝑚𝑗

4+𝑅7𝑚𝑗
2+𝑅8

4
𝑗=1  , (36) 

𝛾1𝑗 = ∑
𝑅15𝑚𝑗

2+𝑅16

𝑅5𝑚𝑗
6+𝑅6𝑚𝑗

4+𝑅7𝑚𝑗
2+𝑅8

4
𝑗=1   (37) 

where 

𝑅5 = 𝑐ℎ𝑗
2, 𝑅6 = 𝑐ℎ𝑗

2𝑟6 − 𝑐ℎ𝑗
2𝑟10 + 𝑐ℎ𝑗𝑠ℎ𝑗𝑟7𝑟12,

,1298

2

10127

2

1310

3

149

3

136

3

106

3

7

rrrshchrrrshch

rrchrrchrrchrrchR

jjjj

jjjj

+

++++=
 

𝑅8 = −𝑐ℎ𝑗
3𝑟6𝑟9𝑟14 − 𝑐ℎ𝑗

3𝑟6𝑟10𝑟13, 𝑅9 = 𝑟5𝑐ℎ𝑗
3, 

𝑅10 = −𝑐ℎ𝑗
3𝑟5𝑟10 − 𝑐ℎ𝑗

3𝑟5𝑟13 + 𝑠ℎ𝑗𝑐ℎ𝑗
2𝑟7𝑟11, 

,1198

2

11107

2

13105

3

1495

3

11

rrrchsh

rrrchshrrrchrrrchR

jj

jjjj

−

−+=
 

𝑅12 = −𝑟11𝑐ℎ𝑗
3 − 𝑠ℎ𝑗𝑐ℎ𝑗

2𝑟5𝑟12, 𝑅13 = −𝑐ℎ𝑗
3𝑟6𝑟11 − 𝑐ℎ𝑗

3𝑟11𝑟10 + 𝑠ℎ𝑗𝑐ℎ𝑗
3𝑟5𝑟10𝑟12, 

𝑅14 = 𝑐ℎ𝑗
3𝑟6𝑟10𝑟11,  𝑅15 = 𝑐ℎ𝑗

3𝑟11𝑟9 − 𝑠ℎ𝑗𝑐ℎ𝑗
2𝑟5𝑟9𝑟12,  𝑅16 = −𝑐ℎ𝑗

3𝑟6𝑟9𝑟11,  

and 𝑐ℎ𝑗 = 𝑐𝑜𝑠ℎ𝑚𝑗 𝑥3 , 𝑗 = 1,2,3,4.  

(38) 

Expressions for stress components are obtained with the aid of Eqs. (28), (29) and (34) as 

𝑡̂33 = −𝑔16𝑖𝜉 ∑ 𝐶𝑗 𝑐𝑜𝑠ℎ𝑚𝑗 𝑥3 + 𝑔17∑ 𝛼1𝑗𝑚𝑗𝐶𝑗 𝑠𝑖𝑛ℎ𝑚𝑗 𝑥3
4
𝑗=1

4
𝑗=1   

−𝑔18∑ 𝛽1𝑗𝐶𝑗 𝑐𝑜𝑠ℎ𝑚𝑗 𝑥3
4
𝑗=1 − 𝑔19∑ 𝛾1𝑗𝐶𝑗 𝑐𝑜𝑠ℎ𝑚𝑗 𝑥3

4
𝑗=1 ,  

(39) 

𝑡̂31 = 𝑔1∑ 𝑚𝑗𝐶𝑗 𝑠𝑖𝑛ℎ𝑚𝑗 𝑥3
4
𝑗=1 − 𝑖𝜉𝑔1∑ 𝛼1𝑗𝐶𝑗 𝑐𝑜𝑠ℎ𝑚𝑗 𝑥3

4
𝑗=1 .  (40) 

 

 

4. Restrictions on the boundary 
 

The boundary restrictions for an orthotropic photothermoelastic plate occupying the plane 𝑥3 =
±𝑑 subjected to moving normal force, ramp type thermal source and carrier density source are 

considered as 

 

𝑡33 = −𝐹1(𝑥1, 𝑥3, 𝑡),
𝑡31 = 0,

𝑇 = 𝐹2(𝑥1, 𝑡),

𝑁 = 𝐹3(𝑥1, 𝑡),

}    (41) 

where 

𝐹1(𝑥1, 𝑥3, 𝑡) = 𝐹10𝛿(𝑥3 − 𝑣𝑡)𝐻(𝑎 − |𝑥1|), 
 (42) 
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𝐹2(𝑥1, 𝑡) = 𝛿(𝑥1) {

   0  ;  t ≤ 0,

𝐹20
𝑡

𝑡𝑜
; 0 ≤ 𝑡 ≤ 𝑡0,

𝐹20; 𝑡 > 𝑡𝑜 ,

  (43) 

𝐹3(𝑥1, 𝑡) = 𝐹30𝛿(𝑥1) 𝑠𝑖𝑛 𝑏 𝑡.  (44) 

also, H ( ) is Heaviside step function, 𝛿( ) is Dirac delta function, v is the velocity, 𝐹10  is the 

magnitude of the force, 𝐹20  is the constant temperature applied on the boundary and 𝐹30  is 

constant. 

Applying Laplace and Fourier transform defined by Eqs. (22)-(23) on Eqs. (41)-(44), we attain 

𝑡̂33 = −𝐹̂1(𝜉, 𝑥3, 𝑝),

𝑡̂31 = 0,

𝑇̂ = 𝐹̂2(𝜉, 𝑝),

𝑁̂ = 𝐹̂3(𝜉, 𝑝), }
 
 

 
 

 at 𝑥3 = ±𝑑  
 (45) 

where 

𝐹̂1(𝜉, 𝑥3, 𝑝) =
𝐹10

𝑣
𝑒
−𝑝

𝑣
𝑥3 2 𝑠𝑖𝑛 𝑎𝜉

𝜉
,  (46) 

𝐹̂2(𝜉, 𝑝) =
𝐹20(1−𝑒

−𝑝𝑡𝑜)

𝑡0𝑝
2 ,  (47) 

𝐹̂3(𝜉, 𝑝) = 𝐹30
𝑏

(𝑝2+𝑏2)
.  (48) 

Substituting the values of 𝑡̂33, 𝑡̂31, 𝑇̂ and 𝑁̂ from Eqs. (39)-(40) and (34) in the transformed 

boundary restrictions Eq. (45), along with Eqs. (46)-(48) yield 

∑ (𝑑𝑗𝐶𝑗 𝑐𝑜𝑠ℎ𝑚𝑗 𝑥3)
4
𝑗=1 = −𝐹̂1(𝜉, 𝑥3, 𝑝),  (49) 

∑ (𝛼1𝑗𝐶𝑗 𝑐𝑜𝑠ℎ𝑚𝑗 𝑥3)
4
𝑗=1 = 0,  (51) 

∑ (𝛽1𝑗𝐶𝑗 𝑐𝑜𝑠ℎ𝑚𝑗 𝑥3)
4
𝑗=1 = 𝐹̂2(𝜉, 𝑝),  (51) 

∑ (𝛾1𝑗𝐶𝑗 𝑐𝑜𝑠ℎ𝑚𝑗 𝑥3)
4
𝑗=1 = 𝐹̂3(𝜉, 𝑝).  (52) 

where 𝑑𝑗 = −𝑔16𝑖𝜉 − 𝑔18𝛽1𝑗 − 𝑔19𝛾1𝑗 , 𝑗 = 1,2,3,4. 

Eqs. (49)-(52) are taken in matrix form as 

AC=B,  (53) 

where 

𝐴 = [

𝑑1𝑐ℎ1 𝑑2𝑐ℎ2 𝑑3𝑐ℎ3 𝑑4𝑐ℎ4
𝛼11𝑐ℎ1 𝛼12𝑐ℎ2 𝛼13𝑐ℎ3 𝛼14𝑐ℎ4
𝛽11𝑐ℎ1 𝛽12𝑐ℎ2 𝛽13𝑐ℎ3 𝛽14𝑐ℎ4
𝛾11𝑐ℎ1 𝛾12𝑐ℎ2 𝛾13𝑐ℎ3 𝛾14𝑐ℎ4

], 𝐶 = [

𝐶1
𝐶2
𝐶3
𝐶4

],𝐵 = [

−𝐹1(𝑥1, 𝑥3, 𝑡)

0
𝐹2(𝑥1, 𝑡)

𝐹3(𝑥1, 𝑡)

],  (54) 

From Eq. (54), we determine 
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 𝐶𝑗 =
Δ𝑗

Δ
, 𝑗 = 1,2,3,4  (55) 

where 

Δ = 𝑑𝑒𝑡 𝐴 , Δ𝑗 =determinant of A when jth column of A replaced by B and  (56) 

Δ = 𝑐ℎ1𝑐ℎ2𝑐ℎ3𝑐ℎ4(𝛽11𝛾14𝑑2𝛼13 − 𝛽11𝛾13𝑑2𝛼14 + 
𝛽11𝛾12𝑑3𝛼14 − 𝛽11𝛾14𝑑3𝛼12 − 𝛽11𝛾12𝑑4𝛼13 + 𝛽11𝛾13𝑑4𝛼12 
+𝛽12𝛾13𝑑1𝛼14 − 𝛽12𝛾14𝑑1𝛼13 − 𝛽12𝛾11𝑑3𝛼14 + 𝛽12𝛾14𝑑3𝛼11 
+𝛽12𝛾11𝑑4𝛼13 + 𝛽12𝛾13𝑑4𝛼11 − 𝛽13𝛾11𝑑4𝛼13 + 
𝛽13𝛾14𝑑1𝛼12 + 𝛽13𝛾11𝑑2𝛼14 − 𝛽13𝛾14𝑑2𝛼11 − 𝛽13𝛾11𝑑4𝛼12 
+𝛽13𝛾12𝑑4𝛼11 + 𝛽14𝛾12𝑑1𝛼13 − 𝛽14𝛾11𝑑2𝛼13 

−𝛽14𝛾13𝑑2𝛼11 − 𝛽14𝛾11𝑑3𝛼12 − 𝛽14𝛾12𝑑3𝛼11),  

(57) 

Δ1 = −𝐹1𝑅17 + 𝐹2𝑅18 − 𝐹3𝑅19,  (58) 

Δ2 = 𝐹1𝑅20 + 𝐹2𝑅21 − 𝐹3𝑅22,  (59) 

Δ3 = −𝐹1𝑅23 + 𝐹2𝑅24 − 𝐹3𝑅25, (60) 

Δ4 = −𝐹1𝑅26 + 𝐹2𝑅27 − 𝐹3𝑅28, (61) 

also 

,432121314432131214

432121413432141213

43213141243214131217

chchchchchch

chchchchchch

chchchchchchR







+−

−+

+=

 

𝑅18 = −𝛾13𝛼14𝑐ℎ2𝑐ℎ3𝑐ℎ4 + 𝛾14𝛼13𝑐ℎ2𝑐ℎ3𝑐ℎ4 
+𝛾12𝛼14𝑐ℎ2𝑐ℎ3𝑐ℎ4 − 𝛾14𝛼12𝑐ℎ2𝑐ℎ3𝑐ℎ4 
+𝛾12𝛼13𝑐ℎ2𝑐ℎ3𝑐ℎ4 + 𝛾13𝛼12𝑐ℎ2𝑐ℎ3𝑐ℎ4, 

𝑅19 = 𝛽12𝑑4𝛼13𝑐ℎ2𝑐ℎ3𝑐ℎ4 − 𝛽12𝑑3𝛼14𝑐ℎ2𝑐ℎ3𝑐ℎ4 
+𝛽13𝑑2𝛼14𝑐ℎ2𝑐ℎ3𝑐ℎ4 − 𝛽13𝑑4𝛼12𝑐ℎ2𝑐ℎ3𝑐ℎ4 
−𝛽14𝑑2𝛼13𝑐ℎ2𝑐ℎ3𝑐ℎ4 + 𝛽14𝑑3𝛼12𝑐ℎ2𝑐ℎ3𝑐ℎ4, 
𝑅20 = 𝛽12𝛾13𝛼14𝑐ℎ1𝑐ℎ3𝑐ℎ4 − 𝛽11𝛾14𝛼13𝑐ℎ1𝑐ℎ3𝑐ℎ4 
−𝛽13𝛾11𝛼14𝑐ℎ1𝑐ℎ3𝑐ℎ4 + 𝛽13𝛾14𝛼11𝑐ℎ1𝑐ℎ3𝑐ℎ4 + 
𝛽14𝛾11𝛼13𝑐ℎ1𝑐ℎ3𝑐ℎ4 − 𝛽14𝛾13𝛼11𝑐ℎ1𝑐ℎ3𝑐ℎ4, 
𝑅21 = 𝑑1𝛾13𝛼14𝑐ℎ1𝑐ℎ3𝑐ℎ4 + 𝑑1𝛾14𝛼13𝑐ℎ1𝑐ℎ3𝑐ℎ4 
−𝑑3𝛾14𝛼14𝑐ℎ1𝑐ℎ3𝑐ℎ4 + 𝑑3𝛾14𝛼11𝑐ℎ1𝑐ℎ3𝑐ℎ4 
+𝑑4𝛾11𝛼13𝑐ℎ1𝑐ℎ3𝑐ℎ4 − 𝑑4𝛾13𝛼11𝑐ℎ1𝑐ℎ3𝑐ℎ4, 
𝑅22 = 𝑑3𝛽11𝛼14𝑐ℎ1𝑐ℎ3𝑐ℎ4 − 𝑑4𝛽11𝛼13𝑐ℎ1𝑐ℎ3𝑐ℎ4 
−𝑑4𝛽13𝛼11𝑐ℎ1𝑐ℎ3𝑐ℎ4 + 𝑑1𝛽13𝛼14𝑐ℎ1𝑐ℎ3𝑐ℎ4 + 
𝑑1𝛽14𝛼13𝑐ℎ1𝑐ℎ3𝑐ℎ4 − 𝑑3𝛽14𝛼11𝑐ℎ1𝑐ℎ3𝑐ℎ4, 
𝑅23 = 𝛽11𝛾12𝛼14𝑐ℎ1𝑐ℎ2𝑐ℎ4 + 𝛽11𝛾14𝛼12𝑐ℎ1𝑐ℎ2𝑐ℎ4 
+𝛽12𝛾11𝛼14𝑐ℎ1𝑐ℎ2𝑐ℎ4 − 𝛽12𝛾14𝛼11𝑐ℎ1𝑐ℎ2𝑐ℎ4 − 
𝛽14𝛾11𝛼12𝑐ℎ1𝑐ℎ2𝑐ℎ4 + 𝛽14𝛾12𝛼11𝑐ℎ1𝑐ℎ2𝑐ℎ4,

 𝑅24 = 𝑑1𝛾12𝛼14𝑐ℎ1𝑐ℎ2𝑐ℎ4 + 𝑑1𝛾14𝛼12𝑐ℎ1𝑐ℎ2𝑐ℎ4 
+𝑑2𝛾11𝛼14𝑐ℎ1𝑐ℎ2𝑐ℎ4 − 𝑑2𝛾14𝛼11𝑐ℎ1𝑐ℎ2𝑐ℎ4 
−𝑑4𝛾11𝛼12𝑐ℎ1𝑐ℎ2𝑐ℎ4 + 𝑑4𝛾12𝛼11𝑐ℎ1𝑐ℎ2𝑐ℎ4,
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𝑅25 = 𝑑4𝛽11𝛼12𝑐ℎ1𝑐ℎ2𝑐ℎ4 − 𝑑2𝛽11𝛼14𝑐ℎ1𝑐ℎ2𝑐ℎ4 
+𝑑1𝛽12𝛼14𝑐ℎ1𝑐ℎ2𝑐ℎ4 − 𝑑4𝛽12𝛼11𝑐ℎ1𝑐ℎ2𝑐ℎ4 − 
𝑑1𝛽14𝛼12𝑐ℎ1𝑐ℎ2𝑐ℎ4 + 𝑑2𝛽14𝛼11𝑐ℎ1𝑐ℎ2𝑐ℎ4, 
𝑅26` = 𝛽11𝛾12𝛼13𝑐ℎ1𝑐ℎ2𝑐ℎ3 − 𝛽11𝛾13𝛼12𝑐ℎ1𝑐ℎ2𝑐ℎ3 
−𝛽12𝛾11𝛼13𝑐ℎ1𝑐ℎ2𝑐ℎ3 + 𝛽12𝛾13𝛼11𝑐ℎ1𝑐ℎ2𝑐ℎ3 + 
𝛽13𝛾11𝛼12𝑐ℎ1𝑐ℎ2𝑐ℎ3 + 𝛽13𝛾12𝛼11𝑐ℎ1𝑐ℎ2𝑐ℎ3, 

,3211112332112113

3211113232113112

321121313211312127

chchchdchchchd

chchchdchchchd

chchchdchchchdR







−+

+

−−=

 

𝑅28 = 𝑑2𝛽11𝛼13𝑐ℎ1𝑐ℎ2𝑐ℎ3 − 𝑑3𝛽11𝛼12𝑐ℎ1𝑐ℎ2𝑐ℎ3 
−𝑑1𝛽12𝛼13𝑐ℎ1𝑐ℎ2𝑐ℎ3 + 𝑑3𝛽12𝛼11𝑐ℎ1𝑐ℎ2𝑐ℎ3 + 
𝑑1𝛽13𝛼12𝑐ℎ1𝑐ℎ2𝑐ℎ4 − 𝑑2𝛽13𝛼11𝑐ℎ1𝑐ℎ2𝑐ℎ3.  

(62) 

Substituting the values of 𝐶𝑗  from Eq. (55) in Eq. (34) and Eqs. (39)-(40), determine the 

displacement components, stress components, temperature distribution and carrier density 

distribution as 

𝑢̂1 =
1

Δ
(𝐿1𝐹̂1(𝜉, 𝑝) + 𝐿2𝐹̂2(𝜉, 𝑝) + 𝐿3𝐹̂3(𝜉, 𝑝)),    (63) 

𝑢̂3 =
1

Δ
(𝐿4𝐹̂1(𝜉, 𝑝) + 𝐿5𝐹̂2(𝜉, 𝑝) + 𝐿6𝐹̂3(𝜉, 𝑝)),  (64) 

𝑡̂33 =
1

Δ
(𝐿13𝐹̂1(𝜉, 𝑝) + 𝐿14𝐹̂2(𝜉, 𝑝) + 𝐿15𝐹̂3(𝜉, 𝑝)),  (65) 

𝑡̂31 =
1

Δ
(𝐿16𝐹̂1(𝜉, 𝑝) + 𝐿17𝐹̂2(𝜉, 𝑝) + 𝐿18𝐹̂3(𝜉, 𝑝)),  (66) 

𝑇̂ =
1

Δ
(𝐿7𝐹̂1(𝜉, 𝑝) + 𝐿8𝐹̂2(𝜉, 𝑝) + 𝐿9𝐹̂3(𝜉, 𝑝)),  (67) 

𝑁̂ =
1

Δ
(𝐿10𝐹̂1(𝜉, 𝑝) + 𝐿11𝐹̂2(𝜉, 𝑝) + 𝐿12𝐹̂3(𝜉, 𝑝)).  (68) 

where 

,4263232201171 chRchRchRchRL −−−=  

𝐿2 = 𝑅18𝑐ℎ1 + 𝑅21𝑐ℎ2 + 𝑅24𝑐ℎ3 − 𝑅27𝑐ℎ4, 

,4283252221193 chRchRchRchRL −−−−=  

𝐿4 = 𝑅17𝑐ℎ1𝛼11 − 𝑅20𝑐ℎ2𝛼12 − 𝑅23𝑐ℎ3𝛼13 − 𝑅26𝑐ℎ4𝛼14, 

,144271332412221111185  chRchRchRchRL −−−=  

𝐿6 = 𝑅19𝑐ℎ1𝛼11 − 𝑅22𝑐ℎ2𝛼12 − 𝑅25𝑐ℎ3𝛼13 − 𝑅28𝑐ℎ4𝛼14,

,1441842613318

32312218220111181177





chgdRchg

dRchgdRchgdRL

+−+

−+−−=
 

𝐿8 = 𝑅18𝑑1 − 𝑔18𝑐ℎ1𝛽11 + 𝑅21𝑑2 − 𝑔18𝑐ℎ2𝛽12 + 𝑅24𝑑3 
−𝑔18𝑐ℎ3𝛽13 + 𝑅27𝑑4 − 𝑔18𝑐ℎ4𝛽14, 

,1441842813318

32512218222111181199





chgdRchg

dRchgdRchgdRL

+−+

−+−+−=
 

 

470



 

 

 

 

 

 

Photothermoelastic interactions under Moore-Gibson-Thompson thermoelasticity 

𝐿10 = 𝑔1𝑚1𝑅17𝑐ℎ1 − 𝑖𝜉𝑔1𝛼11𝑅17𝑠ℎ1 − 𝑔1𝑚2𝑅20𝑐ℎ2 
+𝑖𝜉𝑔1𝛼12𝑅20𝑠ℎ2 − 𝑔1𝑚3𝑅23𝑐ℎ3 + 𝑖𝜉𝑔1𝛼14𝑅23𝑠ℎ3 
−𝑔1𝑚4𝑅26𝑐ℎ4 + 𝑖𝜉𝑔1𝛼14𝑅26𝑠ℎ4, 

,42714132741

42414132431221121

221211181111181111

shRgichRmg

shRgichRmgshRgi

chRmgshRgichRmgL







+−

+−+

+−=

 

𝐿12 = 𝑔1𝑚1𝑅19𝑐ℎ1 − 𝑖𝜉𝑔1𝛼11𝑅19𝑠ℎ1 + 𝑔1𝑚2𝑅22𝑐ℎ2 + 
𝑖𝜉𝑔1𝛼12𝑅22𝑠ℎ2 − 𝑔1𝑚3𝑅25𝑐ℎ3 + 𝑖𝜉𝑔1𝛼14𝑅25𝑠ℎ4 
−𝑔1𝑚4𝑅28𝑐ℎ3 + 𝑖𝜉𝑔1𝛼14𝑅28𝑠ℎ4, 

,4261432313220121171113 chRchRchRchRL  −−−=  

𝐿14 = 𝛽11𝑅18𝑐ℎ1 + 𝛽12𝑅21𝑐ℎ2 + 𝛽13𝑅24𝑐ℎ3 + 𝛽14𝑅27𝑐ℎ4,

,4281432513222121191115 chRchRchRchRL  −−−−=  

𝐿16 = 𝛾11𝑅17𝑐ℎ1 − 𝛾12𝑅20𝑐ℎ2 − 𝛾13𝑅23𝑐ℎ3 − 𝛾14𝑅26𝑐ℎ4,

,4271432413221121181117 chRchRchRchRL  +++=  

𝐿18 = −𝛾11𝑅19𝑐ℎ1 − 𝛾12𝑅22𝑐ℎ2 − 𝛾13𝑅25𝑐ℎ3 − 𝛾14𝑅28𝑐ℎ4. 

(69) 

        

 

5. Particular cases  
 

(i) For moving normal force 𝐹20 = 𝐹30 = 0 yield 

(𝑢̂1, 𝑢̂3, 𝑡̂33, 𝑡̂31, 𝑇̂, 𝑁̂) =
1

Δ
((𝐿1, 𝐿4, 𝐿13, 𝐿16, 𝐿7, 𝐿10)𝐹̂1(𝜉, 𝑥3, 𝑝)),   (70) 

where 𝐹̂1(𝜉, 𝑥3, 𝑝) is given by Eq. (46) 

(ii) For ramp type thermal Source 𝐹10 = 𝐹30 = 0 yield 

(𝑢̂1, 𝑢̂3, 𝑡̂33, 𝑡̂31, 𝑇̂, 𝑁̂) =
1

Δ
((𝐿2, 𝐿5, 𝐿14, 𝐿17, 𝐿8, 𝐿11)𝐹̂2(𝜉, 𝑝)), (71) 

where 𝐹̂2(𝜉, 𝑝) is given by Eq. (47) 

(iii) For carrier density source 𝐹10 = 𝐹20 = 0 yield 

(𝑢̂1, 𝑢̂3, 𝑡̂33, 𝑡̂31, 𝑇̂, 𝑁̂) =
1

Δ
((𝐿3, 𝐿6, 𝐿15, 𝐿18, 𝐿9, 𝐿12)𝐹̂3(𝜉, 𝑝)), (72) 

where  𝐹̂3(𝜉, 𝑝)is given by Eq. (48) 

(iv) Taking 𝜏𝑜 = 𝐾1
* = 𝐾3

* = 0 in Eqs. (63)-(68) yield the desired expressions for Classical 

thermoelastic CTE) model and the results are similar as obtained by Kumar et al. (2022) in a 

particular case. 

(v) Considering 𝐾1
* = 𝐾3

* = 0 in Eqs. (63)-(68) determine the related quantities for Lord and 

Shulman’s (LS) model. These results are in agreement with those obtained by Kumar et al. 

(2022) in a special case.  

(vi) Allowing 𝜏𝑜 = 𝐾1 = 𝐾3 = 0  in Eqs. (63)-(68) yield the corresponding expressions for 

Green and   Naghdi of type-II (GN-II) model.    

(vii) Considering 𝜏𝑜 = 0 in Eqs. (63)-(68) determine the related expressions for Green and 

Naghdi of type- III (GN-III) model .  
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6. Unique cases 
 

a) If 𝐶11 = 𝐶33 = 𝜆 + 2𝜇, 𝐶13 = 𝜆, 𝐶55 = 𝜇,  𝛼1𝑡 = 𝛼3𝑡 = 𝛼𝑡 , 𝛾1𝑑 = 𝛾3𝑑 = 𝛾𝑛 , 𝐷1 = 𝐷3 = 𝐷𝑒 , 

𝐾1 = 𝐾3 = 𝐾 and 𝐾1
* = 𝐾3

* = 𝐾* in Eqs. (63)-(68), then all corresponding results are obtained 

for isotropic photothermoelastic plate under Moore-Gibson-Thompson thermoelastic model. 

b) In absence of carrier density parameter (N=0) in Eqs.  (63)-(68), we obtain the corresponding 

expressions for 𝑢̂1, 𝑢̂3 and 𝑇̂ for thermoelastic plate under Moore-Gibson-Thompson model, as 

where 𝑚1, 𝑚2, 𝑚3 be the roots of characteristic equation 

𝐷6 + 𝑅29𝐷
4 + 𝑅30𝐷

2 + 𝑅31 = 0, 

 (𝑢̂1, 𝑢̂3, 𝑇̂) = ∑ (1, 𝑎𝑗 , 𝑏𝑗)
3
𝑗=1 𝐶𝑗 𝑐𝑜𝑠ℎ𝑚𝑗 𝑥3, 

(77) 

The coupling parameters are as 

𝑎𝑗 = ∑
𝑅35𝑚𝑗

3+𝑅36𝑚𝑗

𝑅32𝑚𝑗
4+𝑅33𝑚𝑗

2+𝑅34

3
𝑗=1 , and  𝑏𝑗 = ∑

𝑅37𝑚𝑗
2+𝑅38

𝑅32𝑚𝑗
4+𝑅33𝑚𝑗

2+𝑅34

3
𝑗=1 . 

 

 

7. Numerical results and discussion 
  

For the numerical calculations, we take material constants for orthotropic Silicon (Si) material 

as 

𝐶11 = 19.45N m2⁄ , 𝐶13 = 6.41N m2⁄ , 𝐶33 = 16.57N m2⁄ , 𝐶55 = 7.96N m2⁄ , 

𝛼1𝑡 = 3.25N m2K⁄ , 𝛼3𝑡 = 3.10N m2K⁄ , 𝛾1𝑑 = −0.029715 m
3, 𝛾3𝑑 = −0.02714 m

3, 

𝜌 = 2328 kg m3⁄ , 𝑇𝑜 = 300 K, 𝑇𝑝 = 2 ps, 𝐾1 = 192 w/mk, 𝐾3 = 190 w/mk, 𝐸𝑔 = 1.11𝑒𝑉, 

𝐶𝑒 = 710 𝑗 𝑘𝑔⁄ 𝐾, 𝜏 = 5𝑠, 𝐷1
* = 4.0𝑚2 𝑠⁄ , 𝐷3

* = 3.5𝑚2 𝑠⁄ , 𝑛𝑜 = 10
20𝑚−3.

 
For MGTE the following cases are taken into account: 

(i) Moving normal force 𝐹20 = 𝐹30 = 0𝑓𝑜𝑟𝑣 = 0.1,0.2,0.4. 
(ii) Ramp type thermal source 𝐹10 = 𝐹30 = 0𝑓𝑜𝑟𝑡𝑜 = 0.1,0.2,0.3. 
(iii) Carrier Density source 𝐹10 = 𝐹20 = 0𝑓𝑜𝑟𝑏 = 0.1,0.3,0.5.   
Case-I: Figs. 1.1-1.9 depict the variations of all field variables with plate length 𝑥1 on the plane 

𝑥3 = 1 for the different theories of photothermpelasticity. 

 

 

 

Fig. 1.1 Profile of t33 vs x1 (MNF) 
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Fig. 1.2 Profile of T vs x1 (MNF) 

 

     
Fig. 1.3 Profile of N vs x1 (MNF) 

 

 

Fig. 1.4 Profile of t33 vs x1 (RTS) 

 

 

Figs. 1.1-1.3 represent moving normal force (MNF), Figs. 1.4-1.6 represents ramp type thermal 

source (RTS), Figs. 1.7-1.9 represent carrier density source (CDS). In all the figures solid line 

correspond to photothermoelastic Moore-Gibson-Thompson (MGTE) model, Solid line with 

center symbol square corresponds to classical thermoelastic (CTE) model, dashed line corresponds  
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Fig. 1.5 Profile of T vs x1 (RTS) 

 

 

Fig. 1.6 Profile of N vs x1 (RTS) 

 

 

Fig. 1.7 Profile of t33 vs x1 (CDS) 

 

 

to Lord and Shulman (LS) model, dotted line corresponds to Green and Naghdi type-II (GN-II) 

model and dash-dot line corresponds to Green and Naghdi of type-III (GN-III) model. 

 

Moving normal force (MNF),  

Fig. 1.1 depicts trend of normal stress 𝑡33 
vs. 𝑥1. Near the source, the magnitude of 𝑡33  is  
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Fig. 1.8 Profile of T vs x1 (CDS) 

 

 

Fig. 1.9 Profile of N vs x1 (CDS) 

 

 

higher for LS model as compare to other models. The behavior and variation of 𝑡33 is opposite 

oscillatory for MGTE and CTE models, in some finite domain. Away from the source, all the 

curves correspond to 𝑡33 be converges for all models except GN-II. 

Fig. 1.2 displays trend of temperature distribution T vs. 𝑥1. Near the source, the magnitude of T 

is maximum for MGTE model and minimum for GN-II model. Away from source, all the curves 

correspond to T be converges for all models except MGTE model. The curve due to LS model is 

monotonically decreasing in the range 0 ≤ 𝑥1 ≤ 2. All the curves correspond to T are oscillating 

in nature for MGTE, CTE, LS and GN-II and GN-II models. 

Fig. 1.3 demonstrates trend of carrier density distribution N vs 𝑥1. Near the source, MGTE 

model enhances the magnitude of N as compare to other models. The curves correspond to N for 

CTE, LS and MGTE model behave almost similar with minor difference in their magnitude, in the 

range 4 ≤ 𝑥1 ≤ 10. 

 

Ramp type thermal source (RTS),  

Fig. 1.4 shows trend of normal stress 𝑡33 vs. 𝑥1. Near the source magnitude of 𝑡33 is higher due 

to one relaxation time, whereas MGTE decreases the value of 𝑡33. The curves correspond to 𝑡33 

for GN-II and LS model are opposite oscillatory in the range 5 ≤ 𝑥1 ≤ 10. Away from source, the 

curves correspond to 𝑡33  be converges for LS and CTE model. GN-III model enhances the 

magnitude of 𝑡33 
for the intermediate values of 𝑥1. 
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Fig. 1.10 Profile of t33 vs d (MNF) 

 

 

Fig. 1.11 Profile of T vs d (MNF) 

 

 

Fig. 1.12 Profile of N vs d (MNF) 

 

 

Fig. 1.5 depicts trend of temperature distribution T vs.  𝑥1. Near the source, the magnitude of T 

is increases in the presence of energy dissipation, whereas T attains minimum value in absence of 

energy dissipation. The curve correspond to T due to MGTE is less oscillatory as compare to other 

models. The curves due to LS and GN-II are opposite oscillatory in some finite domain. The  
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Fig. 1.13 Profile of t33 vs d (RTS) 

 

 

Fig. 1.14 Profile of T vs d (RTS) 

 

 

Fig. 1.15 Profile of N vs d (RTS) 

 

 

curves for CTE and GN-II behave almost similar. 

Fig. 1.6 shows trend of carrier density distribution N vs. 𝑥1. Near the source, the values of N 

increases for MGTE model and decreases due to one relaxation time. The curves correspond to N 

behave almost similar for CTE and GN-II models in the finite domain of 𝑥1. Away from source,  
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Fig. 1.16 Profile of t33 vs d (CDS) 

 

 

Fig. 1.17 Profile of T vs d (CDS) 

 

 

Fig. 1.18 Profile of N vs d (CDS) 

 

 

the curves correspond to N be converges for LS and CTE model. The curve due to GN-III and LS 

model are opposite oscillatory. 

 

Carrier density source (CDS),  

Fig. 1.7 depicts trend of normal stress 𝑡33 vs. 𝑥1. Initially, the value of 𝑡33 is maximum due to 
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GN-II model and minimum due to GN-III model. Away from source, all the curves correspond to 

𝑡33 be converges except GN-III model. The curves correspond to 𝑡33 for CTE model lies between 

MGTE and LS model for the intermediate values of𝑥1. 

Fig. 1.8 demonstrates trend of T vs. 𝑥1. Near the source, the magnitude of T is higher in the 

absence of energy dissipation, whereas presence of energy dissipation decreases the value of T. 

The curves correspond to T are opposite oscillatory due to LS and MGTE models, in some finite 

domain. The curve for CTE model lies in between LS model and GN-II model for the intermediate 

values of 𝑥1. 

Fig. 1.9 shows trend of carrier density N vs. 𝑥1.Near the source the magnitude of N is higher 

due to GN-II model and minimum for GN-III model. All the curves correspond to N have 

fluctuating behavior for all the models. Away from source, all the curves due to MGTE, LS, GN-II 

and GN-III are converges except CTE model. Behavior and variation of curves are oscillatory for 

all the models. 

Case-II: Figs. 1.10-1.18 depict the variations of all field variables with plate thickness d on the 

plane 𝑥1 = 1 for different values of velocity, ramp type parameter and periodic parameter. 

Figs. 1.10-1.12 represent moving normal force under MGTE with solid line, Figs. 1.13-1.15 

represent ramp type thermal source under MGTE with dashed line, and Figs. 1.16-1.18 represent 

carrier density source under MGTE with dotted line.  

 

Moving normal force under MGTE for different values of velocity v: 

Fig. 1.10 depicts trend of normal stress 𝑡33 
vs d. The magnitude of 𝑡33 

is maximum when v=0.4 

and minimum when v=0.2 at the middle point of the plate. The behavior and variation of 𝑡33 is 

similar for v= 0.1 and v= 0.2. 𝑡33 
attain decreasing trend near the edges. 

 Fig.  1.11 displays the trend of temperature distribution T vs 𝑑. The magnitude of T remains 

higher when v=0.2 and lower when v=0.1 at the middle point of the plate. Behavior and variation 

of curves correspond to T is similar for v=0.1 and v=0.4. All the curves attain increasing trend near 

the edges, for all values of velocity v. 

Fig.  1.12 shows the behavior of carrier density N vs. d. The magnitude of N is maximum at the 

middle point of the plate when v=0.4. A parabolic curve correspond to N is noticed at the middle 

point of the plate for all values of velocity. All the curves for all values of velocity v, attain 

increasing trend near the edges. 

 

Ramp type thermal source (RTS) under MGTE for different values of ramp type parameter𝑡𝑜: 

Fig. 1.13 demonstrate the trend of normal stress 𝑡33 
vs  𝑑. 𝑡33 

attains maximum magnitude at 

(d=-2.5 and d=2.5) when 𝑡𝑜=0.2. All the curves correspond to 𝑡33 for different values of ramp type 

parameter are fluctuating in nature and attain increasing trend near the edges. A bell shaped curve 

is observed for N at the middle point of the plate when 𝑡𝑜=0.2. 

Fig. 1.14 depicts the trend of temperature distribution T vs 𝑑. 𝑡𝑜=0.2 enhances the magnitude of 

T at (d=-2.5 and d=2.5) when 𝑡𝑜=0.2, whereas T attain the lowest magnitude when 𝑡𝑜=0.1. All the 

curves correspond to T for all values of 𝑡𝑜attain increasing trend near edges. 

Fig. 1.15 displays the trend of carrier density N vs. 𝑑. 𝑡𝑜=0.1 enhances the magnitude of N at 

(d=-2.5 and d=2.5). Near the edges, the values of N due to 𝑡𝑜=0.2 lies between 𝑡𝑜=0.1 and 𝑡𝑜=0.3. 

 

Carrier density source (CDS) under MGTE for different values of periodic parameter b: 

Fig. 1.16 demonstrates trend of normal stress 𝑡33 vs  𝑑. The magnitude of 𝑡33  is maximum 
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when periodic parameter b=0.5 at the middle point of the plate. The behavior and variation of 

curves correspond to 𝑡33 remains similar for b=0.1 and b=0.3 with minimum difference of their 

magnitude.  

Fig. 1.17 shows the trend of temperature distribution T vs 𝑑. The magnitude of T is maximum 

for b=0.5. All the curves correspond to T for all values of periodic parameter attain decreasing 

trend near the edges. 

Fig. 1.18 depicts the trend of carrier density N vs 𝑑. The magnitude of N remains maximum 

when b=0.5 and minimum when b=0.3 at the middle point of the plate. The curves correspond to N 

are same in behavior and variation for b=0.1 and b=0.3. 

 
 
8. Conclusions 

 

In this paper a new model on Moore-Gibson-Thompson photothermoelastic theory has been 

established. Laplace and Fourier transform are used to solve the problem. Specific types of sources 

are taken to demonstrate the utility of the problem. The transformed expressions are converted into 

the physical domain by using numerical technique and presented in the form of figures. As the 

governing equations involved in this manuscript are of wave type, so the transfer of energy is done 

in the form of waves. After the numerical results the following conclusions are made: 

𝑡33 attain maximum magnitude for LS model, whereas MGTE model enhances the magnitude 

of T and N due to MNF. The behavior of  𝑡33, T and N is oscillatory for all the assumed models. 

The impact of CTE model is more on 𝑡33 as compare to other models due to RTS. Behavior and 

variation of T and N are similar with distinct magnitude due to ramp type thermal source for all the 

theories. 𝑡33, T and N attain maximum magnitude in absence of energy dissipation and minimum 

value in presence of energy dissipation in case of CDS.  

Behavior of T and N are similar with velocity variations and with distinct magnitude, whereas 

𝑡33 behave differently for MNF w.r.t. thickness of the plate. Magnitude of N gets decreases as 

ramp type parameter increases, whereas 𝑡33 and T get decreases for lowest ramp type parameter 

due to RTS in case of plate thickness. Variation and behavior of 𝑡33, T and N are similar for 

periodic source parameter, magnitude of all parameters increases due to highest value of periodic 

source parameter for CDS w.r.t. thickness of the plate. 

Due to MNF, RTS and CDS wave type behavior is observed for all the field variables depicting 

the significance of mechanical, thermal and carrier density response. MNF display a symmetric 

behavior for finite domain around the middle point of the plate. Away from middle point of the 

plate due to RTS depicts the decreasing and increasing behavior although in a small region 

symmetric tendency is observed. Smooth behavior is observed for near and away from the middle 

of the plate due to CDS. 

It is concluded that normal stress, temperature distribution and carrier density distribution show 

a fluctuating behavior in presence of MGTE, CTE, LS, GN-II and GN-III model. Non-uniform 

pattern of curves is followed by the resulting quantities for moving normal force, ramp type 

thermal source and carrier density source with respect to length and thickness of the plate. Since 

the equations are coupled, arrival of the wave front at any point affects all the considered physical 

quantities. The finite speed of propagation manifests itself in all the figures. From the graphical 

representation there are three wave fronts (mechanical, thermal and carrier density response). The 

model described in this study may be used to design various semiconductor elements to meet 

special engineering requirements. 
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