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Abstract.  In this paper, we present the parameter identification for inelastic and multi-scale problems. First, the 
theoretical background of several fundamental methods used in the upscaling process is reviewed. Several key 
definitions including random field, Bayesian theorem, Polynomial chaos expansion (PCE), and Gauss-Markov-
Kalman filter are briefly summarized. An illustrative example is given to assimilate fracture energy in a simple 
inelastic problem with linear hardening and softening phases. Second, the parameter identification using the Gauss-
Markov-Kalman filter is employed for a multi-scale problem to identify bulk and shear moduli and other material 
properties in a macro-scale with the data from a micro-scale as quantities of interest (QoI). The problem can also be 
viewed as upscaling homogenization. 
 

Keywords:  Bayesian update; Gauss-Markov-Kalman filter; inelastic and multi-scale problems; parameter 

identification 

 
 
1. Introduction 
 

The uncertainty quantification has been widely utilized in the field of computational 

mechanics. Many research works use this method to quantify the source of uncertainty in the 

numerical models. There are several sources of uncertainties in a numerical simulation, such as 

material and geometry uncertainties. In general, there are two common definitions, namely 

aleatory and epistemic uncertainties. The aleatory uncertainty is the inherent variation in a quantity 
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while the epistemic uncertainty is due to the lack of knowledge of an analyst. There are two 

popular problems in uncertainty quantification. The first one is the so-called forward problem, 

which is used to propagate the uncertainty through the model of interest and investigate the 

outputs, so that some of the key features or critical effects of inputs onto the model can be 

discovered. Meanwhile, the backward or inverse problem is employed to approximate the 

parameters of interest via the observed outputs of a given numerical model. In the later presented 

multi-scale problem, the data from the micro-scale can be used to assimilate data in the macro-

scale, such process is known as upscaling. In contrast, the inverse one is named as downscaling. 
Several researches relevant to the uncertainty quantification and analysis can be named as 

follows: dynamical systems in the frequency domain Römer et al. (2021), low-frequency 

electromagnetic devices Galetzka et al. (2019), sampling-free linear Bayesian update for fracture 

phase-field modeling Wu et al. (2021), Bayesian inference of heterogeneous visco-plastic material 

parameters Janouchova et al. (2018), stochastic multiple crack patterns Gerasimov et al. (2020), 

Polynomial chaos expansions for Maxwell's source problem Georg and Römer (2020), polynomial 

chaos in evaluating failure probability Janouchova et al. (2018), polynomial chaos for stochastic 

differential equations Xiu and Karniadakis (2002), adaptive Gaussian process for optimization 

problem Kim and Song (2021), inverse problem in piezoelectric material to identify damage Rus 

et al. (2006), structural fragility analysis underground motion Yi et al. (2019), and random 

fluctuations in material behavior of metals with visco-plastic and damage Kowalsky et al. (2007). 

There are several other researches adopting neural networks and machine learning into the 

engineering practices, e.g., solving phase-field modeling of fracture Goswami et al. (2020), 

predicting energy consumption Bui et al. (2020), detecting damage in wind turbine tower Nguyen 

et al. (2017), Nguyen et al. (2018), tracking high-dimensional non-Gaussian state models Hoang et 

al. (2021), modeling a digital twin for composite materials Ghanem et al. (2020), predicting load-

bearing capacity of concrete-filled steel tubular Le and Le (2021), computational homogenization 

Nguyen et al. (2020), and calibration of nonlinear mechanical models Marevs et al. (2016), 

Kucerova and Leps (2014).  
A cluster of research works is relevant to parameter identification, e.g., using conditional 

expectation Matthies et al. (2016), applying Gauss-Markov-Kalman filter for the Bayesian 

estimation Matthies et al. (2016), linear Bayesian updating Sarfaraz et al. (2018), developing 

sampling-free non-linear Bayesian update Matthies et al. (2016), considering stored energy and 

dissipation in multi-scale analysis Sarfaraz et al. (2020), applying the reduced model to quasi-

brittle failure of concrete Ibrahimbegovic et al. (2020), estimating effective parameters in 

anisotropic hydraulic phase-field fracture Noii et al. (2020), estimating model coefficients of a 

novel turbulent flow model over porous media Friedman et al. (2016), developing an efficient 

computational method to sample the posterior random sets Hoang and Matthies (2021), stabilizing 

reduced order models in computational fluid dynamics problems Stabile and Rosic (2020), and 

Ivica Kožar et al. (2021). The idea of bring the parameter assimilation into the multi-scale problem 

is rather challenging. Some research works on multi-scale problems can be listed as probabilistic 

analysis of localized failure Ibrahimbegovic and Matthies (2017), efficient code-coupling strategy 

Ibrahimbegovic et al. (2014), embedded discontinuity capable of interpreting a full set of 3D 

failure modes for heterogeneous materials Ibrahimbegovic et al. (2014), programming and 

computational procedure Rukavina et al. (2019), poro-viscoelastic substitute model Jänicke et al. 

(2020), modelling of micromorphic continua Jänicke et al. (2009), elastic/viscoelastic compounds 

Schüler et al. (2013), micro-scale or nano-scale composites Chatzigeorgiou et al. (2015), curing 

processes Klinge et al. (2012), large eddy simulation of turbulent flow Gravemeier et al. (2010), 
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and Nitsche-type extended variational formulation for incompressible two-phase flow Schott et al. 

(2015). Nevertheless, there is a novelty in the current work, which presents a new approach to 

identify material properties by using simple and fast computation methods to apply on selective 

conventional mechanics problems. 
The structure of this paper is outlined as follows. In Section 2, the theoretical background with 

a set of principle concepts and methods is laid out. To present an example, the fracture energy in a 

selective inelastic simulated via three-phases one-dimensional bar is chosen to be assimilated via 

the Bayesian update. In Section 3, the Gauss-Markov-Kalman filter is applied in a multi-scale 

problem with the visco-plasticity. The implementation is proceeded with an aim to upscale 

material properties in the macro-scale via data from the micro-scale. The micro-scale is simulated 

via the Lattice model, while the macro-scale is simulated via an enhanced triangular element using 

Raviart-Thomas vector space to interpolate the stress field with embedded capabilities of linear 

isotropic and kinematic hardening visco-plasticity. In Section 4, the conclusions are stated. 
 

 

2. Theoretical background 
 

In this section, the material properties at the micro-scale level are represented via the random 

fields. To numerically generate samples of such a random field, the Karhunen-Loève expansion 

can be employed. As an alternative to the density-based Bayesian update, the Gauss-Markov-

Kalman filter is mainly used here for the upscaling problem. For that identification process, the 

above filter is conducted within the framework of Polynomial chaos expansion (PCE), where all 

random variables are formed via PCE. With this setting, the target material properties at macro-

scale level are later updated via the Gauss-Markov-Kalman filter by using the observations of 

structural responses from the micro-scale level. 

 

2.1 Micro-scale radom fields 
 

On the micro-scale, there is uncertainty about the exact composition and spatial arrangement. 

All model material properties are modeled via log-normal random fields so that they are 

guaranteed to be always positive. A random field (RF) is a collection of random variables and it 

explicitly depends on space and takes different value whenever it is observed. For example, two-

dimensional sources of water or oil underground can be viewed as random fields. It can be stated 

that a random field is a mapping 𝜃: (𝑅𝑛, 𝜔) → 𝑅   with 𝑛 ≥ 2. Similar as the random variable, the 

mean value function is the most basic characteristic of a random field 

 
(1) 

In a practical approach, the corresponding oscillating part  𝜃(𝑥, 𝜔) − 𝜇𝜃(𝑥)  is commonly 

represented via a linear combination of deterministic functions and coefficients, in which the latter 

can be random variables. There are several methods to separate the representation as above, such 

as the Karhunen-Loève expansion (KLE) and the Proper Orthogonal Decomposition (POD). In the 

following, only the Karhunen-Loève expansion (KLE) is discussed since it is one of the most 

common methods in the field of uncertainty quantification. The KLE can be employed for any 

random field, not just Gaussian one which is presented in this work. For the log-normal of such a 
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quantity, the spatial covariance is given by the Matérn-class, as it has independent variability in 

smoothness 𝑣𝑐  and correlation length 𝑙𝑐  as described correspondingly. Let us consider a random 

field in a two-dimensional domain Ω. It is clear that there is an infinite number of random variables 

at each point 𝑥 ∈ Ω . The target is to reduce the number of these random variables by smoothening 

a given random field. In other words, it can be represented as a finite series of products of spatial 

functions multiplied by scalar random variables, in which the error with respect to the original 

random field can be neglected. Given a Gaussian stochastic field, the Karhunen-Loève expansion, 

see Smith (2013) and Chiachio-Ruano et al. (2021), is defined as 

 

(2) 

It can be seen clearly that Eq. (2) is composed of the first term as a mean value function 𝜇Θ(𝑥)  

which depends only on space, and the second term as an oscillating part. The spatial functions 

𝜓𝑖(𝑥) are square-integrable and orthogonal. 𝜃𝑖(𝜔) denotes independent standard Gaussian N(0,1)  

random variables, and the 𝜎𝑖  are multipliers. The spatial functions 𝜓𝑖(𝑥) can be discretized in the 

spatial domain in a form as 

 
(3) 

in which  is a matrix of spatial basis functions as shape functions in the finite element method. 

The optimal spatial functions are the solution of the generalized eigenvalue problem 

 
(4) 

in which  and  are the generalized eigenvalues and eigenfunctions. The 𝐺(Ψ𝑖, Ψ𝑗)  is the 

Gramian matrix of the basis functions, which can be assembled in the same manner as the mass 

matrix ∀𝑥 ∈ Ω  as 

 
(5) 

Meanwhile, the covariance matrix C is computed via Matérn function between each couple of 

points, e.g., 𝐶𝑖,𝑗 = 𝐶𝑣𝑐
(𝑑𝑖𝑗/𝑙𝑐). The Matérn function is defined as 

 
(6) 

where  𝑣𝑐 is a non-negative parameter, 𝜎 is also an input parameter, 𝑑𝑖,𝑗  is the distance between 

the two input points (𝑖, 𝑗) , and 𝑙𝑐  is the correlation length. The Gaussian Θ(𝑥)  field can be 

approximated 

 

(7) 

where 𝐿 ≤ 𝑛  is the truncated number of the eigenfunctions defined as 

 

(8) 
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in which n is the number of eigenvalues in a given system. The relative cumulative factor 𝜌𝐿  can 

be predefined, normally 𝜌𝐿 ≥ 0.9. 
 

2.2 Bayesian update 
 

The non-intrusive and intrusive methods are common approaches for the uncertainty 

quantification analysis. The former is proceeded by treating the available finite element model, 

such as in-house codes or commercial computational programs, as black boxes. By contrast, the 

latter method heavily reformulates the weak form or variational formulation of the problem and 

introduces the uncertainty into the system explicitly. Hence, this approach is more complicated 

and sometimes it is impossible with a high number of uncertainty parameters due to the extreme 

complexity. Only non-intrusive methods are investigated to identify material properties in this 

paper. Specifically, the Bayesian updating method is adopted for the parameter identification. The 

inverse problem of identifying or calibrating the material properties in a given numerical model is 

addressed in the framework of the Bayesian estimation, which leads to a computation of the 

conditional expectation. The Bayesian theorem is considered as the consistent way to update a 

probabilistic description when new data in the form of observations 𝒴 are available. In such case, 

it is possible to state the conditional density 𝜋(𝜃|𝒴) of 𝜃 given 𝒴, see Tarantola et al. (2004), 

Matthies et al. (2016) 

 
(9) 

in which 

 
(10) 

where 𝜋(𝒴)  is the probability density function (pdf) of the random variable 𝒴 (the evidence) and 

𝜋(𝜃) is the prior probability density function, and 𝜋(𝒴|𝜃) is the likelihood of 𝒴 = 𝑌(𝜃, ∈)  given 

𝜃, where  is the observation error. The prior probability density function 𝜋(𝜃) describes a belief 

of an analyst about the possible population characteristics of the random variable 𝜃. The likelihood 

𝜋(𝒴|𝜃)  describes our belief that the observations 𝒴  if we know 𝜃  is true. And the posterior  

𝜋(𝜃|𝒴) describes our belief on the possible population characteristics of random variable  after 

observing 𝒴. 

The flow chart of the Bayesian updating method is shown in Fig. 1. Firstly, realization of each 

interest input variables is generated via its corresponding prior distribution. The prior probability 

density function can be selected from several available distributions so that it is mathematically 

feasible to generate the realization of a given random variable. Secondly, the target physics or 

mechanics problem can be cast in a general form of mathematical representation 𝑀(𝜃), which can 

be built via commercial computational programs or in-house codes. It can be also truncated and 

approximately represented via surrogate model, such as general Polynomial chaos (gPC) with a 

fast computational capability. In the following works, the model 𝑀(𝜃) is solved by finite element 

method, which is programmed as a FORTRAN user-defined element in the FEAP computational 

program. Then the quantity of interest (QoI) depends on the nature of the problem and the 

selection of an analyst. However, it is normally selected based on the criterion that it can be 

measured explicitly with the aid of experimental tools. The common examples of QoI are the 

displacement, velocity, acceleration, strain, reaction force, stored energy, and even dissipation.  
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Fig. 1 Flow of Bayesian updating method 

 
Table 1 One-dimensional inelastic bar material properties 

Property A E 𝜎𝒴 𝐾ℎ 𝜎𝑢 𝐾𝑠 

Value 1 30 × 106 30 × 103 15 × 106 60 × 103 7.5 × 106 

 

  
(a) Reaction vs displacement (b) Prior and posterior pdf of Gf 

Fig. 2 Bayesian updating of Gf using reaction Rx 
 

  
(a) Elastic energy Eel (b) Prior and posterior pdf of Gf 

Fig. 3 Bayesian updating of Gf using elastic energy Eel 
 

 

Finally, with the data from the experiment, all essential ingredients are completed in the 

preparation for the Bayesian updating. 
In the following, the Bayesian updating method is conducted to update the fracture energy Gf 

under the softening regime in a one-dimensional coupled elasto-plasticity. A cantilever bar is fixed 

on the left and an imposed displacement u=0.01 is applied within 500 time steps on the right. The  
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Table 2 Prior, posterior and true values of fracture energy Gf 

Property Prior 𝜇𝐺𝑓 Prior  𝜎𝐺𝑓 Posterior 𝜇𝐺𝑓 Posterior  𝜎𝐺𝑓 

QoI: Rx 3.5 × 102 52.5 398.8 6.98 

QoI: Eel 3.5 × 102 52.5 398.9 6.29 

 

 

reaction force and elastic energy at the last time step are selected as QoIs. The assumed true values 

of the material properties are given in Table 1, e.g., cross section area A, Young elastic modulus E, 

yield stress 𝜎𝒴, linear hardening modulus 𝐾ℎ, ultimate stress 𝜎𝑢, linear softening modulus 𝐾𝑠 and 

fracture energy Gf in the case of exponential softening regime. 

It is assumed that the prior distribution given to the plastic softening modulus Gf is the Normal 

distribution 𝑁(𝜇𝐺𝑓 , 𝜎𝐺𝑓)  truncated such that Gf>100, in which the standard deviation  𝜎𝐺𝑓 = 52.5 

is set to be 15% of a mean value  𝜇𝐺𝑓 = 35 × 102. The realization of Gf is generated by Monte-

Carlo method with 𝑛𝑠 = 103 samples. With each value of the fracture energy Gf, the problem is 

executed once. 
The responses from reaction and elastic energy are given in Fig. 2(a) and Fig. 3(a). As shown in 

Fig. 2(b) and Fig. 3(b), those updated standard deviations are much smaller than the prior 

counterpart. This means that after using the Bayesian updating method the updated value of the 

fracture energy is getting more accurate and reliable than the prior mean value of  𝜇𝐺𝑓 . The 

collection of prior and posterior values of the fracture energy Gf is summarized in Table 2. 
The Bayesian update yields a conditional or posterior probability distribution from the prior 

one. This method requires high computation cost for large models. As an alternative, the Gauss-

Markov-Kalman filter can perform better thanks to the approximation of the conditional mean or 

conditional expectation. The Kalman filter is introduced firstly as a base for the above filter. Let us 

consider again the mathematical or numerical model, such as finite element model, with 𝑦 = 𝑀(𝑥)  

with 𝑥 ∈ 𝑋 . The task is now to calibrate or identify input parameter 𝑥𝑎  from a forecast 𝑥𝑓 , 

representing initial knowledge, and an observation 𝒴̂  for the random variable 𝓏 = 𝒴 + 𝜖 . The 

filtered or assimilated random variable 𝑥𝑎 after the observation 𝒴̂ is given as 

 (15) 

in which the term so-called innovation 𝑥𝑖 is actually an orthogonal error. It is observed that 𝑥𝑎 is 

unbiased and linear in 𝑥𝑎, while 𝐸𝑋(𝑥𝑓|𝒴̂) is linear and optimal. The problem turns into finding 

the solution of the minimization equation, see Matthies et al. (2016), as 

 
(16) 

in which 𝑎 = 𝑥̅𝑓 − 𝑲(𝓏̅). The Kalman gain 𝑲 satisfies the above minimization problem, hence the 

final form of the Kalman filter is given as 

 (17) 

in which the Kalman gain is computed as 𝑲 = 𝑪𝑥𝑓𝓏 𝑪𝓏
−1 and 𝑪𝑥𝑓𝓏 is the covariance of 𝒙𝑓 and Z, 

while 𝑪𝓏  is the auto-covariance of 𝓏. 

 

2.3 Polynomial chaos expansion 
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A mechanics problem itself can be viewed as a mapping M, which can be a linear or nonlinear 

mapping depending on the nature of the given problem, from the input data x to the output data 𝒴 

via relation 𝒴 = 𝑀(𝑥). To obtain more insights into the given problem, the input data x can be 

formulated as random variables or also as random fields. After going through the mapping M, it is 

clear that the output data 𝒴 is no more deterministic but rather a stochastic or random one. The 

uncertainty in the input x can propagate thorough out the mapping M. More precisely the 

uncertainty propagation refers to mean value, variance, probability distribution and other 

quantities. Not only the forward propagation problem but also backward or parameter 

identification are of research interest. In practice, there are several methods to formulate the 

surrogate model of the mapping M. One of the most popular is so-called Polynomial chaos 

expansion (PCE), which is discussed briefly and employed for the process of updating in this 

section. More detailed discussion on PCE and generalized Polynomial Chaos can be referred to 

Xiu (2010), Xiu and Karniadakis (2002), and Ulrich (2021). The Polynomial chaos expansion 

(PCE) for a random variable  𝒴, which has finite mean value and variance (𝐸[𝒴], 𝑉[𝒴]) < ∞, and 

corresponding probability density function 𝑓𝒴 is defined as follows 

 
(11) 

in which the involving polynomial must be orthogonal with respect to the probability density 

function 𝑓𝑥  

 
(12) 

and the polynomials are normalized via 

 
(13) 

If a random variable 𝒴  is represented via a Gaussian distribution basis function or germ 

𝜉(𝜔)~𝑁(0,1) then the corresponding polynomials are the Hermite functions because they are 

orthogonal with respect to the Gaussian distribution. Several computations can be executed via 

numerical integration instead of direct sampling. The coefficients of the PCE of the model can be 

obtained using output from the numerical model  𝒴(𝜉𝑗) = 𝑀(𝜉𝑗) as follows 

𝑞𝑖 ≈
∑ 𝒴(𝜉𝑗)Φ𝑖(𝜉𝑗) 𝜔𝑗

𝑛𝑖𝑛𝑡
𝑗=1

𝐸[Φ𝑖( )2]
 (14) 

in which (𝜉𝑗 , 𝜔𝑗)  are numerical integration point j and its weight. The extension to the PCE of 

multi-variable  𝒴 = 𝑀(𝑥1, 𝑥2,   , 𝑥𝑛)  is in the same manner with more germs and integration 

points. The essential mapping from germs 𝜉 to input parameter is omitted sometimes if it is an 

identity map, nevertheless the map is an injective function in general. 
With the above discussion on the Polynomial chaos expansion (PCE) and the Kalman filter, the 

Gauss-Markov-Kalman filter is presented correspondingly, Juan et al. (2021), Rosic et al. (2012), 

and Rosic et al. (2014) for more detailed discussion and Marsili et al. (2015), Kumar et al. (2018) 

for the relevant approach. In the following framework of Gauss-Markov-Kalman filter, all relevant 

random variables in the model are represented via PCE. Hence the filter can be computed with  
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(a) (b) (c) 

Fig. 4 Multi-scale setting: (a) Geometry, (b) Micro-scale: Lattice model, (c) Macro-scale: Enhanced 

triangular model 
 

 

these PCE coefficients in order to update the PCE coefficients of the targeted random variables. 

This method is proceeded without any sampling work while there are other approaches, e.g the 

Ensemble Kalman Filter (EnKF), see Rosic (2014). The input parameter, the error and the 

measurement are written in the PCE format 

 
(18) 

The input parameter q is introduced to generalize the problem with an additional map from q 

and x via 𝑥 = 𝑓(𝑞) , which can be essential for the latter updating non-negative material 

parameters. The input parameter q and measurement 𝒴 are estimated via the same basis functions 

𝜉, while the error is estimated via the different one 𝜂. Hence, it is required to fuse them all together 

so all considered variables are approximated by the same set of basis functions (𝜉, 𝜂) . This 

transformation is given as follows 

 
(19) 

With the current PCE form of all random variables, the Kalman filter can applied directly as 

 
(20) 

By removing the common basis functions Φ̂, the new filtered or assimilated PCE coefficients 

of input variables are written as 

 
(21) 

in which the Kalman gain is computed via following equation 

 
(22) 

and corresponding covariance matrices are obtained directly from the PCE coefficients. The 

numerical implementation is proceeded via SGLIB library, see Zander (2011). 
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Fig. 5 Flow of data and update for upscaling in elastic regime 

 

 

3. Parameter identification in multi-scale problem 
 
In this section, the parameter identification is configured for a multi-scale problem, e.g., a 

micro-scale is simulated via the Lattice model while a macro-scale is simulated via a mixed 

triangular element with Raviart-Thomas interpolation. The geometry selected for the multi-scale 

problem is 2×10 in length and height as shown in Fig. 4(a). The corresponding mesh in the micro-

scale and the macro-scale are shown in Figs. 4(b), (c). 

There are 738 elements in the micro-scale and only 8 elements in the macro scale. As shown in 

Fig. 5, the micro and macro scales are denoted correspondingly as domain Ω𝑚 and Ω𝑀. One-way 

connection from Ω𝑚 and Ω𝑀 is the Quantity of Interest (QoI), which is computed from the micro-

scale. In general, both bulk and shear moduli 𝐾𝑚(𝑥, 𝑦, 𝜔), 𝐺𝑚(𝑥, 𝑦, 𝜔)  can be considered as 

random fields in the micro-scale Ω𝑚. In the case of vanishing Poisson ration, the shear modulus is 

a function of Young modulus, hence only Young modulus 𝐸𝑚(𝑥, 𝑦, 𝜔)  is considered as a random 

field. This random field is then truncated via the Karhunen-Loève method to remove the high-

order modes with its correspondingly low eigenvalues. Then one can use any sampling method to 

generate a set of N𝑚  realizations for 𝐸𝑚(𝑥, 𝑦, 𝜔) . The number of simulations is exactly the 

number of realizations N𝑚. All of the QoI data, which can be stored energy 𝐸̂ and dissipation 𝐷̂, at 

each time step are saved for further updating procedure in the macro-scale Ω𝑀. 

Once the data QoI computed in the micro-scale is successfully processed, the updating 

procedure by the Gauss-Markov-Kalman filter in the macro-scale Ω𝑀 can be started. This process 

can be viewed as a homogenization work, in which both bulk and shear moduli 

(𝐾𝑚(𝜔), 𝐺𝑚(𝜔)) are parameters to be identified in the macro-scale Ω𝑀 . It is noted that those 

parameters are implemented as random variables, which are constant over the entire domain Ω𝑀. 

The surrogate model using the PCE is applied for QoI in the macro-scale Ω𝑀, which is necessary 

for the updating process by the Gauss-Markov-Kalman filter. The QoI from both scales is 

delivered into the procedure of the Gauss-Markov-Kalman filter with an aim to update the bulk 

and shear moduli of the current macro-scale (𝐾𝑀 , 𝐺𝑀). All key tasks for this multi-scale problem 

are drawn in Fig. 5. In order to update other parameters in the macro-scale, the same procedure can 

be applied. 

 
3.1 Setting the random fields at the micro-scale Ω𝑚 
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Fig. 6 First nine eigen functions 

 

 

The algorithm in Alg. 1 shows step by step to truncate a random field via the KLE method. It is 

applied to truncate the Young modulus 𝐸𝑚(𝑥, 𝑦, 𝜔). The mean value of this random field is 

selected by a value of 𝜇𝐸𝑚 = 1 × 104. To guaranteed the positive value of this modulus, the 

transformation is set up as follows 

 
(23) 

The full series of Young modulus  𝐸𝑚(𝑥, 𝑦, 𝜔) is truncated via the KLE method. With the 

given micro-scale mesh Fig. 4(b), there exists a Delaunay triangular mesh, in which all nodes in 

the Lattice mode mesh stand on. This hidden mesh with corresponding bilinear shape function is 

key component to compute the Gramian matrix at each hidden triangular element and then 

assemble over the entire domain to gain the full Gramian matrix G as in step 2. In step 3, the 

Matérn function is used to compute the correlation between a couple of two given points with 

respect to correlation length 𝑙𝑐. Specifically, to compute the Matérn covariance, the values of non-

negative parameter 𝜇𝑐  and correlation length 𝑙𝑐 are selected, respectively, as 1 and 0.4×min(l,h) in 

which (l,h) are length and height of geometry. Following steps 4 and 5, all computed eigenvalues 

are shown in Fig. 7(a), and the corresponding relative cumulative sum of eigenvalues in Fig. 7(b). 

The first L=35 eigenvalues contribute to more than 90% (ρl=0.9) of the total sum of all 

eigenvalues. These eigenvalues are selected for coming steps in the algorithm of the Karhunen-

Loève Expansion. The truncated form of exponential parameters in random fields are now written 

as 
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(a) Eigenvalues (b) Relative cumulative sum 

Fig. 7 Eigenvalues and desired relative contribution ρL=0.9 
 

 

 

(24) 

The relative cumulative ration 𝜌𝐿  is added in Eq. (24) to counter the removed 10% 

contribution. The first nine eigenfunctions are shown in Fig. 6. Each eigenfunction covers a full 

domain of the given geometry. In the first three responses, they look similar to low-order bi-

harmonic functions. 
 

 
Alg. 1 Truncating a random field via KLE method 

 

With the selected number L=35 of eigenvalues, the corresponding basis random variables θ are 

generated. Only 𝑁𝜃
𝑚 = 100 realizations are initiated for each basis random variables of Young 

modulus using Gaussian distribution 𝑁(0, 𝜎𝜃𝐸
). From the computed eigen functions, the random 

fields including bulk and shear moduli are generated after truncation, see Eq. (7). One realization 

of the Young modulus 𝐸𝑚(𝑥, 𝑦, 𝜔) is in Fig. 9. It is noted that the realization of Young modulus is 

computed with the low variance var(Θ). The realizations of truncated Young modulus are inserted 

to corresponding 𝑁𝑚  input files for simulation. The geometry, mesh, and boundary conditions 

remain the same throughout all input files. 
 

3.2 Upscaling in the elastic regime 
 

The updating processes are divided into two main phases. The first phase is to identify bulk and 

shear moduli (𝐾𝑀(𝜔), 𝐺𝑀(𝜔)) in the elastic regime, while the second one is to assimilate yield  
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(a) Experiment 1: Shear 

test 
(b) Experiment 2: 

Expansion test 

Fig. 8 One realization of random field Young 

modulus  𝐸𝑚(𝑥, 𝑦, 𝜔) 
Fig. 9 Experiment setup in elastic regime to 

identify (KM,GM) 
 

 

 

stress 𝜎𝑦(𝜔), linear hardening modulus Hℎ(𝜔), kinematic hardening modulus H𝑘(𝜔), and visco-

plasticity parameter 𝜂(𝜔) and under the inelastic regime. In the macro-scale Ω𝑀, both bulk and 

shear moduli are considered as random variables (𝐾𝑀(𝜔), 𝐺𝑀(𝜔)), which means that they are 

constant over the entire domain in each simulation. Firstly, the surrogate model of QoI (stored 

energy) is prepared as a function of simultaneously both bulk and shear moduli (𝐾𝑀(𝜔), 𝐺𝑀(𝜔)). 

To ensure the positive value of both moduli, they are configured as exponential functions of input 

parameters (𝑞𝐾(𝜔), 𝑞𝐺(𝜔)), which the latter can be modeled as the Gaussian distribution. With 

this approach, the distributions of (𝐾𝑀(𝜔), 𝐺𝑀(𝜔)), in fact, are of Lognormal distribution. The 

mapping is written as follows 

 

(25) 

Firstly, the surrogate model of QoI, which is the stored energy 𝐸̂ at each time step, is formed 

via the PCE approach as shown in Alg. 2. The data of QoI is stored in the form of 𝑦 =
[𝐸̂1 𝐸̂2    𝐸̂𝑛], with n as the number of time steps in each simulation.  

 

 
Alg. 2 Generating surrogate model of QoI via PCE 

 

After getting the PCE model of QoI, the Gauss-Markov-Kalman filter can be proceeded with 

step by step shown in Alg. 3. 
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Alg. 3 Updating PCE coefficients of input parameters q(qK, qG) 

 

 
Fig. 10 Simultaneous and sequential update approaches 

 

 

The numerical experiments are set up to identify the bulk and shear moduli in the macro-scale. 

Firstly, the shear test is proceeded to identify both moduli. This test would yield a good 

assimilation value of shear modulus, since it brings a lot of information about the shear modulus. 

Afterward, both bulk and shear moduli are considered as random variables in the second 

experiment where the posterior values of both bulk and shear moduli from previous test are input 

as prior values for the current expansion test. In the shear test, the load is applied via the imposed 

displacement within 20 time steps at the top of the domain. Then, the expansion test is conducted 

via applying imposed displacement perpendicular to both right and top edges. The max imposed 

displacement in both cases is u=0.1. 
Basically, there are two updating approaches. The first type is to use simultaneously all stored 

energies and update only once, this method can be called the simultaneous update. Meanwhile, the 

second type is named as the sequential update. In detail, only stored energy at the first time step 

from the micro-scale model is inserted into the Gauss-Markov-Kalman filter as QoI. In the next 

update, the newly assimilated or the posterior PCE coefficients of the input parameter  are 

introduced as the prior values to the next update with corresponding stored energy at the second 

time step. This procedure is repeated until all stored energies are used. Both approaches are 

illustrated in Fig. 10. In the following, the second approach is employed. 

 

3.2.1 Upscaling one realization of 𝐸𝑚(𝜔) on the micro-scale Ω𝑚 
In the following, only one realization of Young modulus with a value of 1×104, is introduced to 

the micro-scale Ω𝑚  over the entire domain. The stored energy responses from both shear and 

expansion tests are shown in Fig. 11. 
The prior values of bulk and shear moduli in the macro-scale are given in Table 3. After 

updating, the assimilated of shear modulus get more confident with a low value of variance, see  
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(a) Shear test (b) Expansion test 

Fig. 11 One ensemble of Em: Stored energy responses 
 

  
(a) Bulk modulus KM (b) Shear modulus GM 

Fig. 12 Prior and posterior pdf in shear test 
 

Table 3 Bulk and shear moduli (KM,GM) in shear test 

Property Prior μ Prior σ Posterior 𝜇̂ Posterior 𝜎̂ 

Bulk modulus KM 1.66 × 104 182 1.65 × 104 180 

Shear modulus GM 7.69 × 103 124 4.54 × 103 1.34 

 

  
(a) Bulk modulus KM (b) Shear modulus GM 

Fig. 13 Prior and posterior pdf in shear test 
 

 

Fig. 12(b). However, it is not the case for bulk modulus, see Fig. 12(a). This phenomenon can be 

explained since the shear test brings less information on the bulk modulus KM. 
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Table 4 Bulk and shear moduli (KM,GM) in expansion test 

Property Prior μ Prior σ Posterior 𝜇̂ Posterior 𝜎̂ 

Bulk modulus KM 1.65 × 104 180 1.63 × 104 1 

Shear modulus GM 4.54 × 103 1.34 4.54 × 103 1.33 

 

  
(a) pdf (b) Mean and standard deviation 

Fig. 14 Updated shear modulus GM in shear test 
 

  
(a) pdf (b) Mean and standard deviation 

Fig. 15 Updated bulk modulus KM in expansion test 
 

 

Hence, the expansion test is added into further refine the update of both moduli. It is noted that 

the prior values of both moduli are set by the corresponding posterior values from the shear test. 

At the end, the variance of bulk modulus KM shrinks significantly, while the variance of shear 

modulus GM still remains relatively small, see Fig. 13. 
The posterior values after updating via the Gauss-Markov-Kalman filter are presented in Table 

4. The corresponding mean values of Young modulus EM and Poisson ratio vM are 1.25×104 and 

0.37, respectively. 
The convergences of mean values of bulk and shear moduli (𝜇̂𝐾𝑀 , 𝜇̂𝐺𝑀) are shown in Fig. 14 

and Fig. 15. In the shear test, the updated mean value of shear modulus 𝜇̂𝐺𝑀  converges more 

quickly, see Fig. 14(b), than that of bulk modulus 𝜇̂𝐾𝑀 in the expansion test, see Fig. 15(b). The 

standard deviations (𝜇̂𝐾𝑀 , 𝜇̂𝐺𝑀) also shrink significantly within 20 time steps in both cases. 
The prior data in Table 3 and posterior data in Table 4 are assembled in Table 5 to present the 

successful update of both moduli via the Gauss-Markov-Kalman filter method after using both 

tests. 
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Table 5 Updated bulk and shear moduli (KM,GM) after both tests 

Property Prior μ Prior σ Posterior 𝜇̂ Posterior 𝜎̂ 

Bulk modulus KM 1.66 × 10 4 182 1.63 × 10 4 1 

Shear modulus GM 7.69 × 10 3 124 4.54 × 10 3 1.33 

 

 
Fig. 16 Flow of data in both tests 

 
 
3.2.2 Upscaling an ensemble of 𝐸𝑚(𝑥, 𝑦, 𝜔) on the micro-scale Ω𝑚 
In the following the framework of Gauss-Markov-Kalman filter, all relevant random variables 

in the model are represented via PCE. Hence the filter can be computed with these PCE 

coefficients in order to update the PCE coefficients of the targeted random variables. This method 

is applied without any sampling work, contrary to other approaches, e.g., the Ensemble Kalman 

Filter (EnKF). 
To propagate the more uncertainty in the micro-scale Ω𝑚, the Young modulus 𝐸𝑚 is generated 

as a random field. In micro-scale Ω𝑚 , there are 𝑁𝑚  numerical simulations in total. In each 

simulation, the stored energy 𝐸̂ is saved into the data-base. At the beginning, the shear test is 

conducted. The upscaling procedure using the Gauss-Markov-Kalman filter is applied for each set 

of data from each simulation in mirco-scale. After completing all updates in the shear test, those 

posterior data are employed as prior data in the expansion test. The same procedure is repeated to 

update both moduli in the expansion test. The workflow is shown in Fig. 16. After repeating the 

procedure within 𝑁𝑚 times, the final posterior pdf of both bulk and shear moduli are computed via 

averaging all assimilated pdf as follows 

 

(26) 

From these average pdf, the corresponding mean and variance (𝜇̂̅, 𝜎̂̅2) are computed. For the 

discrete pdf, the formulation of mean and variance are given as 
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(a) Bulk modulus KM (b) Shear modulus GM 

Fig. 17 Posterior and average pdf after both tests 
 

Table 6 Bulk and shear moduli (KM,GM) after both tests 

Property from average pdf Mean 𝜇̅̅ Variance 𝜎 

Bulk modulus KM 1.75 × 104 140 

Shear modulus GM 5.33 × 103 179 

 

 

 

(27) 

It is noted that the average pdf 𝑓 ̅ is normalized so that ∑ 𝑓𝑖̅ = 1𝑁𝑚

𝑖−1 .  
Since the shear test gives little information on the bulk modulus KM, the pdf remains nearly the 

same in all updating steps. Meanwhile the variance of shear modulus GM shrinks in each update. 

The posterior from each update in the previous shear test is used as corresponding prior pdf for the 

expansion test. The average pdf of all updates is given in Table 6 in which both mean and variance 

are computed from the average pdf. To zoom in the average pdf of both moduli, their values are 

scaled up 5 times in Fig. 17. Compared to the updates of (𝐾𝑀 , 𝐺𝑀) from using one realization of 

EM, the new variances are considered bigger but the mean values remain nearly comparable. 
 

3.3 Upscaling in the inelastic regime 
 

To begin with, the inelastic models used in both scales are briefly described. Additionally, 

random fields on the micro-scale and targeted random variables on the macro-scale are selected. 

Only important equations are listed in the following section. 

 

3.3.1 Inelastic model in micro-scale  Ω𝑚 
On the micro-scale, the Lattice model is simulated via the Timoshenko beam capable of linear 

isotropic hardening plasticity and nonlinear kinematic hardening visco-plasticity, see Hadzalic et 

al. (2018), Hadzalic et al. (2019), Hadzalic (2020). It is noted that the additive decomposition of 

the total strain is applied only to axial and shear strains (𝜖, 𝛾), not for the curvature 𝒦. The strain 

energies due to moment, axial and shear forces are given as 

428



 

 

 

 

 

 

Viscoplasticity model stochastic parameter identification: Multi-scale approach… 

 

(28) 

in which (𝜉𝑎 , 𝜉𝑠) are internal hardening variables of axial and shear forces, and (𝐻ℎ
𝑎 , 𝐻ℎ

𝑠) are 

hardening moduli for axial and shear forces. It is assumed that there are independent plasticity 

mechanisms activated by axial and shear forces. The independent yield functions (𝜙𝑎 , 𝜙𝑠)  for 

axial and shear forces (𝑁, 𝑄) are 

 
(29) 

in which (𝑋𝑎 , 𝑋𝑠)  are back-stress variables. The yield axial and shear forces (𝑁𝑦, 𝑄𝑦)  are 

computed from the Lattice yield stress 𝜎𝑦. For linear hardening, the stress-like isotropic hardening 

variables (𝑞𝑎, 𝑞𝑠) are given as 

 (30) 

The Fredrick-Armstrong Armstrong and Frederick (1966) nonlinear kinematic hardening law is 

employed as 

 
(31) 

The total dissipation can be written in the general form 

 (32) 

In the following, all linear hardening moduli are assumed to be one unified value of H𝑦  to 

reduce the total number of input variables. Similarly, the values of (H𝑛𝑘
𝑎 , H𝑛𝑘

𝑠 ) take one unified 

value H𝑘. The list of material properties considered as random fields is given in Table 7, e.g., yield 

stress in tension, yield stress in compression, yield stress in shear, linear hardening modulus, 

nonlinear kinematic hardening, and viscosity parameter. The procedure to generate the random 

field (RV) is similar in Section 3.1. 

 

 
Table 7 Micro-scale material properties as random fields 

Property Random field 

Yield stress in tension 𝜎𝑦,𝑡
𝑚 (𝑥, 𝜔) 

Yield stress in compression 𝜎𝑦,𝑐
𝑚 𝑦(𝑥, 𝜔) 

Yield stress in shear 𝜎𝑦,𝑠
𝑚 (𝑥, 𝜔) 

Linear hardening modulus 𝐻ℎ
𝑚(𝑥, 𝜔) 

Nonlinear hardening modulus 𝐻𝑘
𝑚(𝑥, 𝜔) 

Viscosity coefficient 𝜂𝑚(𝑥, 𝜔) 
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Table 8 Micro-scale: One realization values of (𝜎𝑦,𝑡
𝑚 , 𝜎𝑦,𝑐

𝑚 , 𝜎𝑦,𝑠
𝑚 , 𝐻ℎ

𝑚 , 𝐻𝑘
𝑚 , 𝜂𝑚)  

Property 𝜎𝑦,𝑡
𝑚  𝜎𝑦,𝑐

𝑚  𝜎𝑦,𝑠
𝑚  𝐻ℎ

𝑚 𝐻𝑘
𝑚 𝜂𝑚 

Value 1 1 1 1000 100 1000 

 

 
 

(a) Imposed displacement ū = 0.1 (b) Hysteresis loop 

Fig. 18 One realization of (𝜎𝑦,𝑡
𝑚 , 𝜎𝑦,𝑐

𝑚 , 𝜎𝑦,𝑠
𝑚 , 𝐻ℎ

𝑚 , 𝐻𝑘
𝑚 , 𝜂𝑚): micro-scale responses in inelastic regime by 

imposed displacement 
 

 

An example of this Lattice model undergoing a simple shear test 𝑢̅ = 0.1 with one realization 

of (𝜎𝑦,𝑡
𝑚 , 𝜎𝑦,𝑐

𝑚 , 𝜎𝑦,𝑠
𝑚 , 𝐻ℎ

𝑚 , 𝐻𝑘
𝑚 , 𝜂𝑚)  is shown in Fig. 18. The material properties of 

(𝜎𝑦,𝑡
𝑚 , 𝜎𝑦,𝑐

𝑚 , 𝜎𝑦,𝑠
𝑚 , 𝐻ℎ

𝑚 , 𝐻𝑘
𝑚 , 𝜂𝑚)  are given in Table 8. It can be seen that the stored energy and 

dissipation keep increasing in magnitude under loading scenarios. However, they remain nearly 

the same in unloading scenarios. 
 

3.3.2 Inelastic model in macro-scale Ω𝑀 
In the following, the macro-scale is simulated with the constitutive model of visco-plasticity 

with capable of linear isotropic hardening and nonlinear kinematic hardening. The enhanced 

triangular finite element is developed by using the lowest order of Raviart-Thomas vector space to 

interpolate the stress field, see Nguyen and Ibrahimbegovic (2020). The nonlinear behaviors are 

formulated in the same manner as the visco-plasticity, see Nguyen and Ibrahimbegovic (2020). By 

using additive decomposition, the strain energy is written as 

 
(33) 

where the relevant internal variables are listed as 𝜉𝑣𝑝  and  𝜁𝑣𝑝 . We also consider additional 

hardening effects as a general case by including the corresponding potentials Ξ1
𝑣𝑝

 and Ξ2
𝑣𝑝

. For 

those potential energies, we select a quadratic form as follows 

 

(34) 

in which the terms 𝐾𝑣𝑝  and 𝐻𝑣𝑝  are the linear hardening and kinematic hardening moduli. 

Correspondingly, the terms 𝑞𝑣𝑝 and 𝛼𝑣𝑝 are the stress-like variable and back-stress tensor in the 

visco-plastic model. The yield criterion is now written as 
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            Table 9 Macro-scale material properties as random variables 

Property Random variables 

Yield stress 𝜎𝑦
𝑀(𝜔) 

Linear hardening modulus Hℎ
𝑀(𝜔) 

Nonlinear kinematic hardening modulus H𝑘
𝑀(𝜔) 

Visco-plastic parameter 𝛾𝑀(𝜔) 

 

 

 
(35) 

The total dissipation can be written in the following form 

 
(36) 

The procedure of the penalty method can be used to derive the evolution equations, where the 

similar approach is applied in Kachanov damage model, see Nguyen and Ibrahimbegovic (2020), 

and Ibrahimbegovic (2009). The evolution equations of this visco-plastic model are written as 

follows 

 

(37) 

in which the notation 𝑛̂ is the unit normal tensor 𝑛̂ =
dev(𝜎)+𝛼𝑣𝑝

‖dev(𝜎)+𝛼𝑣𝑝‖
 . The numerical implementation 

of this model is straightforward. The list of material properties considered as random fields is 

given in Table 9, e.g., yield stress, linear hardening modulus, nonlinear kinematic hardening 

modulus, and visco-plastic parameter. These material properties are chosen to be updated via the 

Gauss-Markov-Kalman filter method. The workflow in the elastic regime is adapted here. 

 

3.3.3 Upscaling one realization of (𝜎𝑦,𝑡
𝑚 , 𝜎𝑦,𝑐

𝑚 , 𝜎𝑦,𝑠
𝑚 , 𝐻ℎ

𝑚, 𝐻𝑘
𝑚, 𝜂𝑚) on the micro-scale Ω𝑀 

The boundary condition and loads are illustrated in Fig. 19(a). The bottom edge is fixed, while 

an imposed displacement 𝑢̅ is applied on the top edge. The first cycle for an imposed displacement 

 takes place within 0 ≤ 𝑡 ≤ 𝑡4, see Fig. 19(b). The second and third ones are defined via 𝑡4 ≤
𝑡 ≤ 𝑡8 and 𝑡8 ≤ 𝑡 ≤ 𝑡12, respectively. The time step in each cycle is proportional to its loading 

magnitude so that the rate of loading is maintained, e.g., ∆𝑡3 = 1.4∆𝑡1 and ∆𝑡2 = 1.2∆𝑡1. In both 

cases, the time step in the first cycle is selected with a value of ∆𝑡1 = 0.1. The load magnitudes 

are given as 𝑢̅1 = 0.04, 𝑢̅2 = 0.08 and 𝑢̅3 = 0.12, respectively. The response in the micro-scale is 

shown in Fig. 19(c). The max stored energies and dissipations in three cycles are selected as QoI 

for the identification process, see Table 10. 

At first, only one realization of (𝜎𝑦,𝑡
𝑚 , 𝜎𝑦,𝑐

𝑚 , 𝜎𝑦,𝑠
𝑚 , 𝐻ℎ

𝑚, 𝐻𝑘
𝑚, 𝜂𝑚) is applied over the entire domain 

of micro-scale Ω𝑚. The corresponding values of those material properties are given in Table 8. 

Meanwhile, the Young modulus and Poisson ratio remain the same as in the elastic regime. The  
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(a) Boundary condition (b) Constant rate of loading 

 
(c) Response in micro-scale 

Fig. 19 Experiment setup with imposed displacement ū in inleastic regime to identify (𝜎𝑦
𝑀, 𝐻ℎ

𝑀 , 𝐻𝑘
𝑀 , 𝛾𝑀) 

 

  
(a) Stored energy (b) Dissipation 

Fig. 20 Micro-scale Ωm responses 
 

Table 10 Max stored energy and dissipation in each cycle from micro-scale 

Response Cycle 1 Cycle 2 Cycle 3 

Max 𝐸̂ 2×10−4 5×10−4 1.4×10−3 

Dissipation 1×10−4 5×10−4 1.5×10−3 

 

 

prior values of all targeted material variables in the macro-scale are given in Table 11. After 

updating, it is observed that the visco-plastic parameter 𝛾 = 1/𝜂 is successfully updated with a 

smaller variance. The pdf of other parameters remains nearly the same, which means that the  
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(a) Yield stress 𝜎𝑦

𝑀 (b) Modulus 𝐻ℎ
𝑀 

  
(c) Modulus 𝐻𝑘

𝑀 (d) Vis. para. 𝛾𝑀 

Fig. 21 Prior and posterior pdf using both stored energy and dissipation as QoI 
 
Table 11 Prior and posterior values of (𝜎𝑦

𝑀, 𝐻ℎ
𝑀 , 𝐻𝑘

𝑀 , 𝛾𝑀) using both stored energy and dissipation as QoI 

Property Prior μ Prior σ Posterior 𝜇̂ Posterior 𝜎̂ 

Yield stress  𝜎𝑦
𝑀 1 3.2 × 10−3 0.8 6 × 10−4 

Modulus 𝐻ℎ
𝑀 4 × 104 282.8 6.6 × 104 227.3 

Modulus 𝐻𝑘
𝑀 600 34.6 548.9 31.9 

Visco-plastic parameter 𝛾𝑀 1 × 10−5 1.4 × 10−7 2.7 × 10−5 5.4 × 10−8 

 

 

current experimental test does not contain much information about these parameters. 

 

3.3.4 Upscaling an ensemble of 
(𝜎𝑦,𝑡

𝑚 (𝑥, 𝑦, 𝜔),  𝜎𝑦,𝑐
𝑚 (𝑥, 𝑦, 𝜔), 𝜎𝑦,𝑠

𝑚 (𝑥, 𝑦, 𝜔), 𝐻ℎ
𝑚(𝑥, 𝑦, 𝜔), 𝐻𝑘

𝑚(𝑥, 𝑦, 𝜔), 𝜂𝑚(𝑥, 𝑦, 𝜔)) on the micro-

scale Ω𝑚 
On the micro-scale, the parameters (𝜎𝑦,𝑡

𝑚 , 𝜎𝑦,𝑐
𝑚 , 𝜎𝑦,𝑠

𝑚 , 𝐻ℎ
𝑚, 𝐻𝑘

𝑚, 𝜂𝑚) are generated as low-variance 

random fields in the micro-scale Ω𝑚. The mean values of these random variables are given in 

Table 8. The procedure takes place as shown in Fig. 16, where the stored energy and dissipation 

are used as QoI. The result yields agreement with updated values using one realization of 

(𝜎𝑦,𝑡
𝑚 , 𝜎𝑦,𝑐

𝑚 , 𝜎𝑦,𝑠
𝑚 , 𝐻ℎ

𝑚, 𝐻𝑘
𝑚, 𝜂𝑚). 
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(a) Yield stress 𝜎𝑦

𝑀 (b) Modulus 𝐻ℎ
𝑀 

  
(c) Modulus 𝐻𝑘

𝑀 (d) Visco-plastic parameter 𝛾𝑀 

Fig. 22 Prior and posterior pdf using an ensemble of random fields 
 

 

4. Conclusions 
 
This work presents a successful feasibility study on the application of parameter identification 

methods, including the Bayesian update and the Gauss-Markov-Kalman filter, into the upscaling 

approach for the inelastic and multi-scale problems. In particular, the Bayesian update method is 

implemented to identify the fracture energy Gf in the simple one-dimensional problem. As an 

alternative, the Gauss-Markov-Kalman filter is applied in the multi-scale problem. In the micro-

scale level, the Lattice model is set up along with the log-normal random fields, such as the Young 

modulus Em (x,y,ω) . In the macro-scale, the mixed triangular membrane element is employed. The 

finite elements used in both scales are embedded with the visco-plasticity. The material properties 

in the macro-scale ΩM are presented via Gaussian random variables, which are identified by using 

the stored energy and dissipation as the quantity of interests from the micro-scale Ωm. In all 

examples, the proposed approach performs very well. 
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