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Dynamic of behavior for imperfect FGM plates resting on
elastic foundation containing various distribution rates of
porosity: Analysis and modeling
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Abstract. During the manufacture of FGM plates, defects such as porosities can appear. Those can change the
entire behavior of these plates. This paper aims to investigate the free vibration characteristics of porous functionally
graded (FG) plates resting on elastic foundations. The Young’s modulus of the plate is assumed to vary continuously
through the thickness according to a power-law formulation, and the Poisson ratio is held constant. Different types of
porosity distribution rates are considered. To examine the accuracy of the present formulation, several comparison
studies are investigated. Effects of variation of porosity distribution rate, foundation parameter, power-law index and
thickness ratio on the fundamental frequency of plates have been investigated.

Keywords: elastic foundation; free vibration analysis; functionally graded plate; imperfect plates; porosity
distribution rate

1. Introduction

Functionally graded materials (FGMs) are a class of composites that have a continuous
variation of material properties from one surface to another and thus eliminate the stress
concentration found in laminated composites. The concepts of FGMs were proposed by material
scientists in the Sendai area of Japan. Typically, FGM is made from a mixture of ceramic and
metal in such a way that the ceramic can resist high temperatures in thermal environments,
whereas the metal can decrease the tensile stress occurring on the ceramic surface at the earlier
state of cooling. Material properties such as elasticity modulus, shear modulus, mass density, and
Poisson’s ratio are varying smoothly and continuously from one surface to another in the desired
direction. It is difficult to obtain an exact enough solution to the nonlinear equations to develop
efficient mathematical models to predict the static and dynamic response of a plate. Thus far, only
a few exact solutions have been investigated. However, with progress in science and technology, a
need arises in engineering practice to accurately predict the nonlinear static and dynamic responses
of a plate (Keleshteri et al. 2017, Bekki et al. 2019, Keleshteri et al. 2017b, Kamran et al. 2020,
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Adim et al. 2016b, Belkacem et al. 2016b, Bourada 2020, Benhenni et al. 2019, Kablia et al. 2020,
Tlidji et al. 2021a, Chaabane et al. 2019, Abdelhak et al. 2021, Adim et al. 2018, Chikr et al.
2020, Angiang et al. 2020, Belkacem et al. 2016a, Keleshteri et al. 2022, Hua et al. 2020, Reza et
al. 2020).

Plates supported by elastic foundations have been widely adopted by many researchers to
model various engineering problems during the past decades. To describe the interactions of the
plate and its foundation as appropriately as possible, scientists have proposed various kinds of
foundation models (Kerr 1964). The simplest model for the elastic foundation is the Winkler
model, which regards the foundation as a series of separated springs without coupling effects
between each other, resulting in the disadvantage of discontinuous deflection on the interacted
surface of the plate. This was later improved by Pasternak, who exploited the interactions between
the separated springs in the Winkler model by introducing a new dependent parameter. From then
on, the Pasternak model was widely used to describe the mechanical behavior of the structure-
foundation interactions (Xiang et al 1994, Abdelhak et al. 2016, Adim et al. 2016a, Benferhat et
al. 2021, Benferhat et al. 2016a, Benferhat et al. 2016b, Benferhat er al. 2019, Benferhat et al.
2020, Bekki et al. 2021, Benhenni et al. 2018, Tlidji et al. 2021b, Zhou et al. 2004). Nowadays,
there has been a great research effort to analyze static, buckling and vibration of FGM structures.
Keleshteri et al. (2019) used the third-order shear deformation theory (TSDT) in conjunction with
the nonlinear von Karman strain field to analyzed the nonlinear bending behavior of functionally
graded carbon nanotube reinforced composite (FG-CNTRC) annular plates with variable thickness
on an elastic foundation. Ta and Noh (2015) presented a new refined plate theory for dynamic
analysis of functionally graded (FG) plate resting on the Pasternak foundation under the transverse
loading. In a paper by Thai and Kim (2013), buckling analysis of thick FG plate resting on elastic
foundation was examined and some closed-form solutions are presented. Keleshteri et al. (2018)
analyzed postbuckling behavior of FG-CNTRC rectangular plates with integrated piezoelectric
layers subjected to different in-plane compressive loads.Taczata et al.(2015) investigated the
stability of thermally loaded FG plates resting on an elastic foundation with the help of finite
element method. Anqiang et al. (2020) Investigated the effect of porosity distributions on
vibrational behavior of FG sectorial plates resting on a two-parameter elastic foundation. In a
paper by Huang et al. (2012), free vibration of rectangular FG plates with through internal cracks
is studied by means of Ritz method and the three-dimensional elasticity theory. Li and Zhang
(2016) investigated free vibration of a rotating cantilever FG plate undergoing large overall
motions using a dynamic model with the dynamic stiffening effect. Keleshteri et al. (2017a)
established nonlinear dynamic equations using first-order shear deformation theory in conjunction
with von Karman geometrical nonlinearity large amplitude vibration analysis of FG-CNTRC
annular sector plates with surface bonded piezoelectric layers. Lal and Ahlawat (2015) presented
some important results for the axisymmetric vibrations of FG plates under uniform in-plane force
using the differential transform method based on classical plate theory. Hassaine Daouadji et al.
(2016) suggested a new displacement model to analyze the static behavior of FG plates. Belabed et
al. (2014) improved a new higher order shear and normal deformation theory for bending and free
vibration analyses of FG plates. Hongwei et a/l. (2020) investigated free vibration of FG sandwich
annular sector plates on Pasternak elastic foundation with different boundary conditions, based on
the three-dimensional theory of elasticity. Ramu and Mohanty (2014) improved a finite element
formulation for modal analysis of FG plates based on the Kirchhoff plate theory. Shariati et al.
(2020) investigated the vibration characteristics of flexoelectric nanobeams resting on viscoelastic
foundation and subjected to magneto-electro-viscoelastic-hygro-thermal (MEVHT) loading.
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Mohammadimehr et al. (2020) studied the buckling analysis of sandwich composite (carbon
nanotube reinforced composite and fiber reinforced composite) Euler-Bernoulli beam in two
configurations using differential quadrature method (DQM). The large amplitude vibration of FG
plates under random pressure in thermal environment with finite element modal reduction method
was studied by Parandvar and Farid (2015). Keleshteri et al. (2020) utilized the von Karman
geometrical nonlinearity along with the Hamilton principle to study the large amplitude free
vibration response of functionally graded porous (FGP) cylindrical panels considering different
shell theories and boundary conditions. Sator et al. (2016) studied transient vibration analysis
problems for FG plates under transversal dynamic loading using three different plate theories.
Talha et al. (2010) established free vibration and static analysis of functionally graded material
(FGM) plates using higher-order shear deformation theory with a special modification in the
transverse displacement in conjunction with finite element models. Tran et al. (2015) suggested a
novel and effective formulation based on combining the extended isogeometric approach and the
higher-order shear deformation theory for dynamic analysis of the cracked FG plates. Parveen et
al. (2021) studied the deformation in a homogeneous isotropic thermoelastic solid using modified
couple stress theory subjected to inclined load with two temperatures with multi-dual-phase-lag
heat transfer. Fenjan et al. (2020) used the differential quadrature (DQ) method to study the free
vibrations of porous functionally graded (FG) micro/nano beams in thermal environments. Zhang
and Zhou (2015) proposed a model for FG plates lying on nonlinear elastic foundations by means
of the concept of physical neutral surface and high-order shear deformation theory. In a paper by
Parandvar and Farid (2016), dynamic response of FG plates subjected simultaneously to thermal,
static, and harmonic loads was investigated by means of nonlinear finite element method. In Thai
et al. (2016) presented a new simple four-unknown shear and normal deformation theory for static,
dynamic and buckling analyses of FG plates.

The novelty of this work is to study the effect of the variation of the porosity distribution rate
on the dynamic behavior of FGM plates by the use of new mixture laws. Numerical examples are
presented to illustrate the precision and the efficiency of the present solution, by showing the
influence of the distribution rate of the porosity of the base material on the mechanical behavior of
the FGM plate.

2. Problem formulation
2.1 Constitutive relations of (metal/ceramic) FGM plates

Consider an imperfect FGM with a porosity volume fraction, a (@ << 1), distributed evenly
among the metal and ceramic, the modified rule of mixture proposed by Wattanasakulpong and
Ungbhakorn (2014) is used as (Benferhat ef al. 2016)

P = Pp(Vy — =) + Po(V, — = 1
_m(m_i)-l'c(c_z) (1)

Now, the total volume fraction of the metal and ceramic is: V,+V.=1 and the power law of
volume fraction of the ceramic is described as (Table 1)

1
Vo= G+ @
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Table 1 Summary table which groups the different distribution of porosity in the FGM (Ceramic/Metal)

Distribution of porosity rate in the FGM

Young module

Type Ceramic Metal
Type-I Without porosity E(z) = (E, — Em)(% + %)k + E;(Wattanasakulponga 2014)  (19)
z 1 a

Type-II 50% 50% E(Z) = (Ec - Em)(ﬁ + E)k +En — (Ec + Em) E (20)
z 1 a

Type-1II 60% 40% E(z) = (E. — Em)(ﬁ + E)k + Em — BE. + 2E;) T (21)
z 1 a

Type-1V 40% 60% E(Z) = (Ec - Em)(ﬁ + E)k + Ep — 2E. + 3Em) g (22)
z 1 a

Type-V 75% 25% E(z) = (Ec - Em)(ﬁ + E)k +En — (3Ec + Em) Z (23)
z 1 a

Type-VI 25% 75% E(z) = (Ec - Em)(ﬁ + E)k +En — (Ec + 3Em)z (24)

Hence, all properties of the imperfect FGM can be written as (Benferhat et al. 2016a)

1
p(z) = (pc — pm)(% + 5)" + pm — (pc + pm)% (3)

It is noted that the positive real number k (0 < k < o00) is the power-law or a volume fraction
index, and z is the distance from the mid-plane of the FG plate. The FG plate becomes a fully
ceramic plate when k is set to zero and fully metal for large value of k.

Thus, the equations of Young’s modulus (£) and material density (p) of the imperfect MGF
plate can be expressed as (Benferhat et al. 2016a), including a summary table which groups
together the different porosity distributions in the FGMs will be presented in Table 1.

E() = (e~ En)(o+ )" + B — (B + En) 5 @

1
p(2) = (pe = )G +5) + pm = (e + Pm) 5 (5)

However, Poisson’s ratio (v) is assumed to be constant. The material properties of a perfect FG
plate can be obtained when « is set to zero.

As: .+ V=1 = V. =1-V, (6)
1
and: V, = (% + E)k (7)
Type I: perfect FG plate (Without porosity a« = 0 )
z 1
E(z) = (E. - Em)(ﬁ + E)k +Em (8)
Type II: 50% Ceramic, 50% Metal
a a
E=Em(Vm_E)+EC(VC_E) (9)

E() = (e~ En)(o+ )" + B — (B + En) 5 (10)
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Ceramic

Metal

ko ks

Fig. 1 Geometry and dimensions of the FGM plate resting on elastic foundation

Type II1: 60% Ceramic, 40% Metal

E = Ep(Vy = =) + Ec (Ve — ) (11)
E@) = (E, —E)G+D)* +E,, — BE, — 2E) 2 12
(Z) ( c m)(h+2) + m ( c m)s ( )

Type 1IV: 40% Ceramic, 60% Metal
E = Eq(V —2) + Ec(V — ) (13)
E(z) = (Bc = En) G+ )" + Epy — (2B, — 3E) 5 (14)

Type V: 75% Ceramic, 25% Metal

E = Ep(Vy =) + Ec(V — =) (15)
E(2) = (B = Em) G+ )% + By, — 3E, — Ep) = (16)

Type VI: 25% Ceramic, 75% Metal
E = En(Vpm =20 + Ec(V; — ) (17)
E(2) = (B = Em) G+ )" + By, — (B — 3Ep) = (18)

2.2 Displacement fields and strains

In this study, we consider an FGM plate of length a, width b and total thickness % and
composed of functionally graded material through the thickness. It is assumed that the material is
isotropic and grading is assumed to be only through the thickness. The xy plane is taken to be the
undeformed mid plane of the plate with the z axis positive upward from the mid plane. The
material on the top surface and bottom surface is ceramic and metal respectively (Fig. 1).
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The assumed displacement field is as follows (Baferani et al. 2011, Ait Atmane. 2019, Tounsi et
al. 2020)

6Ws

u(x,y,2) = uo(x,y) — 252 — (z - sin(7))
6Ws (25)

v(x,y,2) = vo(x,y) — Z— ~ (z=sin(Z) =
w(x,y,2) = wp (x, }') + ws(x,y)

where uy and v, are the mid-plane displacements of the plate in the x and y direction,
respectively; wp, and w, are the bending and shear components of transverse displacement,
respectively, while f(z) represents shape functions determining the distribution of the transverse
shear strains and stresses along the thickness and is given as (Benferhat ef al. 2016a)

f(@) =z=sin(3) (26)

It should be noted that unlike the first-order shear deformation theory, this theory does not
require shear correction factors. The kinematic relations can be obtained as follows

e, =2+ zk2+(z— sin(%)) kS
ey =€y +zkh+(z— sin(%)) k3
Vxy = V)?y t+z kylgy +(z- Sin(%)) koscy

27
d(z- sm(—)) ( )
yz = a- d—) vz
d(z—- sm(—))
vz = (l————) ¥az
&, = 0
where
0_0% ;b _ _ s _9%ws o _0uo 9o, O?ws
& = ox fex ax 2’ Jex ax2 > Yxy dy + ox’ xy = dxdy
0o _ 9v b__awb s _ 6ws b__azwb s _ 0w
ey_ay’ y - az’k az,k zaxay’yxz_ax (28)
dw, , d(z— sm( )) d(z— sm( ))
Vyz = av;, 9@ =1-f@)=1-—T™=f(2) =— =
The stress state in each layer is given by Hooke’s law
rE(z) VE(2) 0 0 0
1-v2 1-v2
Oy VE(z) E(z) 0 0 0 Ex
0. 1—V2 1—V2 £
¢ o o =22 0 '
Tyz p = 2(1+v) Vyz (29)
szJ E(Z) lysz
LTxy 0 0 0 2(1+v) 0 Vxy
E(z)
L 0 0 0 2(1+v)
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2.3 Governing equations

The governing equations of equilibrium can be derived by using the principle of virtual
displacements. The principle of virtual work in the present case yields (Baferani et al. 2011, Ait
Atmane. 2019, Tounsi et al. 2020)

h/2
I}

2 fﬂ[axd &x + 0,0 &, + Tyy0 Vay + Ty20 Yy + T128 Yz dQ dz — J,q8wd2 =0 (30)

where (2 is the top surface and q is the applied transverse load.
Substituting Egs. (27) and (29) into Eq. (30) and integrating through the thickness of the plate,
Eq (30) can be rewritten as

S [NG8 €2 + NyS € + Ny & €2, + M2S k2 + M2S K
+M2,68 kB + MES k§ + M36 k + M3,6 ky + S5,8 v, (31)
+S>§z§ yxsz ]d-Q - j q6 wd) =0
0N

where
Ny, Ny, Ny 1
h
My MD, MY, =f_,{f2<ox,ay.rxy){ z }dz, (32)
Mg, M5, Mg, f(@)
s s h/2
(sz' Syz) = f_h/z(rxz' Tyz)g(z)dz' (33)

The governing equations of equilibrium can be derived from Eq. (31) by integrating the
displacement gradients by parts and setting the coefficients § uy, 6 vy, 6 w, and & wg zero
separately. Thus, one can obtain the equilibrium equations associated with the present shear
deformation theory

. ONyx any —
S u: o + ay =
ONyy, 0Ny
o v: o -|; y : -
azmp a?mM2, 9*m
: 2 2 - =
6Wb ax2 + 9x0y + 9y2 +q 0

0ZM; 4+ 0*M3,, N 0*M; N 0S5, N 0S5, N
d0x? d0xdy dy? 0x dy

Using Eq. (27) in Egs. (32) and (33), the stress resultants of a sandwich plate made up of three
layers can be related to the total strains by

o wg:

N A B Bf](¢€
MPi=|A D DS {kb}, S = A%, (39)
M5 BS DS HS kS

where

N = {Ny, Ny, Ny}, MP = {mE, mb, M2}, M = {M$, MS, M5}, (36)
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e={e2, e v}, kb= (kKb kb)), ko= (k5K kS, )

A1 Az 0] Bi1 Bz O Di1 Dy O
A=A, Ay 0|, B=|Biz By, 0|, D=[Di; Dy 0|,
| 0 0 Aggl 0 0 By 0 0 Dgg
[Bf; Bi, 0] by Di, O Hyy Hi; O
B = sz stz 0], Ds= sz Dzsz 0] H= H152 stz 0 |,
| 0 0 Bg] 0 0 D¢ 0 0 H
t t AS 0
S={s%Sa.  v={nlt, A=/ 25],
where A;j, B;j, etc., are the plate stiffness, defined by
Ay By Dy By Diy Hi n/2 1
Ay By Dy Bi; Dif; Hipp= f—h/Z Q11(1,2,2%,f(2),z f(2), f*(2)) 11_/1, dz
Ass Bes Dos Bss Dgs Hie T2
and

(AZZl BZZI D22' B;Z' DSZ' HZSZ) = (Alll Bll' Dlll Blsl' Dlsll Hlsl)

hn
Ajy = Ags = fhn—l Qualg(2)]?dz,

Substituting from Eq. (35) into Eq. (34), we obtain the following equation

Aq1dqqug + Agedaaug + (A1p + Age)diav9 — Byidipiwy
—(B12 + 2Bgg)d122wp — (Bf, + ZBgs)dqus — Bj;di11ws = 0,

Appdyrvg + Agedi1Vg + (A1p + Agg)di2Ug — Baadanowy
—(B1z + 2Bge)di1,wp, — (Bi, + ZBgs)dnst — B3,dyws = 0,

Bi1di11ug + (Biz + 2Bgg)dia2ug + (Biz + 2Bgg)d112V0 + Baadaa2v0
—D11d1111Wp — 2(D12 + 2Dg6)d1122Wp — Dazd3222Wp — Di1dq111Ws
—2(D3, + 2Dgg)d1122Ws — D3rdp222Ws = q

Bfidi11ug + (Bfz + 2Bgg)dizoug + (Bf; + 2BEg)d 112V + B3,d52,v0
—D?1dy111wp — 2(D5; + ZDgs)dnzsz — D3,dyp0owp — Hijdqq111Ws
—2(H7, + 2Hgg)d1122Ws — H3pdpp0,Ws + ASsdyiWg + Ajadaows = q

where d;j, d;j; and d;j;, are the following differential operators

ijs
_ 62 d _ 63 d _ 64-
U oxiox; gyt = dx;0x0x;’ yjim =

d d; ==, (i,j,L,m=12).

0x;0xj0X10%y,’

Exact solution for a simply-supported FGM plate:

(37)

(38)

(39)

(40)

(41)

(42)

(43)

(44)

(45)

(46)

(47)

(48)

Rectangular plates are generally classified in accordance with the type of support used. We are
here concerned with the exact solution of Egs. (44)-(47) for a simply supported FG plate. The

following boundary conditions are imposed at the side edges
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v0=Wb=WS=E;—M;=Nx=M£=M,§=O at x=-a/2, a2 (49)
U =wy =w, =22 =Ny =M =Mj=0 aty=-b2, b2 (50)

To solve this problem, Navier assumed that the transverse mechanical and temperature loads, q
in the form of a double trigonometric series as

q = qosin(Ax)sin(uy) (51)

where A = mm/a, u = nm/b, and go represents the intensity of the load at the plate center.

Following the Navier solution procedure, we assume the following solution form for uy, vg, wy
and wy that satisfies the boundary conditions (Baferani ef al. 2011, Ait Atmane. 2019, Tounsi et al.
2020)

U o Uppn c0s(A x) sin(p y). e'®t
vo ( _ Z 2 Vinn Sin( A x) cos(p y). e't (52)
‘;va Lo Lo | Wiy sin( 4 x) sin(p y). e.“"t

S lwt

Wemn sin(A x) sin(u y).e

Where: A = mr/a, u = nw/b and w is the natural frequency and Uy, Vi, Womn and Wy, are
arbitrary parameters to be determined subjected to the condition that the solution in Eq. (52)
satisfies governing Eqs. (44)-(47). Eq. (52) reduces the governing equations for vibration analysis,
one obtains the following operator equation

([C] — w[GD{4} = {0}, (53)

where {4} = {Umn, | Wbmn,WSmn}t, [C] and [G] refers to the flexural stiffness and mass
matrices and o to the corresponding frequency.

a1 Q2 Q13 Qg4 my 0 0 0

[C] = Q12 Gz Q23 Q4 [G] = 0 my, 0 0 (54)
i3 Q3 A3z Q34| 0 0 mgz mgy
Q14 Q34 QA3q4 Q44 0 0 mgy my,

in which
ayq = A A% + Aget®
a1 = A (Agp + Age)
ay3 = —A [B11A% + (B1z + 2Bsg) U°]
a1y = —A [B{1 A% + (Bf, + 2Bge) 1]
Ay = AgeA? + Appi?
ap3 = =i [(B12 + 2Bgg) A2 + Byop?]
a4 = —1 [(Bi + 2B3) A+ stz.uz] (55)
azz = D11 A* + 2(D1p + 2Dge)A*1* + Dpopu*
azq = D31 A% + 2(D5, + 2Dg)A* u? + D3, pu*
a, = Hlslﬂf1 +2(Hy, +2H636)ﬂ‘2;u2 + stzﬂ4 + Asss/iz + AL/JZ myp =My, =1
maz = I + I3(A* + p?)
Mgy = Iy + I5(2* + p?)
My = I + Ig(A* + p?)
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Table 2 Material properties used in the FG plate

Properties Metal Ceramic

Aluminum (Al) Zirconia (ZrOy) Alumina (Al,O3)
E (GPa) 70 200 380
p (kg/m3) 2702 5700 3800

Table 3 Comparison of the fundamental frequency @ = w a?,/pyh/G of a rectangular plate k = 1, a = 0
and £y, = E,, = p1; = po» = 1 (homogeneous materials)

b/a h/a Hosseini (2011a) Present

0.5 0.01 49.3032 49.3031

0.1 45.4869 45.4895

0.01 12.3342 12.3341

2 0.1 12.0675 12.0676

where
h/2
(s a5, 1) = | | af @ @O (56)
z 1

p@) = (pc = pm) G+ 3)" + pm (57)

4. Numerical results and discussion

In this section, various numerical examples are presented and discussed to verify the accuracy
of the present theory in predicting the frequency of simply supported FG plates based on the
neutral surface concept.

For verification purpose, the obtained results are compared with those reported in the literature.
An (Al/AL,O3) or (Al/ZrO,) plate composed of aluminum (as metal) and alumina or Zirconia (as
ceramic) is considered. The material properties assumed in the present analysis are shown in Table
2. Poisson’s ratio is 0.3 for both alumina and aluminum. The bottom surfaces of the FG plate are
aluminum rich, whereas the top surfaces of the FG plate are alumina or Zirconia rich. To validate
the accuracy of the results, the comparisons between the present theory and the available results
obtained by Hosseini et al. (2011a) in Table 3.

The first example represents the comparison of the fundamental frequency @ = w a?y/poh/G
for a rectangular plate with a homogeneous material. It is to be noted that the present results of the
fundamental frequency compare very well with the other theory solution for perfect FG plate. For
the sake of validation, some results are tabulated here as a comparison with the available ones in
the literature. Tables 4(a) and 4(b) shows the comparison of the fundamental frequency parameter

B = wh+/ pm/Em for SSSS (Al/Zr0O,) square plates with three values of the thickness-to-length
ratio (a/h = 5,10 and 20) and for different case of porosity distribution rate. The power law
index is taken as k = 1. It is to be noted that also the present results of the fundamental frequency
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Table 4(a) Comparison of the fundamental frequency ,[_3 = wh+/ py/Em of a square plate (Al/ZrO,) with k=1

Porosity
a’h Theory =01 7= 02
Benyoucef et al. (2016) 0.2258 0.2231
Type I 0.2186 0.2186
Type II 0.2276 02377
5 Type 11 0.2282 0.2391
Present method Type IV 0.2270 0.2364
Type V 0.2291 0.2411
Type VI 0.2261 0.2344
Benyoucef et al. (2016) 0.0612 0.0604
Type I 0.0591 0.0591
Type II 0.0618 0.0649
10 Type 111 0.0620 0.0654
Present method Type IV 0.0616 0.0645
Type V 0.0623 0.0660
Type VI 0.0613 0.0638
Benyoucef et al. (2016) 0.0156 0.0157
Type I 0.0151 0.0151
Type II 0.0158 0.0166
20 Type III 0.0158 0.0167
Present method Type IV 0.0157 0.0165
Type V 0.0159 0.0169
Type VI 0.0157 0.0163

compare very well with the other theories solution for perfect FG plate (¢=0), so we can note that
the variation in the porosity distribution rate has a significant effect on the results because the
variation of the latter influences the rigidity of the plate.

The example presented in Table 5 show a comparison of non-dimensional fundamental
frequency @ = wh+/pm/Em of (Al/ZrO») square plate for different values of thickness ratio a/h
and power law index k, the porosity in the example is taken a = 0.2 . The fundamental frequency
parameter ® is obtained using the present theory (NFSDT) and compared with those 3-D exact
solutions of Batra et al (2004), higher shear deformation theories (HSDT) with 2-D higher order
theory solutions of Matsunaga et a/ (2008), Reddy’s theory with analytical method solutions of
Hosseini et al. (2011b).

In Table 6, the non-dimensional frequencies @ = wh./p./E. of thin and thick (Al/AL,Os)
square plates with thickness ratio varying between (5, 10 and 20) and the power law index varying
from (0.5, 1, 4, 10) are investigated, the results obtained by the present theory are presented in this
table and compared to those predicted by TSDT (Ait Atmane et al 2019), FSDT (Draiche et al
2019) and Tounsi et a/ (2020). We note that @ = 0.2 in this example. It can be seen that the results
obtained by present theory are in good agreement with the other theories solution for perfect FG
plate (Type I, @ = 0). 1l can also noticed that the frequencies decreases as the FG plate becomes
richer in metal.
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Table 4(b) Variation of fundamental frequency of square FG plate with k and a/h ratio for SSSS boundary
condition, « = 0.1

Power law index

a/h Methods 0 1 > 5 10
Firooz Bakhtiari-Nejad (2015) 1.7748 1.4764 1.4628 1.4106 1.3711
Type I 1.7684 1.4889 1.4339 1.3722 1.3350
Type 11 1.7687 1.5195 1.4569 1.4008 1.3638
Present Type 111 1.7835 1.5323 1.4687 1.4113 1.3738
Type IV 1.7542 1.5070 1.4453 1.3905 1.3540
Type V 1.8065 1.5521 1.4869 1.4273 1.3890
Type VI 1.7332 1.4888 1.4284 1.3753 1.3394
Firooz Bakhtiari-Nejad (2015) 1.9339 1.6583 1.5968 1.5491 1.5066
Type I 1.9317 1.6183 1.5658 1.5072 1.4662
Type 11 1.9351 1.6601 1.5997 1.5495 1.5084
10 Present Type 111 1.9530 1.6761 1.6151 1.5643 1.5229
Type IV 1.9176 1.6445 1.5846 1.5350 1.4943
Type V 1.9810 1.7010 1.6392 1.5874 1.5453
Type VI 1.8922 1.6219 1.5628 1.5140 1.4737
Firooz Bakhtiari-Nejad (2015) 1.9570 1.6999 1.6401 1.5937 1.5491
Type | 1.9821 1.6579 1.6065 1.5494 1.5071
Type 11 1.9865 1.7035 1.6442 1.5966 1.5541
20 Present Type 111 2.0056 1.7206 1.6610 1.6130 1.5703
Type IV 1.9680 1.6868 1.6279 1.5806 1.5385
Type V 2.0352 1.7473 1.6871 1.6387 1.5954
Type VI 1.9412 1.6628 1.6044 1.5575 1.5159
Firooz Bakhtiari-Nejad (2015) 1.9974 1.7117 1.6552 1.6062 1.5652
Type | 1.9992 1.67136 1.6204 1.5638 1.5212
Type 11 2.0041 1.71832 1.6595 1.6128 1.5699
100 Present Type 111 2.0235 1.7358 1.6767 1.6298 1.5866
Type IV 1.9852 1.7013 1.6428 1.5963 1.5537
Type V 2.0538 1.7631 1.7036 1.6564 1.6127
Type VI 1.9579 1.6767 1.6186 1.5724 1.5303

Table 5 Comparison of non-dimensional fundamental frequency @ = wh+/ p,,, /Ey of (Al/ZrO,) square plate
a=02

Method =1 a/h=5
ethods ah=5 __ a/h=10 _ a/h=20 =2 =3 =5

3-D (Batra et al. 2004) 02192 00596 00153 02197 02211 02225

HSDT (Matsunaga et al. 2008) 02285 00619 00158 02264 0227  0.2281

HSDT (Hosseini ef al. 2011b) 02276 00619 00158 02256 02263 02272

Type I 02186 00591 00151 02188 02185 02176

Type II 02377 00649 00166 02406 02401  0.2388

Prosent Type III 02391 00654 00167 02421 02414  0.2399

Type IV 0.2364 0.0645 0.0165 0.2391 0.2387 0.2377
Type V 0.2411 0.0660 0.0169 0.2443 0.2433 0.2414
Type VI 0.2344 0.0638 0.0163 0.2368 0.2366 0.2358
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Table 6 Comparison of natural frequency parameter @ = wh./p./E. of (Al/Al,053) square plate. @ = 0.2

Mode Power law index
) Methods j=0.5 =1 =4 =10
TSDT (Air Atmane et al. 2019) 0.2113 0.1631 0.1378 0.1301
FSDT (Draiche et al. 2019) 0.2112 0.1631 0.1397 0.1324
Tounsi et al. (2020) 0.2112 0.1631 0.1397 0.1324
Type 1 0.2112 0.1461 0.1261 0.1146
(1D Type 11 0.2294 0.1556 0.1289 0.1106
Present Type 11 0.2298 0.1549 0.1265 0.1065
Type IV 0.2290 0.1563 0.1309 0.1141
Type V 0.2304 0.1536 0.1221 0.0964
5 Type VI 0.2284 0.1571 0.1334 0.1182
TSDT (Air Atmane et al. 2019) 0.4623 0.3607 0.2980 0.2771
FSDT (Draiche et al. 2019) 0.4618 0.3604 0.3049 0.2856
Tounsi et al. (2020) 0.4618 0.3604 0.3049 0.2856
Type I 0.4623 0.3281 0.2767 0.2493
(12) Type II 0.4975 0.3466 0.2733 0.2255
Present Type 11 0.4977 0.3446 0.2664 0.2126
Type IV 0.4973 0.3485 0.2793 0.2360
Type V 0.4978 0.3410 0.2541 0.1852
Type VI 0.4970 0.3509 0.2870 0.2487
TSDT (Air Atmane et al. 2019) 0.0577 0.0442 0.0381 0.0364
FSDT (Draiche et al. 2019) 0.0577 0.0442 0.0382 0.0366
Tounsi et al. (2020) 0.0577 0.0442 0.0382 0.0366
Type I 0.0576 0.0391 0.0344 0.0315
(LD Type II 0.0631 0.0419 0.0364 0.0325
Present Type 11 0.0633 0.0418 0.0360 0.0319
Type IV 0.0629 0.0420 0.0367 0.0330
Type V 0.0636 0.0415 0.0353 0.0305
10 Type VI 0.0626 0.0422 0.0371 0.0335
TSDT (Air Atmane et al. 2019) 0.1377 0.1059 0.0903 0.0856
FSDT (Draiche et al. 2019) 0.1376 0.1059 0.0911 0.0867
Tounsi et al. (2020) 0.1376 0.1059 0.0911 0.0867
Type I 0.1376 0.0943 0.0821 0.0821
(1,2) Type II 0.1500 0.1008 0.0852 0.0743
Present Type 11 0.1503 0.1004 0.0839 0.0720
Type IV 0.1496 0.1012 0.0863 0.0761
Type V 0.1508 0.0996 0.0815 0.0667
Type VI 0.1491 0.1016 0.0876 0.0783
TSDT (Air Atmane et al. 2019) 0.0148 0.0113 0.0098 0.0094
FSDT (Draiche et al. 2019) 0.0148 0.0113 0.0098 0.0094
Tounsi et al. (2020) 0.0148 0.0113 0.0098 0.0094
Type I 0.0147 0.0099 0.0088 0.0081
20 (1,1) Type 11 0.01624 0.0107 0.00947 0.00858
Present Type 11 0.01629 0.0106 0.00940 0.00851
Type IV 0.01618 0.0107 0.00953 0.00865
Type V 0.01637 0.0106 0.00927 0.00838

Type VI 0.01610 0.0107 0.00959 0.00873
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Table 7 Comparison of non-dimensional fundamental frequency @ = wh+/p;,/E,, of (AI/ALLO3) square
plate a = 20h and a = 0.2 (elastic foundation case)

Methods
k ko ki Baferani Tai Present
(2011) (2012)  Typel  Typell Typelll TypelV TypeV Type VI
0 0 0.0227  0.0222 0.0196 0.02107 0.02101 0.02113 0.02088 0.02120
0 100 0.0382  0.0378 0.0356 0.03917 0.03922 0.03911 0.03929 0.03902

1
100 0 0.0238 0.0233  0.0207 0.02240 0.02234 0.02244 0.02224 0.02249
100 100 0.0388 0.0384 0.0362 0.03984 0.03990 0.03978 0.03996 0.03968
0 0 0.0209 0.0202 0.0186 0.02055 0.02058 0.02052 0.02062 0.02047
) 0 100 0.0380 0.0374 0.0355 0.03942 0.03948 0.03935 0.03955 0.03923
100 0 0.0221 0.0214 0.0198 0.02199 0.02203 0.02195 0.02208 0.02189
100 100 0.0381 0.0386  0.0361 0.04009 0.04015 0.04002 0.04022 0.03990
0 0 0.0197 0.0191 0.0169 0.01801 0.01784 0.01816 0.01751 0.01834
5 0 100 0.0381 0.0377 0.0350 0.03778 0.03746 0.03801 0.03673 0.03825
100 0 0.0210 0.0205 0.0184 0.01971 0.01955 0.01985 0.01924 0.02000
100 100 0.0388 0.0384 0.0356 0.03841 0.03807 0.03866 0.03731 0.03890
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Fig. 2 Comparison of non-dimensional fundamental frequency @ of Al/Al,05 square FG plate versus ratio
a/b (a) without elastic foundation, (b) Winkler-Pasternak foundation, (c) Winkler elastic foundation (d)
Pasternak elastic foundation
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Fig. 3 Comparison of non-dimensional fundamental frequency @ of Al/Al,05; square FG plate versus
thickness ratio a/h (a) without elastic foundation, (b) Winkler-Pasternak foundation, (¢) Winkler elastic
foundation (d) Pasternak elastic foundation

Tables 7 and 8 show the comparison of fundamental frequency of FG rectangular plates on their
elastic foundation with those reported by Baferani et a/ (2011), Tai et al (2012) and Kaci et al.
(2020) with different values of the thickness-to-length ratios, foundation stiffness parameters and
porosity distribution rate, the results for the case of (Type I) are in good agreement with each other.

The dimensionless fundamental frequency as a function of the aspect ratio (a/b), side-to-
thickness ratio (a/h) and power law index (k) of porous FGM plate for different variation of
porosity distribution rate are illustrated in Figs. 2, Fig. 3 and Fig. 4, respectively. In each figure we
present four cases of elastic foundation. (a) without elastic foundation, (b) winkler-pasternak
foundation, (c) winkler elastic foundation and (d) pasternak elastic foundation.

It can be seen that the dimensionless fundamental frequency increase as the aspect ratio a/b
and the side-to-thickness ratio a/h increase (Figs. 2 and 3) because the FG plaque becomes
thinner. Also, the case of FG plate Winkler-Pasternak foundation and Pasternak elastic foundation
gives the largest value of frequency. The (Type VI) of the variation in the porosity distribution rate
in FG plate gives the largest value of frequency while the (Type V) gives the smallest ones.

From the Fig. 4 we can observe that the dimensional fundamental frequency decreases when
the power law index k increase. At the same we noticed that the largest value of the fundamental
frequency can be determinate with Winkler-Pasternak elastic foundation and Pasternak elastic
foundation. The variation in the porosity distribution rate in FG plate (Type V) gives the smallest
value of frequency while the (Type VI) gives the largest ones, because the existence of maximum
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Fig. 4 Comparison of non-dimensional fundamental frequency @ of Al/Al,05 rectangular FG plate versus
power law index k (a) without elastic foundation, (b) Winkler-Pasternak foundation, (c¢) Winkler elastic
foundation (d) Pasternak elastic foundation

Table 8 Non-dimensional fundamental frequency @ = w a2,/ p,,,/E, of SS plate (A/AL,O3) k =2 and a =
0.2

Theory
ko kq ab  alh . Present
Kaci (202
aci (2020) Typel Typell Typelll TypelV  TypeV  Type VI
10 7.8763 7.2802  7.9936 7.9944 7.9912 7.9920 7.9846

0 0 ! 20 8.0749 7.4433  8.2229 8.2346 8.2108 8.2514 8.1917
) 10 18.8206  17.4798 19.0036 18.9663  19.0327  18.8929  19.0633

20 19.9333  18.4000 20.2627  20.2774  20.2452  20.2939  20.2139

| 10 147799  13.0765 14.1340 14.0863  14.1727 13.9950 14.2165

0 100 20 14.9549  14.2220 15.7684 15.7929 15.7408 15.8221  15.6944
) 10 27.1506  23.6168 253013 25.1762 25.4082 24.9488  25.5391

20 28.1214  26.2529 28.9289 28.9421 28.9078 28.9441  28.8635

1 10 8.3643 7.7494  8.5132 8.5141 8.5103 8.5112 8.5026

100 0 20 8.5576  7.94972 8.7974 8.8120 8.7823 8.8331 8.7585
) 10 19.0258  17.6501 19.1856  19.1472  19.2158 19.0715  19.2475

20 20.1323  18.6012 20.4887  20.5041 20.4704 20.5214 20.4379

| 10 15.0455  13.2655 14.3235 14.2724 143653 14.1752 14.4131

100 100 20 15.2209  14.4684 16.0371 16.0609  16.0098  16.0888  15.9638
) 10 272931  23.77083 253911 252640 254999 25.0332  25.6331

20 28.2628  26.3815 29.0683  29.0809  29.0475 29.0819  29.0036
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porosity in the ceramic significantly reduces the rigidity of the plate.

5. Conclusions

In this work, an efficient new refined shear deformation theory based on the middle surface
concept was effectively used to study extensively the free vibration analysis of porous FG plates
simply-supported resting on elastic foundations using an analytical procedure. The modified rule
of mixture, covering different variation of porosity distribution rate is used to describe and
approximate material properties of the imperfect FG plates. In accordance with numerical results,
some conclusions can be drawn as follows:

- The fundamental frequencies become more important when the variation of distribution rate

of porosity is of type VI.

- The largest value of the fundamental frequency can be determinate with Winkler-Pasternak

elastic foundation and Pasternak elastic foundation.

- The frequencies decreases as the FG plate becomes richer in metal.
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