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Abstract.  The present paper deals with the axisymmetric deformation in homogeneous isotropic thermoelastic solid 
with two temperatures, with and without energy dissipation using modified couple stress theory. The effect of energy 
dissipation and two temperature is studied due to the concentrated normal force, normal force over the circular region, 
thermal point source and thermal source over the circular region. The Laplace and Hankel transform techniques have 
been used to find the solution to the problem. The displacement components, conductive temperature distribution, 
stress components and couple stress are computed in the transformed domain and further calculated in the physical 
domain using numerical inversion techniques. Effects of two temperature and energy dissipation on the conductive 
temperature, stress components and couple stress are depicted graphically. 
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1. Introduction 
 

Isotropic materials are helpful since they are simpler to shape, and their conduct is simpler to 

anticipate. One basic illustration of the homogeneous isotropic material is the water. All cells in the 

human body are made mostly of water content in their cytoplasm. Important functions of water in 

the body include supporting the cellular metabolism, molecular transport, biochemical reactions, 

and the physical properties of water, such as surface tension. So, study of deformation in 

homogeneous isotropic materials is required. Classical continuum theory predicts the behavior of 

structures under loads at macro scale in which the forces are transmitted at an infinitesimal element 

surface as tractions, but careful experiments have shown that it deviates in capturing behavior of 

materials at micro/nano scale. As a result size dependent theories came into existence In these 

theories moments are transmitted on an infinitesimal element surface as moment or couple tractions 

in addition to force tractions. Couple-stress theory is an extended continuum theory that includes the 

effects of a couple per unit area on a material volume, in addition to the classical normal and shear 

forces per unit area. One other branch of theories based on Voigt (1887) was developed by Toupin 
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(1962), Mindlin and Tiersten (1962) and Koiter (1964) in which displacements and macrorotations 

were taken as the kinematical quantities. Koiter introduced the constitutive relationships for couple 

stress theory, involving length scale parameters to predict the size effects. It involves four material 

constants for isotropic elastic materials which are very difficult to determine (1964). So, modified 

couple stress theory (M-CST) with one length scale parameter was presented by Yang et al. (2002), 

in which only one couple stress parameter is involved. But these theories had some indeterminacy/ 

inconsistencies in the couple stress and force stress tensors due to the limited number of relations. 

So, Hadjesfandiari and Dargush (2011) offered consistent couple stress theory (C-CST) with the 

skew-symmetric couple-stresses to resolve the inconsistencies in previous models. This theory was 

not applicable to anisotropic materials. Therefore, Chen and Li (2013) introduced the new modified 

couple stress theory (NM-CST) for anisotropic materials containing three length scale parameters. 

Marin (2010) studied Some estimates on vibrations in thermoelasticity of dipolar bodies. Marin et 

al. (2013) consider a theory of thermoelasticity for modeling a microstretch thermo-elastic body 

with two temperatures. Based on a modified couple stress theory, the static mechanical properties 

of Euler-Bernoulli beam model were investigated by Park and Gao (2006), and also bending test 

outcomes of an epoxy polymeric beam were explained, a Timoshenko beam model was introduced 

by Ma et al. (2008) to study the size-dependent static bending and free vibration properties. The 

modified couple stress theory was also utilized by Kong et al. (2008) to obtain the governing 

equation and boundary and initial conditions of an Euler-Bernoulli microbeam. Based on the couple 

stress theory, Reddy (2011) defined nonlinear size-dependent Euler-Bernoulli and Timoshenko 

functionally graded beam models and by using the Navier solution determined the natural frequency, 

buckling load, and deflection for beams with simply supported boundary conditions. Utilizing the 

modified couple stress Euler-Bernoulli beam theory, Wang et al. (2013) analyzed the nonlinear free 

vibration behavior of microbeams. They concluded that the nonlinear vibration frequency obtained 

by their model is higher than that predicted by the classical continuum theory. Based on modified 

couple stress theory a model for sigmoid functionally graded material (S-FGM) nanoplates on elastic 

medium is developed by Jung et al. (2014), the vibrational analysis of piezoelectric microbeams 

based on the modified couple stress theory is studied by Ansari et al. (2014). By using the modified 

couple stress theory, the vibration analysis of composite laminated beams in order of micron is 

developed and effect of shear deformation is studied by considering different beam theories by 

Mohammad-Abadi and Daneshmehr (2014). Zhou and Gao (2014) developed a non classical model 

for circular Mindlin plates subjected to axisymmetric loading, by deriving the equations of motion 

and boundary conditions through a variational formulation based on Hamilton’s principle. Transient 

analysis of coupled thermoelasticity of micro-beams by applying MCS theory and LS heat 

conduction model by Kakhki et al. (2016), dynamic characteristics of electrostatically actuated 

micro-beams resting on squeeze-film damping under mechanical shock are investigated by 

Ghiasi(2016) using modified couple stress theory. Borjalilou and Asghari (2018) studied the 

thermoelastic damping of Kirchhoff microplatesbased using the non-classical continuum theory of 

modified couple stress and non-classical heat conduction model of dual-phase-lag. This theory has 

been utilized in many studies to investigate the mechanical behavior of microstructures such as 

microbeams, microplates, and microshells. Small-scale thermoelastic damping phenomenon is 

studied in micro-beams utilizing the modified couple stress theory and the dual-phase-lag heat 

conduction model by Borjalilou et al. (2019). Kaur and Lata (2020) studied axisymmetric 

deformation in transversely isotropic magneto-thermoelastic solid with Green -Naghdi III due to 

inclined load. Hobiny and Abbas (2021) established the bio-heat model with fractional derivative to 

study the variations of temperature and the thermal damage in spherical tissues during thermal 
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therapy. The effects of a fractional parameter, the blood perfusion and the laser exposure time on 

the temperature of living tissue and the resulting of thermal damages are studied. Marin (1998) 

studied a temporally evolutionary equation in elasticity of micropolar bodies with void. Zhang et al. 

(2020) performed the entropy analysis of the blood flow through an anisotropically tapered arteries 

under the suspension of magnetic Zinc-oxide (ZnO) nanoparticles (NPs). Abbas and Marin (2018) 

adopted the analytic solutions of a two dimensional generalized thermoelastic diffusions problem 

due to laser pulse. Abbas et al. (2016) obtained a dispersion relation for Rayleigh-Lamb wave 

propagation in a plate of thermoelastic material. Abbas et al. (2008) studied the combined effect of 

thermal dispersion and thermal radiation on the non-Darcy natural convection flow over a vertical 

flat plate kept at higher and constant temperature in a fluid saturated porous medium. Abd-Alla 

and Abbas (2011) investigated the a transversely isotropic, elastic cylinder of infinite length and 

perfectly conducting material placed in a primary constant magnetic field while the curved surface 

of the cylinder is subjected to periodic loading. Hobiny and Abbas (2018) studied the the wave 

propagation on non-homogenous semiconductor through photo-thermal process by using the theory 

of coupled plasma and thermoelastic wave. Hobiny and Abbas (2017) investigated the wave 

propagation on semiconductor material with cylindrical cavity during photo-thermoelastic process. 

Mohamed et al. (2009) studied the flow, chemical reaction and mass transfer of a steady laminar 

boundary layer of an electrically conducting and heat generating fluid driven by a continuously 

moving porous surface embedded in a non-Darcian porous medium in the presence of a transfer 

magnetic field.  

The present investigation deals with the deformation in isotropic thermoelastic solid using 

modified couple stress theory with and without energy dissipation and with two temperatures within 

context of modified couple stress theory proposed by Yang (2002). This theory contains one couple 

stress parameter to determine the size effects. Concentrate normal force, normal force over the 

circular region, thermal point source and thermal source over the circular region have been applied 

to find the utility of the problem. Laplace and Hankel transform technique are applied to obtain the 

solutions of the governing equations. The displacement components, conductive temperature, stress 

components and couple stress are obtained in the transformed domain. A numerical inversion 

technique has been used to obtain the solutions in the physical domain. The effect of two temperature 

and energy dissipation is depicted graphically on the resulted quantities.  

 

 

2. Basic equations 
 

Following Kumar et al. (2017), Youssef (2006), and the field equations for isotropic modified 

couple stress thermoelastic medium with two temperatures and with and without energy dissipation 

in the absence of body forces are given by  

(a) Constitutive relations 

𝑡𝑖𝑗 = 𝜆𝑒𝑘𝑘𝛿𝑖𝑗 + 2𝜇𝑒𝑖𝑗 −
1

2
𝑒𝑘𝑖𝑗𝑚𝑙𝑘,𝑙 − 𝛽1𝑇𝛿𝑖𝑗 , (1) 

𝑚𝑖𝑗 = 2𝛼𝜒𝑖𝑗 , (2) 

𝜒𝑖𝑗 =
1

2
(𝜔𝑖,𝑗 + 𝜔𝑗,𝑖), (3) 
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𝜔𝑖 =
1

2
𝑒𝑖𝑗𝑘𝑢𝑘,𝑗. (4) 

(b) Equation of motion 

(𝜆 + 𝜇 +
𝛼

4
∆)𝛻(𝛻. 𝑢⃗ ) + (𝜇 −

𝛼

4
∆)𝛻2𝑢⃗ − 𝛽1𝛻𝑇 = 𝜌𝑢⃗ ̈, (5) 

(c) Equation of heat conduction 

𝐾𝛻2𝜑 + 𝐾∗𝛻2𝜑̇ = 𝜌𝐶∗𝑇̈ + 𝛽1𝑇0∇. 𝑢,⃗⃗⃗  ̈ (6) 

where 

𝑇 = (1 − 𝑎𝛻2)𝜑. (7) 

Here 𝑢 = (𝑢𝑟, 𝑢𝜃, 𝑢𝑧) is the components of displacement vector, 𝑡𝑖𝑗 are the components of stress 

tensor, 𝑒𝑖𝑗 are the components of strain tensor, 𝑒𝑖𝑗𝑘 is alternate tensor, 𝑚𝑖𝑗 are the components of 

couple-stress, 𝑎 is the two temperature parameter, 𝑇 is the thermodynamical temperature,  𝜑 is the 

conductive temperature, 𝐾∗  is the coefficient of thermal conductivity, 𝜒𝑖𝑗  is curvature, 𝜔𝑖  is the 

rotational vector,   is the density, 𝐾 isthe materialistic constant, 𝐶∗ is the specific heat at constant 

strain, 𝑇0 is the reference temperature assumed to be such that 𝑇 𝑇0
⁄ ≪ 1, and, 𝛽1 = (3𝜆 + 2𝜇)𝛼𝑡. 

Here 𝛼𝑡 is the coefficients of linear thermal expansion,  𝛼 is the couple stress parameter, ∆ is the 

Laplacian operator, ∇ is del/nabla operator, 𝛿𝑖𝑗 is Kronecker’s delta. 

 

 

3. Formulation and solution of the problem 
 

We consider a two dimensional homogeneous isotropic modified couple stress thermoelastic 

medium initially at uniform temperature 𝑇0  occupying the region of a half space 𝑧 ≥ 0  .A 

cylinderical coordinate system (𝑟, 𝜃, 𝑧) having origin on the surface 𝑧 = 0 has been taken. All the 

field quantities depend on (𝑟, 𝑧, 𝑡). 

𝑢𝑟 = 𝑢𝑟(𝑟, 𝑧, 𝑡), 

𝑢𝑧 = 𝑢𝑧(𝑟, 𝑧, 𝑡), 

𝜑 = 𝜑(𝑟, 𝑧, 𝑡). 

(8) 

The initial and regularity conditions are given by 

𝑢𝑟(𝑟, 𝑧, 0) =  0 =  𝑢𝑟̇(𝑟, 𝑧, 0), 

𝑢𝑧(𝑟, 𝑧, 0) =  0 = 𝑢𝑧̇(𝑟, 𝑧, 0), 

𝜑(𝑟, 𝑧, 0) =  0 = 𝜑̇(𝑟, 𝑧, 0)𝑓𝑜𝑟 𝑧 ≥ 0,−∞ < 𝑟 < ∞, 

𝑢𝑟(𝑥, 𝑧, 𝑡) = 𝑢𝑧(𝑥, 𝑧, 𝑡) = 𝜑(𝑥, 𝑧, 𝑡) = 0 𝑓𝑜𝑟 𝑡 > 0 𝑤ℎ𝑒𝑛 𝑧 → ∞. 

We introduce the dimensionless quantities  

 𝑥′ =
𝜔∗

𝑐1
𝑥, 𝑧 ′ =

𝜔∗

𝑐1
𝑧,  𝑢′ =

𝜔∗

𝑐1
𝑢,  𝑤′ =

𝜔∗

𝑐1
𝑤, 𝑡′ = 𝜔∗𝑡, 𝑡𝑖𝑗

′ =
𝑡𝑖𝑗

𝛽1𝑇0

 , 𝑚𝑖𝑗
′ =

𝑚𝑖𝑗

𝑐1𝛽1𝑇0

, 𝑇′ =

𝛽1𝑇

𝜌𝑐1
2  , 𝜑

′ =
𝛽1𝜑 

𝜌𝑐1
2 , 𝑐1

2 =
𝜆+2𝜇

𝜌
 , 𝜔∗2 =

𝜆

𝜇𝑡2+𝜌𝛼
,  𝑎′ = (

𝜔∗

𝑐1
)
2
𝑎 .  

(9) 
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where 𝜔∗ and 𝑐1 are the characteristic frequency and longitudinal wave velocity. 

Upon using (7) & introducing (8), (9) in Eqs. (5)-(6), after suppressing the primes, we obtain 

𝑎1

𝜕𝑒

𝜕𝑟
+ 𝑎2 (∇2 −

1

𝑟2
)𝑢𝑟 + 𝑎3∆(

𝜕𝑒

𝜕𝑟
− (∇2 −

1

𝑟2
)𝑢𝑟) −

𝜕

𝜕𝑟
(1 − 𝑎𝛻2)𝜑 =

𝜕2𝑢𝑟

𝜕𝑡2
, (10) 

𝑎1

𝜕𝑒

𝜕𝑧
+ 𝑎2∇

2𝑢𝑧 + 𝑎3∆ (
𝜕𝑒

𝜕𝑟
− ∇2𝑢𝑧) −

𝜕

𝜕𝑧
(1 − 𝑎𝛻2)𝜑 =

𝜕2𝑢𝑧

𝜕𝑡2
, (11) 

−𝑎6

𝜕2𝑒

𝜕𝑡2
+ 𝛻2𝜑 + 𝑎4𝛻

2
𝜕𝜑

𝜕𝑡
− 𝑎5(1 − 𝑎𝛻2)

𝜕2𝜑

𝜕𝑡2
= 0. (12) 

Where  

𝑎1 =
(𝜆+𝜇)

𝜌𝑐1
2 ¸ 𝑎2 =

𝜇

𝜌𝑐1
2 , 𝑎3 =

𝛼𝜔∗2

4𝜌𝑐1
4  , 𝑎4 =

𝐾∗𝜔∗

𝐾
, 𝑎5 =

𝜌𝑐1
2𝐶∗

𝐾
, 𝑎6 =

𝛽1
2𝑇0

𝜌𝐾
 , 𝑒 =

𝑢𝑟

𝑟
+

𝜕𝑢𝑟

𝜕𝑟
+

𝜕𝑢𝑧

𝜕𝑧
 , ∇2=

𝜕2

𝜕𝑟2 +
𝜕

𝑟𝜕𝑟
+

𝜕2

𝜕𝑧2 

The displacement components 𝑢𝑟  and 𝑢𝑧  in terms of potential functions 𝑞  and Ψ  in a 

dimensionless form are given by 

𝑢𝑟 =
𝜕𝛷1

𝜕𝑟
+

𝜕2𝛷2

𝜕𝑟𝜕𝑧
 , 𝑢𝑧 =

𝜕𝛷1

𝜕𝑧
− (

𝜕2𝛷2

𝜕𝑟2
 +

1

𝑟

𝜕𝛷2

𝜕𝑟
). (13) 

With the aid of (13) Eqs. (10)-(12) yield 

(∇2 −
𝜕2

𝜕𝑡2
)𝛷1 − (1 − 𝑎𝛻2)𝜑 = 0, (14) 

(𝑎2𝛻
2 − 𝑎3𝛻

4 −
𝜕2

𝜕𝑡2
)𝛷2 = 0, (15) 

−𝑎6

𝜕2

𝜕𝑡2
(𝛻2𝛷1) + (𝛻2 + 𝑎4𝛻

2
𝜕

𝜕𝑡
− 𝑎5(1 − 𝑎𝛻2)

𝜕2

𝜕𝑡2)𝜑 = 0. (16) 

Where ∇2𝛷1 = 𝑒 . 
We define laplace and Hankel transform as  

𝑓(𝑟, 𝑧, 𝑠) = ∫ 𝑓
∞

0
(𝑟, 𝑧, 𝑡)𝑒−𝑠𝑡𝑑𝑡, (17) 

𝑓(𝜉, 𝑧, 𝑠) = ∫ 𝑓(𝑟, 𝑧, 𝑠)𝑟𝐽𝑛(𝑟𝜉)𝑑
∞

0
𝑟.. (18) 

Where 𝜉 is Hankel transform parameter and 𝐽𝑛() is Bessel function of first kind 

Applying the and Laplace Hankel transforms defined by (17)-(18) to the Eqs. (14)-(15), we obtain  

(−𝜉2 + 𝐷2 − 𝑠2)𝛷1̃ − (1 − 𝑎(−𝜉2 + 𝐷2))𝜑̃ = 0, (19) 

((−𝑎2 − 𝑎3𝜉
2)𝜉2 − 𝑠2 + (𝑎2 + 2𝑎3𝜉

2)𝐷2 − 𝑎3𝐷
4)𝛷2̃ = 0, (20) 

(𝑎6𝑠
2(𝜉2 − 𝐷2))𝛷1 + (−(1 + 𝑎4𝑠)𝜉

2 − 𝑎5𝑠
2(1 + 𝑎𝜉2) + (1 + 𝑎4𝑠 + 𝑎𝑎5𝑠

2)𝐷2)𝜑̃ = 0. (21) 

The non trivial solution of the system of Eqs. (16)-(18) yields 
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(𝑃𝐷8 + 𝑄𝐷6 + 𝑅𝐷4 + 𝑆𝐷2 + 𝑇))(𝛷1̃, 𝛷2̃, 𝜑̃) = 0. (22) 

Where 

𝑃 = −𝑎3(𝛿4 + 𝑎𝑎5𝑠
2) − 𝑎𝑎3𝑎6𝑠

2, 
𝑄 = −(𝛿1𝑎3 + 𝛿3)(𝛿4 + 𝑎𝑎5𝑠

2) + 𝑎3(𝛿4𝜉
2 + 𝑎5𝑠

2(1 + 𝑎𝜉2)) + 𝑎6𝑠
2(𝑎3 + 2𝑎𝑎3𝜉

2 + 𝑎𝛿3), 

𝑅 = −((𝛿1𝛿3 + 𝛿2)(𝛿4 + 𝑎𝑎5𝑠
2) + (𝛿1𝑎3 + 𝛿3)(𝛿4𝜉

2 + 𝑎5𝑠
2(1 + 𝑎𝜉2)) − 𝑎6𝑠

2((1 +

𝑎𝜉2)𝑎3𝜉
2 + 𝛿3 − 𝑎𝛿2)), 

𝑆 = 𝛿1𝛿2(𝛿4 + 𝑎𝑎5𝑠
2) + (𝛿1𝛿3 + 𝛿2)(𝛿4𝜉

2 + 𝑎5𝑠
2(1 + 𝑎𝜉2))

+ 𝑎6𝑠
2((1 + 𝑎𝜉2)𝛿3𝜉

2 + 𝛿2(1 + 2𝑎𝜉2)), 

𝑇 = −𝛿1𝛿2(𝛿4𝜉
2 + 𝑎5𝑠

2(1 + 𝑎𝜉2)) − 𝑎6𝑠
2𝛿2(1 + 𝑎𝜉2)𝜉2, 

𝛿1 = 𝜉2 + 𝑠2, 𝛿2 = 𝑎2𝜉
2 + 𝑎3𝜉

4 + 𝑠2, 𝛿3 = 𝑎2 + 2𝑎3𝜉
2, 𝛿4 = 1 + 𝑎4𝑠. 

The roots of the Eq. (24) are ±𝜆𝑖(𝑖 =  1, 2, 3, 4), using the radiation condition that q̂, Ψ̂, 𝜑 ̂ → 0 

as 𝑧 → ∞ the solution of Eq. (19) may be written as 

(𝛷1̃, 𝛷2̃, 𝜑̃) = ∑(1, 𝑅𝑖, 𝑆𝑖)𝐴𝑖𝑒
−𝜆𝑖𝑧

4

𝑖=1

, (23) 

Where 

𝑅𝑖 =
𝑃∗ + 𝑄∗𝜆𝑖

2 + 𝑅∗𝜆𝑖
4

𝐴∗ + 𝐵∗𝜆𝑖
2 + 𝐶∗𝜆𝑖

4 + 𝐷∗𝜆𝑖
6, 

𝑆𝑖 =
𝑃∗∗ + 𝑄∗∗𝜆𝑖

2 + 𝑅∗∗𝜆𝑖
4 + 𝑆∗∗𝜆𝑖

6

𝐴∗ + 𝐵∗𝜆𝑖
2 + 𝐶∗𝜆𝑖

4 + 𝐷∗𝜆𝑖
6 . 

Where 

𝑃∗ = 𝛿1(𝛿4𝜉
2 + 𝑎5𝑠

2(1 + 𝑎𝜉2)) + 𝑎6𝑠
2𝜉2(1 + 𝑎𝜉2), 𝑄∗

= −𝛿1(𝛿4 + 𝑎𝑎5𝑠
2) − (𝛿4𝜉

2 + 𝑎5𝑠
2(1 + 𝑎𝜉2)) − 𝑎6𝑠

2(1 + 2𝑎𝜉2), 

𝑅∗ = 𝛿4 + 𝑎𝑎5𝑠
2 + 𝑎𝑎6𝑠

2, 

𝐴∗ = 𝛿2(𝛿4𝜉
2 − 𝑎5𝑠

2(1 + 𝑎𝜉2)),   𝐵∗ = −𝛿2(𝛿4 + 𝑎𝑎5𝑠
2 − 𝛿3𝜉

2𝛿4) − 𝛿3𝑎5𝑠
2(1 + 𝑎𝜉2), 

𝐶∗ = 𝛿3(𝛿4 + +𝑎𝑎5𝑠
2) + 𝑎3𝛿4𝜉

2 − 𝑎3𝑎5𝑠
2(1 + 𝑎𝜉2) , 𝐷∗ = −𝑎3(𝛿4 + 𝑎𝑎5𝑠

2), 
𝑃∗∗ = 𝛿1𝛿2 , 𝑄

∗∗ = −𝛿1𝛿3 − 𝛿𝛿2, 
𝑅∗∗ = 𝛿1𝑎3 + 𝛿𝛿3 , 𝑆∗∗ = −𝛿𝑎3. 

 

 

4. Boundary conditions 
 

The appropriate boundary conditions are  

𝑡𝑧𝑧(𝑟, 𝑧, 𝑡) = −𝑃1(𝑟, 𝑡), (23) 

𝑡𝑧𝑟(𝑟, 𝑧, 𝑡) = 0, (24) 

𝜕𝜑

𝜕𝑟
(𝑟, 𝑧, 𝑡) = 𝑃2(𝑟, 𝑡), (25) 
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𝑚𝜃𝑧 = 0 . (26) 

𝑃1(𝑟, 𝑡) and 𝑃2(𝑟, 𝑡) are well behaved functions.  

Here 𝑃2(𝑟, 𝑡)  =0 corresponds to plane boundary subjected to normal force and 𝑃1(𝑟, 𝑡)  =0 

corresponds to plane boundary subjected to thermal point source.  

The non-dimensional values of 𝑡𝑧𝑧, 𝑡𝑧𝑟 and 𝑚𝜃𝑧 are given by 

𝑡𝑧𝑧 =
𝜆𝑒

𝛽1𝑇0
+

2𝜇

𝛽1𝑇0
𝑒𝑧𝑧 −

𝜌𝑐1
2

𝛽1
2𝑇0

(1 − 𝑎𝛻2)𝜑, (27) 

𝑡𝑧𝑟 =
2𝜇

𝛽1𝑇0
𝑒𝑟𝑧 +

𝛼

𝛽1𝑇0
(

𝜕2

𝜕𝑟2
+

𝜕2

𝜕𝑧2)(
𝜕𝑢𝑟

𝜕𝑧
−

𝜕𝑢𝑧

𝜕𝑟
), (28) 

𝑚𝜃𝑧 =
𝛼𝜔∗

2𝛽1𝑇0𝑐1
2 (

𝜕2𝑢𝑟

𝜕𝑧2
−

𝜕2𝑢𝑧

𝜕𝑟𝜕𝑧
). (29) 

Where 𝑒𝑟𝑟 =
𝜕𝑢

𝜕𝑟
 , 𝑒𝑟𝑧 =

1

2
(
𝜕𝑢

𝜕𝑧
+

𝜕𝑤

𝜕𝑟
) , 𝑒𝜃𝜃 =

𝑢

𝑟
 , 𝑒𝑧𝑧 =

𝜕𝑤

𝜕𝑧
.  

 

Applications 

Case 1. Concentrated normal force/ Thermal point source  

 

When plane boundary is subjected to concentrated normal force/ thermal point force, then 

𝑃1(𝑟, 𝑡), 𝑃2(𝑟, 𝑡) take the form  

(𝑃1(𝑟, 𝑡), 𝑃2(𝑟, 𝑡)) = (
𝑃1𝛿(𝑟)𝛿(𝑡)

2𝜋𝑟
 ,
𝑃2𝛿(𝑟)𝛿(𝑡)

2𝜋𝑟
). (30) 

𝑃1 is the magnitude of the force applied, 𝑃2 is the magnitude of the constant temperature applied 

on the boundary and 𝛿( ) is the Dirac delta function. 

Making use of Eqs. (30) in the boundary conditions (23)-(26) with the aid of (17)-(18), (26)-(28) 

the components of displacement, conductive temperature, components of stress and couple stress 

are given by (33)-(38). 

 

Case 2. Normal force over the circular region/ Thermal source over the circular region  

Let a uniform pressure of total magnitude / constant temperature applied over a uniform circular 

region of radius 𝑎∗ is obtained by setting  

(𝑃1(𝑟, 𝑡), 𝑃2(𝑟, 𝑡)) = (
𝑃1

𝜋𝑎∗2
𝐻(𝑎∗ − 𝑟)𝛿(𝑡) ,

𝑃2

𝜋𝑎∗2
𝐻(𝑎∗ − 𝑟)𝛿(𝑡)) , (31) 

where 𝐻(𝑎∗ − 𝑟) is the Heaviside unit step function. 

Making use of dimensionless quantities defined by (9) and then applying Laplace and Hankel 

transforms defined by (17)-(18) on (30)  

(𝑃1̃(𝜉, 𝑠), 𝑃2̃(𝜉, 𝑠)) = (
𝑃1

𝜋𝑎∗𝜉
𝐽1(𝑎

∗𝜉) ,
𝑃2

𝜋𝑎∗𝜉
𝐽1(𝑎

∗𝜉)) . (32) 
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The expressions for the components of displacements, stress, couple stress and conductive 

temperature are obtained by replacing 
𝑃1

2𝜋
 with 

𝑃1𝐽1(𝑎∗𝜉)

𝜋𝑎∗𝜉
 and by replacing 

𝑃2

2𝜋
 with 

𝑃2𝐽1(𝑎
∗𝜉)

𝜋𝑎∗𝜉
 in Eqs. 

(33)-(38) respectively and are given by (39)-(44). 

 

Concentrated normal force/ Thermal point source 

𝑢𝑟̃ = −
𝑃1

2𝜋∆
∑ 𝐵1𝑖𝑒

−𝜆𝑖𝑧4
𝑖=1 +

𝑃2

2𝜋∆
∑ 𝐵3𝑖𝑒

−𝜆𝑖𝑧4
𝑖=1 ,  (33) 

𝑢𝑧̃ = −
𝑃1

2𝜋∆
∑  𝐵1𝑖𝑅𝑖𝑒

−𝜆𝑖𝑧4
𝑖=1 +

𝑃2

2𝜋∆
∑ 𝐵3𝑖𝑅𝑖𝑒

−𝜆𝑖𝑧4
𝑖=1 ,  (34) 

𝜑̃ = −
𝑃1

2𝜋∆
∑  𝐵1𝑖𝑆𝑖𝑒

−𝜆𝑖𝑧4
𝑖=1 +

𝑃2

2𝜋∆
∑ 𝐵3𝑖𝑆𝑖𝑒

−𝜆𝑖𝑧4
𝑖=1 ,  (35) 

𝑡𝑧𝑧̃ = −
𝑃1

2𝜋∆
∑ 𝐴1𝑖𝐵1𝑖𝑒

−𝜆𝑖𝑧4
𝑖=1 +

𝑃2

2𝜋∆
∑ 𝐴1𝑖𝐵3𝑖𝑒

𝑒−𝜆𝑖𝑧4
𝑖=1 ,  (36) 

𝑡𝑧𝑟̃ = −
𝑃1

2𝜋∆
∑ 𝐴2𝑖𝐵1𝑖𝑒

𝑒−𝜆𝑖𝑧4
𝑖=1 +

𝑃2

2𝜋∆
∑ 𝐴2𝑖𝐵3𝑖𝑒

−𝜆𝑖𝑧,4
𝑖=1   (37) 

𝑚𝜃𝑧̃ = −
𝑃1

2𝜋∆
∑ 𝐴4𝑖𝐵1𝑖𝑒

𝑒−𝜆𝑖𝑧4
𝑖=1 +

𝑃2

2𝜋∆
∑ 𝐴4𝑖𝐵3𝑖𝑒

−𝜆𝑖𝑧4
𝑖=1 .  (38) 

 

For circular region 

𝑢𝑟̃ = −
𝑃1

𝜋𝑎∗𝜉∆
𝐽1(𝑎

∗𝜉)∑ 𝐵1𝑖𝑒
−𝜆𝑖𝑧4

𝑖=1 +
𝑃2

𝜋𝑎∗𝜉∆
𝐽1(𝑎

∗𝜉)∑ 𝐵3𝑖𝑒
−𝜆𝑖𝑧,4

𝑖=1   (39) 

𝑢𝑧̃ = −
𝑃1

𝜋𝑎∗𝜉∆
𝐽1(𝑎

∗𝜉)∑  𝐵1𝑖𝑅𝑖𝑒
−𝜆𝑖𝑧4

𝑖=1 +
𝑃2

𝜋𝑎∗𝜉∆
𝐽1(𝑎

∗𝜉)∑ 𝐵3𝑖𝑅𝑖𝑒
−𝜆𝑖𝑧4

𝑖=1   (40) 

𝜑̃ = −
𝑃1

𝜋𝑎∗𝜉∆
𝐽1(𝑎

∗𝜉)∑ 𝐵1𝑖𝑆𝑖𝑒
−𝜆𝑖𝑧 +

𝑃2

𝜋𝑎∗𝜉∆
𝐽1(𝑎

∗𝜉)∑ 𝐵3𝑖𝑆𝑖𝑒
−𝜆𝑖𝑧4

𝑖=1 ,4
𝑖=1   (41) 

𝑡𝑧𝑧̃ = −
𝑃1

𝜋𝑎∗𝜉∆
𝐽1(𝑎

∗𝜉)∑ 𝐴1𝑖𝐵1𝑖𝑒
−𝜆𝑖𝑧4

𝑖=1 +
𝑃2

𝜋𝑎∗𝜉∆
𝐽1(𝑎

∗𝜉)∑ 𝐴1𝑖𝐵3𝑖𝑒
−𝜆𝑖𝑧4

𝑖=1   (42) 

𝑡𝑧𝑟̃ = −
𝑃1

𝜋𝑎∗𝜉∆
𝐽1(𝑎

∗𝜉)∑ 𝐴2𝑖𝐵1𝑖𝑒
−𝜆𝑖𝑧4

𝑖=1 +
𝑃2

𝜋𝑎∗𝜉∆
𝐽1(𝑎

∗𝜉)∑ 𝐴2𝑖𝐵3𝑖𝑒
−𝜆𝑖𝑧4

𝑖=1   (43) 

𝑚𝜃𝑧̃ = −
𝑃1

𝜋𝑎∗𝜉∆
𝐽1(𝑎

∗𝜉)∑ 𝐴4𝑖𝐵1𝑖𝑒
𝑒−𝜆𝑖𝑧4

𝑖=1 +
𝑃2

𝜋𝑎∗𝜉∆
𝐽1(𝑎

∗𝜉)∑ 𝐴4𝑖𝐵3𝑖𝑒
𝑒−𝜆𝑖𝑧4

𝑖=1 .  (44) 

where 

𝐴1𝑖 =
𝜆

𝛽1𝑇0
(−𝜉2 + 𝜆𝑖

2) +
2𝜇

𝛽1𝑇0
(𝜆𝑖

2 − 𝜉2𝜆𝑖𝑅𝑖) −
𝜌𝑐1

2

𝛽1
2𝑇0

(1 − 𝑎(−𝜉2 + 𝜆𝑖
2)𝑆𝑖),   

𝐴2𝑖 =
1

𝛽1𝑇0
(𝜇(2𝜉𝜆𝑖 + (−𝜉𝜆𝑖

2 − 𝜉3)𝑅𝑖) +
𝛼𝜔∗2

4𝑐1
2 (−𝜉2 + 𝜆𝑖

2)(−𝜉2𝜆𝑖
2 + 𝜉3)𝑅𝑖),   

𝐴3𝑖 = −𝜆𝑖𝑆𝑖,  

𝐴4𝑖 =
𝛼𝜔∗𝜉𝜆𝑖

2𝛽1𝑇0𝑐1
2 (𝜆𝑖

2 − 𝜉2)𝑅𝑖,   
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∆= ∆1 − ∆2 + ∆3 − ∆4, 

∆1= 𝐴11𝐴22(𝐴33𝐴44 − 𝐴43𝐴34) − 𝐴11𝐴23(𝐴32𝐴44 − 𝐴42𝐴34) + 𝐴11𝐴24(𝐴32𝐴43 − 𝐴42𝐴33), 

∆2= 𝐴12𝐴21(𝐴33𝐴44 − 𝐴43𝐴34) − 𝐴12𝐴23(𝐴31𝐴44 − 𝐴41𝐴34) + 𝐴24𝐴12(𝐴31𝐴43 − 𝐴41𝐴33), 

∆3= 𝐴13𝐴21(𝐴32𝐴44 − 𝐴42𝐴34) − 𝐴22𝐴13(𝐴31𝐴44 − 𝐴41𝐴34) + 𝐴13𝐴24(𝐴31𝐴42 − 𝐴41𝐴32), 

∆4= 𝐴14𝐴21(𝐴32𝐴43 − 𝐴42𝐴33) − 𝐴22𝐴14(𝐴31𝐴43 − 𝐴41𝐴33) + 𝐴14𝐴23(𝐴31𝐴42 − 𝐴41𝐴32), 

𝐵1𝑖 =
(−1)1+𝑖∆𝑖

𝐴1𝑖
, 𝐴𝑖 =

1

∆
(−𝑃1̃(𝜉, 𝑠)𝐵1𝑖 + (𝑃2̃(𝜉, 𝑠)𝐵3𝑖),  

𝐵31 = 𝐴12(𝐴23𝐴44 − 𝐴43𝐴24) − 𝐴13(𝐴22𝐴44 − 𝐴42𝐴24) + 𝐴14(𝐴22𝐴43 − 𝐴42𝐴23), 

𝐵32 = −𝐴11(𝐴23𝐴44 − 𝐴43𝐴24) + 𝐴13(𝐴21𝐴44 − 𝐴41𝐴24) − 𝐴14(𝐴21𝐴43 − 𝐴41𝐴23), 

𝐵33 = 𝐴11(𝐴22𝐴44 − 𝐴42𝐴24) − 𝐴12(𝐴21𝐴44 − 𝐴41𝐴24) + 𝐴14(𝐴21𝐴42 − 𝐴41𝐴22), 

𝐵34 = −𝐴11(𝐴22𝐴43 − 𝐴42𝐴23) + 𝐴12(𝐴21𝐴43 − 𝐴41𝐴23) − 𝐴13(𝐴21𝐴42 − 𝐴41𝐴22). 

 

 

6. Particular cases 
 

If 𝐾∗ = 0  and 𝑎 = 0  in Eqs. (33)-(44), we obtain the resulting expressions for isotropic 

thermoelastic solid for GN-II theory and without two temperature.  

If 𝐾∗ = 0  and 𝑎 = 0  in Eqs. (33)-(44), we obtain the resulting expressions for isotropic 

thermoelastic solid for GN-II theory and with two temperature. 

 If 𝐾∗ ≠ 0  and 𝑎 = 0  in Eqs. (33)-(44), we obtain the resulting expressions for isotropic 

thermoelastic solid for GN-III theory and without two temperature. 

If 𝐾∗ ≠ 0  and 𝑎 = 0  in Eqs. (33)-(44), we obtain the resulting expressions for isotropic 

thermoelastic solid for GN-III theory and with two temperature. 

 

 

7. Inversion of the transformations 
 

To obtain the solution of the problem in physical domain, we must invert the transforms in Eqs. 

(33)-(44). Here the distance components ,conductive temperature, stress components and couple 

stress are functions of 𝑧, the parameters of Hankel and laplace transforms are 𝜉 and 𝑠 respectively 

and hence are of the form 𝑓 (𝜉 , 𝑧, 𝑠). To obtain the function 𝑓(𝑟, 𝑧, 𝑡) in the physical domain, we 

first invert the Hankel transform using 

𝑓(𝑟, 𝑧, 𝑠) = ∫ 𝜉𝑓(𝜉 , 𝑧 , 𝑠)𝐽𝑛(𝜉𝑟)
∞

0
𝑑𝜉.  (45) 

Now for the fixed values of 𝜉, 𝑟 and 𝑧 the function 𝑓(𝑟 , 𝑧 , 𝑠) in the expression above can be 

considered as the Laplace transform 𝑔 (𝑠) of 𝑔 (𝑡). Following Honig and Hirdes (1984), the Laplace 

transform function 𝑔 (𝑠) can be inverted.  

The last step is to calculate the integral in Eq. (45). The method for evaluating this integral is 

described in Press et al. (1986). It involves the use of Romberg’s integration with adaptive step size. 

This also uses the results from successive refinements of the extended trapezoidal rule followed by 

extrapolation of the results to the limit when the step size tends to zero. 
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Fig. 1 Variation of conductive temperature 𝜑 with 

the radial distance 𝑟 (concentrated normal force) 

Fig. 2 Variation of stress component 𝑡𝑧𝑧  with the 

radial distance 𝑟 (concentrated normal force) 

 

  

Fig. 3 Variation of stress component 𝑡𝑧𝑟  with the 

radial distance 𝑟 (concentrated normal force) 

Fig. 4 Variation of couple stress 𝑚𝑧𝜃 with the radial 

distance 𝑟 (concentrated normal force) 

 
 
8. Results and discussions 
 

For numerical computations following Devi (2017), we take the copper material which is 

isotropic as 

𝜆 = 7.76 × 1010𝐾𝑔𝑚−1𝑠−1 , 𝜇 = 3.86 × 1010𝐾𝑔𝑚−1𝑠−1, 𝑇0 = 293𝐾,  
𝐶∗ = .3831 × 103𝐽𝐾𝑔−1𝐾−1, 𝛼𝑡 = 1.78 × 10−5𝐾−1 , 𝜌 = 8.954 × 103𝐾𝑔𝑚−3, 

𝐾 = .383 × 103𝑊𝑚−1𝐾−1, 𝛼 = .05𝐾𝑔𝑚𝑠−2, 𝑡 = 0.5 𝑠 

Software GNU octave has been used to determine the components of displacements, conductive 

temperature, normal stress, tangential stress and couple stress for homogeneous isotropic  
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Fig. 5 variation of conductive temperature  𝜑  with 

the radial distance  𝑟 (normal force over the circular 

region) 

Fig. 6 variation of stress component  𝑡𝑧𝑧  with the 

radial distance  𝑟  (normal force over the circular 

region) 

 

  

Fig. 7 Variation of stress component 𝑡𝑧𝑟 with the 

radial distance 𝑟  (normal force over the circular 

region) 

Fig. 8 Variation of couple stress  𝑚𝑧𝜃  with the 

radial distance 𝑟  (normal force over the circular 

region) 

 

 

thermoelastic medium with radial distance 𝑟 for GN-II theory (𝐾∗ = 0𝑁 𝑠𝑒𝑐−2𝐾−1) and GN-III 

(𝐾∗ = .3𝑁 𝑠𝑒𝑐−2𝐾−1) theory with two temperature and without two temperature.. 

The solid lines in black with centre symbol square, red with centre symbol circle, blue with 

centre symbol triangle and green centre symbol inverted triangle respectively corresponds to the 

GN − II, 𝑎 = 0, GN − II, 𝑎 = .06, GN − III, 𝑎 = 0 and GN − III, 𝑎 = .06. Figs. 1-6 corresponds to 

the variations of 𝑢𝑟¸𝑢𝑧, 𝜑,  𝑡𝑧𝑧 𝑡𝑧𝑟and  𝑚𝑧𝜃 respectively for concentrated normal force. Figs. 7-12  
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Fig. 9 Variation of conductive temperature 𝜑 with 

the radial distance 𝑟 (thermal point source) 

Fig. 10 Variation of stress component 𝑡𝑧𝑧 with the 

radial distance 𝑟 (thermal point source) 

 

  

Fig. 11 Variation of stress component 𝑡𝑧𝑟  with the 

distance 𝑟 (thermal point source) 

Fig. 12 Variation of couple stress 𝑚𝑧𝜃  with the 

radial distance 𝑟 (thermal point source) 

 

 

corresponds to the variations of 𝑢𝑟¸𝑢𝑧, 𝜑,  𝑡𝑧𝑧 𝑡𝑧𝑟 and  𝑚𝑧𝜃 respectively for normal force over the 

circular region. Figs. 13-18 corresponds to the variations of 𝑢𝑟¸𝑢𝑧, 𝜑,  𝑡𝑧𝑧 𝑡𝑧𝑟 and  𝑚𝑧𝜃 respectively 

for thermal point source. Figs. 19-21 corresponds to the variations of 𝑢𝑟¸𝑢𝑧, 𝜑,  𝑡𝑧𝑧 𝑡𝑧𝑟  and  𝑚𝑧𝜃 

respectively for thermal source over the circular region. 

 

Concentrated normal force  

In Fig. 1 variations corresponding to the 𝜑 are oscillatory in nature. Amplitude of variations 

decreses as we move away from the pole. In Fig. 2 variations corresponding to the 𝑡𝑧𝑧 are oscillatory  
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Fig. 13 Variation of conductive temperature 𝜑 with 

the radial distance 𝑟  (thermal source over the 

circular region) 

Fig. 14 Variation of stress component 𝜎𝑧𝑧 with the 

radial distance 𝑟  (thermal source over the circular 

region) 

 

  

Fig. 15 Variation of stress component 𝑡𝑧𝑟  with the 

radial distance 𝑟  (thermal source over the circular 

region) 

Fig. 16 Variation of couple stress 𝑚𝑧𝜃  with the 

radial distance 𝑟  (thermal source over the circular 

region) 

 

 

in nature. Presence of two temperature and energy dissipation changes the magnitude of variation. 

Value of 𝑡𝑧𝑧  is highest at 𝑥 = 1. In Fig. 2 variations corresponding to the 𝑡𝑧𝑟  are oscillatory in 

nature. Amplitude of variations decreases in the first half range and increases in the remaining half. 

Values of GN-II theory are lower than GN-III theory for both the cases with and without two 

temperature. In Fig. 4 Variations of 𝑚𝑧𝜃 are similar to the corresponding variations of 𝑡𝑧𝑟 except 
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the magnitude. 

 

Normal force over the circular region 

In Fig. 5 variations corresponding to the 𝜑 are oscillatory in nature.For both cases with and 

without energy dissipation amplitude of the variation is smaller for GN-II theory than GN-III theory. 

In Fig. 6 variations for 𝑡𝑧𝑧 are similar to the corresponding variations of 𝜑, except the magnitude. 

In Fig. 7 variations for 𝑡𝑧𝑟 are oscillatory in trend. In Fig. 8 variations for 𝑚𝑧𝜃 are oscillatory in 

trend. Appreciable effect of two temperature and energy dissipation is seen on the magnitude of 

𝑚𝑧𝜃. 
 

Thermal point source  

In Fig. 9 variations of corresponding to the 𝜑 are oscillatory in nature. For both cases with and 

without energy dissipation magnitude of the variation is different for GN-II theory than GN-III 

theory. In Fig. 10 variations of corresponding to the 𝑡𝑧𝑧  are oscillatory in nature. Magnitude of 

variation is the highest for GN-II, a=.06. In Fig. 11 variations of corresponding to the 𝑡𝑧𝑟  are 

oscillatory in nature. Magnitude of variation is higher for GN-III theory than GN-II theory. For given 

GN-theory (GN-II or GN-III) presence of two temperature decreases the magnitude 𝑡𝑧𝑟. variations 

for 𝑚𝑧𝜃 are oscillatory in trend. Trend of oscillation is different for GN=II, a=.06. 

 

Thermal source over the circular region 

In Fig. 13 variations of corresponding to the 𝜑 are oscillatory in nature. For both cases with and 

without energy dissipation magnitude of the variation is greater for GN-III theory than GN-II theory. 

In Fig. 14 variations of corresponding to the 𝑡𝑧𝑧 are oscillatory in nature. Magnitude of variation is 

the highest for GN-II, a=.06. In Fig. 15 variations of corresponding to the 𝑡𝑧𝑟 are oscillatory in 

nature. Magnitude of variation is higher for GN-III theory than GN-II theory. For given GN-theory 

(GN-II or GN-III) presence of two temperature decreases the magnitude 𝑡𝑧𝑟. In Fig. 16 variations 

for 𝑚𝑧𝜃 are oscillatory in trend. Trend of oscillation is different for GN=II, a=.06 than others. 

 

 

9. Conclusions 
 

Effect of energy dissipation and two temperature is significant on components of displacement, 

conductive temperature, normal stress, tangential stress and couple stress. As disturbance travels 

through the constituents of the medium, it suffers sudden changes and result in an non-uniform 

pattern of graphs. Pattern of the variations of GN-II theory is different from GN-III theory in most 

of the cases. Examinig from graphs we conclude that two temperature and energy dissipation 

changes the magnitude of the physical quantity. Appreciable effect of two temperature and energy 

dissipation is observed on the physical quantities. The results obtained in the study should be 

beneficial for people working on modified couple stress thermoelastic solid with two temperature 

and energy dissipation. 
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