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Abstract.  Peltier cells have low efficiency, but they are becoming attractive alternatives for affordable and 
environmentally clean cooling. In this line, the current article develops closed-form and semianalytical solutions to 
improve the temperature distribution of Bi2Te3 thermoelements. From the distribution, the main objective of the current 
work-the optimal electric intensity to maximize cooling-is inferred. The general one-dimensional differential coupled 
equation is integrated for linear and quadratic geometry of thermoelements, under temperature constant properties. For 
a general shape, a piece-wise solution based on heat flux continuity among virtual layers gives accurate analytical 
solutions. For variable properties, another piece-wise solution is developed but solved iteratively. Taking advantage of 
the formulae, the optimal intensity is directly derived with a minimal computational cost; its value will be of utility for 
more advanced designs. Finally, a parametric study including straight, two linear, barrel, hourglass and vase geometries 
is presented, drawing conclusions on how the shape of the thermoelement affects the coupled phenomena. A specially 
developed coupled and non-linear finite element research code is run taking into account all the materials of the cell 
and using symmetries and repetitions. These accurate results are used to validate the analytical ones. 
 

Keywords:  analytical solution; multiphysics; non-linear finite element; optimal intensity; thermoelectric; 
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1. Introduction 

 

Peltier cells based on TM are used for the cooling of many devices. The general advantages of 

these cells are their simplicity of construction and assembly, their solid state nature along with the 

capability of being miniaturized, but the main disadvantage is their very low performance. New 

materials based on metallic oxides or nanotechnology could almost double this performance 

although it is doubtful that in the medium term it could surpass 15%. The classical reference Rowe 

(2018) already stated that the optimal TE length is between 1 × 10−3 and 2 × 10−3 [m] but did 

not elaborate on the shape of the TE. 
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From the start of their development and application, constant square cross-section 

(parallelepipeds) TE have been assembled, probably due to their facility of manufacturing. Currently 

and with the arrival of new techniques in nano-and meso-machining technologies and even additive 

manufacturing with 3D printing Mallick et al. (2020), virtually any geometry can be produced at a 

reasonable price. The objective of the current work is to investigate TE geometries that in the future 

could improve the performance of Peltier cells. 

To this end, closed-form and semi-analytical formulae are developed here not only for simple 

shapes but to completely general ones, with the future aim of automatically optimize them, even in 

dynamic situations, for different objectives. To verify the validity of the solutions, a complete non-

linear FE algorithm developed in previous publications, Moreno-Navarro et al. (2018), Pérez-

Aparicio et al. (2016b), Palma et al. (2012) and Palma et al. (2013) is run. This FE can model 

transient states, fully and dynamically couples the thermal, electric, and elastic fields, can account 

for 𝑇-dependent properties and has been implemented in the research code FEAP, Taylor (2010). 

Several publications have already demonstrated the importance of the TE geometry, Dongxua et 

al. (2019), Lamba et al. (2018). The first optimized parallelepipedal TE modules in TEG mode. The 

objectives included the number of TC in a module and the optimal TE height, calculated with an 

iterative model and validated with experiments. The second, also optimized TEG with a genetic 

algorithm but only for a trapezoidal TE. The parameters were the TE height, electric current, cold 

and hot faces 𝑇 ratio and cooling capacity. An analytical model based on thermodynamic principles 

was applied, the material properties were dependent on 𝑇 and the Thomson effect was considered. 

Also, it already has been demonstrated that optimal TE lengths and linear variations in the vertical 

direction (between the hot and cold faces) can improve the TE efficiency with respect to the standard 

geometry, especially in transient situations. On this line, Lv et al. (2016) applied a numerical model 

(not based on FE) for the optimization of TE. To determine optimal steady-state electric intensity 

values, the model found minimums from several cases. With a parametric study, conclusions on best 

linear geometries were drawn. 

A simple static TE electric generator with linear variation of 𝐴 was optimized in Sahin and 

Yilbas (2013); they presented analytical formulae for the optimal steady-state 𝐼𝑜𝑝. The algorithm 

was again conjugate-gradient based. Two single-objective optimizations, one for thermal efficiency 

and another for electric power, and a multiobjective for both together was addressed. The publication 

concluded that higher TE slopes (regardless of the sign) lead to better efficiency but worse extracted 

power. 

In the thorough Lin and Yu (2016), a Peltier cell with three parts in the same TC (top part with 

constant section, lower part with two p- and n-doped linearly increasing sections) was studied with 

an analytical model that partially included 𝑇-dependent properties. The total 𝑙, cold face 𝐴 and 

𝑇𝑐 were fixed for static conditions. But the average 𝑇 was variable, affecting the COP and 𝑄𝑐𝑠𝑠. 
Optimization algorithms were not applied but, through a parametric study, it was demonstrated that 

the variation of the lower part was beneficial, although their relative lengths with respect to the top 

straight element needed to be quantified for each application. 

The reference Fabián-Mijangos et al. (2017) emphasized that the geometry of the TE legs is 

fundamental to improve the performance of TEG. Studies with an analytical model for trapezoidal 

TE and comparisons with proof-of concept devices showed that figure of merit could be doubled. 

Recently, Siddique et al. (2020) presented a study in which TE materials were manufactured in 

straight and linear shapes, including microstructural characterization. Comparisons of results of a 

simplified analytical model and of experiments were used to generate curves and find optimal 

electric intensities, with some discrepancies due to uncertainties of the measuring instruments and  
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Fig. 1 Scheme of a half-thermocouple with boundary conditions: mechanically hinged at 

hot and cold faces, repetition at left and symmetry at right; thermoelement geometry has 

variable area. Prescribed magnitudes noted by an overbar 

 

 

incompleteness of the model. It was stated that if the cold face has smaller area than the hot face, 

the maximum heat power drawn is obtained with less intensity and vice versa. 

Finally, Wang et al. (2021) thoroughly studied the performance of static TEG with a simple 

diffusion-convection analytical model but incorporating in the differential equation a quadratic 

varying TE area. The model was validated with a commercial FE code and several optimal shapes 

obtained. Their main conclusion is that changes of the TE shape do not improve the obtained voltage, 

coinciding with the present paper. 

 
 
2. Materials and method 

 

For the heat pump application studied in the present work, it is assumed that the electric flux 𝑗 
is conserved and that all distributions of 𝑇, 𝑉, fluxes, stresses, etc. are equal inside each of the two 

TE, except for a sign change of some distributions. Therefore, two vertical planes of symmetry and 

one of repetition at the left can be considered and only one quarter of the TC has to be modeled with 

the proper mechanical BC (see Fig. 1). Of the different mechanical BC which can be prescribed in 

the hot and cold faces, hinged surfaces are chosen. The heat convection loss from any solid-air 

interface is neglected and the electric and thermal contact surfaces are considered perfect. The 

Thomson effect is also neglected in analytical developments, but it is included in the FE runs with 

𝑇-dependencies of the material properties. 

The electric field is gauged to zero with 𝑉‾ = 0 [V], 𝑇‾ℎ is set to 50 [ºC] and the steady-state 

optimal 𝑗‾𝑜𝑝 is prescribed using a special interface FE developed in Pérez-Aparicio et al. (2012). 

The thermal flux is forced nil in the cold face, 𝑄𝑐 = 0 [W], providing an adiabatic BC. Although 

the temperatures will be reported in Celsius degrees, the analytical formulation of Section 3 is 

developed in Kelvin degrees. 
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Fig. 2 Vertical thermoelement geometries. From left to right: three-dimensional view, linear, quadratic, 

piecewise linear (divided into layers 𝑖) 

 
Table 1 Properties of the Peltier cell materials from Fig. 1. Temperature-dependent properties for 𝐵𝑖2𝑇𝑒3 

given in Eq. (1) 

Property. Unit 𝐴𝑙2𝑂3 𝐶𝑢 𝑆𝑛𝑃𝑏 𝐵𝑖2𝑇𝑒3 

𝜅 [W/K·m] 35.3 386 48 Eq. (1) 

𝛾 × 106 [A/V·m] 0 58.1 4.72 Eq. (1) 

𝛼 [V/K] 0 0 0 Eq. (1) 

 

 

The thickness 𝑒 in the 𝑥2 direction (see Fig. 2) is constant, a condition that could easily be 

overcome but facilitates the construction of the FE mesh for the non-TE parts and specially the 

definition of the analytical model. 

In Section 3 and for any TE shape, the main objective of the current work is to find the intensity 

𝐼𝑜𝑝 so that a minimum 𝑇𝑐𝑠𝑠-temperature of the cold face at steady-state can be reached. Optimal 

intensities have been obtained in the past but in general for parallelepipedal (straight) or linear TE, 

viz. Rowe (2018) or Pérez-Aparicio et al. (2016a). 

First, compact analytical expressions are calculated for linear and quadratic TE shapes assuming 

material properties that do not change with 𝑇: this hypothesis is called “constant properties” or CP. 

Second, general geometries are considered by piecewise superposition of virtual linear layers with 

the necessary continuity and another compact analytical expression is provided under CP. Finally, 

an iterative procedure is described under VP since the real TE material properties are in general 𝑇-

dependent. 

A complete parametric study of five predetermined geometries with different 𝑙 is presented in 

Section 4, under a step pulse and both for steady and transient states. 

The material properties used throughout the calculations are listed in Table 1 and Eq. (1), the 

latter interpolated from the curves of Rowe (2018). 

𝛼(𝑇) = 1.988 × 10−4 + 3.353 × 10−7 𝑇 + 7.52 × 10−10 𝑇2

𝜅(𝑇) = 1.663 − 3.58 × 10−3 𝑇 + 3.195 × 10−5 𝑇2

𝛾(𝑇) = 1.096 × 105 − 5.59 × 102 𝑇 + 2.498 𝑇2
 (1) 

The hypotheses assumed in the current models can be listed as: 

• All variables can only be a function of 𝜉, i.e., they are equal in the transversal planes. 

• Material properties of each layer are not 𝑇-dependent and they are calculated with the average 
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𝑇 of both ends. 

• The thickness of the TE is constant (dimension 𝑒). 

• Convection and radiation of the lateral faces is assumed to be negligible. 

• For the multilayer cases, the geometrical variation is linear and for VP the equations' solution 

are iterative. 

 

 
3. Optimal intensity for variable sections 

 

When general geometries are considered, the steady-state optimal 𝐼𝑜𝑝 can significantly differ 

from that of a straight TE. In this section, new equations are developed for an arbitrary geometry 

expanding the simple solution given in Pérez-Aparicio et al. (2016a). The 1D power balance 

equation of this reference is rewritten since now the equilibrium of heat energy is completely cross-

sectional dependent. Neglecting the Thomson effect 

1

𝐴(𝜉)

d

d𝜉
[𝜅(𝑇)𝐴(𝜉)

d𝑇

 d𝜉
] +

𝐼2

𝐴2(𝜉)𝛾(𝑇)
= 0 (2) 

where 𝐴 is a function of the vertical TE-local coordinate 𝜉  (see Fig. 2). To preserve electric 

charge, it will be assumed that 𝐼 is constant, that is, 𝑗3 = 𝐼/𝐴 is variable with 𝜉. Both 𝜅 and 𝛾 

are in general 𝑇-dependent (see Eq. (1)), although for simplicity in the ensuing three subsections 

the properties are considered CP. The variable 𝐴(𝜉) is assumed rectangular, see the first Fig. 1. 
The first term in the equation represents thermal conduction; the second is the generated Joule 

source of heat per unit of volume. The Peltier effect will be introduced through the following 

transport Eq. (5). 

 
3.1 Linear geometry, constant properties 
 

The linear geometry is represented in the second of Fig. 2, with a linear variation of 𝐴(𝜉) in the 

frontal plane 𝑥1𝑥3 given by 

𝐴(𝜉):= 𝑑0 + 𝑑1𝜉 = 2𝑒 [𝑐0 + (𝑐1 − 𝑐0)
𝜉

𝑙
] (3) 

where 𝑐0 and 𝑐1 are the half-widths at the bottom and top sections respectively, 𝑑0 the area at 

𝜉 = 0 and 𝑑1 its slope. Using this expression in Eq. (2), the 𝑇 distribution can be solved as a 

function of the a-priori unknown BC 𝑇(0) ≈ 𝑇𝑐 and of the prescribed 𝑇(𝑙) ≈ 𝑇‾ℎ. This is the first 

approximation assumed by the 1D model, assigning to the two TE ends the real cold and hot faces, 

which in reality should be the two 𝐴𝑙2𝑂3 external surfaces; the approximation is valid since the 

thermal conductivity of solder, copper and alumina are high (see Table 1). By direct integration 

𝑇(𝜉) =
𝜙0𝜉𝑇‾ℎ +𝜙𝜉𝑙𝑇𝑐

𝜙0𝑙
+
𝐼2

2𝛾𝜅
𝜙0𝜉𝜙𝜉𝑙;         𝜙𝑎𝑏 =

1

𝑑1
ln 
𝐴(𝑎)

𝐴(𝑏)
 (4) 

where subindexes 𝑎, 𝑏 can take the values 0, 𝜉 or 𝑙. The form factor 𝜙 contains the information 

of the geometry; as in the following subsections for other contours, this factor is undetermined when 

the section becomes constant. Taking the limit when 𝑑1 → 0, the result 𝜙𝑎𝑏 = (𝑎 − 𝑏)/𝑑0  is 

obtained and by using this term in Eq. (4) we recover the expression from Pérez-Aparicio et al. 
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(2016a) for constant section 𝜙0𝑙 = −𝑙/𝐴. 

In a 1D model, the heat power can be expressed at steady-state under CP by the differential 

expression (viz. Rowe (2018)) 

𝑄(𝜉) = 𝛼𝐼𝑇(𝜉) − 𝜅𝐴(𝜉)
d𝑇(𝜉)

d𝜉
 (5) 

To calculate the CP from Eq. (1), an assumed average 𝑇𝑎𝑣 = 10 [ºC] is considered in the 

material properties of the polynomials. The Eq. (5) is evaluated on the cold face 𝑄𝑐: = 𝑄(0) and 

then the intensity that maximizes the increment of 𝑇 is found by solving d𝑄𝑐/d𝐼 = 0 

𝐼𝑜𝑝 = −
𝛼 𝛾 𝑇𝑐𝑠𝑠
𝜙0𝑙

 (6) 

The previous expression depends on the unknown 𝑇𝑐𝑠𝑠, the value for which no additional heat 

power can be taken from the cold face. Under this temperature 𝑄𝑐 must be zero, or equivalently 

𝑇‾ℎ − 𝑇𝑐 is maximized at steady-state. Imposing 𝑄𝑐 = 0 in Eq. (5) and replacing the derivative of 

𝑇(𝜉) from Eq. (4) 

𝑇𝑐𝑠𝑠 =
−𝜅 + √𝜅2 + 2𝑇‾ℎ𝛼

2𝛾𝜅

𝛼2𝛾
 (7) 

This equation depends only on the known 𝑇‾ℎ and on material properties, and it is exactly the 

same one as that obtained for a constant section in Pérez-Aparicio et al. (2016a), verifying that 𝑇𝑐𝑠𝑠 
does not depend on the TE linear geometry under CP. The final optimal intensity is obtained 

substituting Eq. (7) into Eq. (6). 

 
3.2 Quadratic geometry, constant properties 
 

The quadratic geometry is shown in the third of Fig. 2. Three parameters are used to specify the 

variation of 𝐴(𝜉): the TE half-widths at the bottom, middle and top 

𝐴(𝜉):= 𝑑0 + 𝑑1𝜉 + 𝑑2𝜉
2 = 2𝑒 [𝑐0 − (3𝑐0 − 4𝑐1 + 𝑐2)

𝜉

𝑙
+ 2(𝑐0 − 2𝑐1 + 𝑐2) (

𝜉

𝑙
)
2

] (8) 

Following the same procedure as in the previous subsection but with the previous quadratic area, 

the resulting expression for 𝑇 is the same as that of Eq. (4) left but with the form factors 

𝜙𝑎𝑏 = 2
𝒜𝑏 −𝒜𝑎

Δ
;     𝒜𝑎 = arctg(

1

Δ

d𝐴

 d𝜉
(𝑎)) ;    Δ = √4𝑑0𝑑2 − (𝑑1)

2 (9) 

where 𝒜𝑏 would be defined by the middle expression but particularized in 𝑏. Note that Δ can be 

pure imaginary, but then the numerator of the first of Eqs. (9) would also be pure imaginary due to 

the arctg  function and then the quotient results in a real number. If 𝑑1 = 𝑑2 = 0  (constant 

section) or 𝑑2 = 0 (linear section), the Eq. (9) is indeterminate. But it can be shown that in the limit 

as 𝑑2 → 0, the result tends to that of Eq. (4); likewise, in the limit when both 𝑑1, 𝑑2 → 0, the result 

coincides with that of a constant section. 

Repeating the steps from the previous subsection for 𝐼𝑜𝑝, we again obtain the Eq. (7) and in 

addition 𝐼𝑜𝑝 is given by the Eq. (6) but with the quadratic 𝜙𝑎𝑏 from Eq. (9). 
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Fig. 3 Detailed view of the piecewise linearized geometry of the right Fig. 2; each layer includes 

local coordinates. Continuity of heat power at interfaces must be imposed 

 
 
3.3 General geometry, constant properties 
 

For complex geometries, an extension of the previous approaches becomes very cumbersome. 

Instead of working out results based on higher order polynomials or other analytical functions, the 

previous findings can be applied to a piecewise-linear geometry. 

The length of the TE is divided into 𝑛 “layers”, each with linear lateral sides of variable area 

𝐴𝑖(𝜉𝑖) = 𝑑0
𝑖 + 𝑑1

𝑖 𝜉𝑖 . This linear variation could be changed to a quadratic one but not much 

difference would be obtained if the layers are thin with respect to 𝑙. The lengths 𝑙𝑖 do not need to 

be equal but are subjected to the constraint ∑1
𝑛  𝑙𝑖 = 𝑙 (right of Fig. 2). 

For each layer 1 ≤ 𝑖 ≤ 𝑛, a local vertical coordinate 0 ≤ 𝜉𝑖 ≤ 𝑙𝑖 is defined as shown in Fig. 3. 

The temperature and the half-width at the top interface of each layer are denoted by 𝑇𝑖 and 𝑐𝑖 . At 

the bottom interface, the two are named 𝑇𝑖−1 and 𝑐𝑖−1, so that for the first layer 𝑇1(0):= 𝑇0 ≈ 𝑇𝑐 
and for the last 𝑇𝑛(𝑙𝑛):= 𝑇𝑛 ≈ 𝑇‾ℎ  (superscripts indicate the corresponding layer). The 

developments for a generic layer are conceptually similar to those of Section 3.1 of a completely 

linear TE, but now the layer solution 𝑇𝑖(𝜉𝑖) depends on the a-priori unknowns BC 𝑇𝑖(0): = 𝑇𝑖−1 

and 𝑇𝑖(𝑙𝑖):= 𝑇𝑖 instead of on 𝑇‾ℎ and 𝑇𝑐 . 
Next, Eq. (2) is solved for the 𝑇𝑖(𝜉𝑖) distribution inside each layer-and therefore for the whole 

TE-resulting in a closed-form expression similar to Eq. (4) 

𝑇𝑖(𝜉𝑖) =
𝜙0𝜉𝑖𝑇𝑖 + 𝜙𝜉𝑖𝑙𝑖𝑇𝑖−1

𝜙0𝑙𝑖
+
𝐼2

2𝛾𝜅
𝜙0𝜉𝑖𝜙𝜉𝑖𝑙𝑖 (10) 

The 𝑇-field is continuous by construction and so is 𝐼 by conservation of charge. The solution 

on the layer interfaces is then obtained by enforcing the remaining continuity of heat power 

𝑄𝑖(𝑙𝑖) = 𝑄
𝑖+1(0);  𝑖 = 1,… , 𝑛 − 1 (11) 

the values of which from Eq. (5) are 

{
 
 

 
 𝑄𝑖(𝑙𝑖) = 𝛼𝐼𝑇𝑖 − 𝜅𝐴

𝑖(𝑙𝑖)
d𝑇𝑖(𝜉𝑖)

d𝜉𝑖
|
𝜉𝑖=𝑙𝑖

𝑄𝑖+1(0) = 𝛼𝐼𝑇𝑖 − 𝜅𝐴
𝑖+1(0)

d𝑇𝑖+1(𝜉𝑖+1)

d𝜉𝑖+1
|
𝜉𝑖+1=0

 (12) 
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Since by definition 𝐴𝑖(𝑙𝑖):= 𝐴
𝑖+1(0), the continuity directly applies to the first derivatives of 

𝑇.  Eqs. (11) and (12) conform a system of 𝑛 − 1  equations each one with four unknowns: 

𝑇𝑖−1, 𝑇𝑖, 𝑇𝑖+1 (see Eq. (10)) plus 𝐼. This system is not explicitly solvable since it has not been fully 

demonstrated that 𝑇𝑐 can be calculated from Eq. (7) and a good estimate for 𝐼 is not yet available. 

But starting from the top layer 𝑛 and through substitution of one layer after the other, the generic 

interface 𝑇𝑖 can be solved as an independent function of only the two unknowns 𝑇𝑐 and 𝐼 

𝑇𝑖 =
𝑇‾ℎ ∑  𝑖

𝑗=1  𝜙𝑗 + 𝑇𝑐 ∑  𝑛
𝑗=𝑖+1  𝜙𝑗

∑  𝑛
𝑗=1  𝜙𝑗

+
𝐼2

2𝛾𝜅
∑  

𝑖

𝑗=1

𝜙𝑗 ∑  

𝑛

𝑗=𝑖+1

𝜙𝑗 (13) 

where 𝜙𝑗 (short for 𝜙0𝑙|𝑗) denotes in local coordinates the form factor between the top and bottom 

interfaces of layers 1 ≤ 𝑗 ≤ 𝑛. 

As before, 𝑄𝑐 is obtained evaluating Eq. (12) at the cold face (first layer 𝑖 = 1), but now as a 

function of 𝑇1 (to be determined from Eq. (13)) instead of 𝑇‾ℎ . The resulting heat power as function 

of the two main unknowns is 

𝑄𝑐 =
𝐼2

2𝛾
∑  

𝑛

𝑖

𝜙𝑖 + 𝛼𝐼𝑇𝑐 + 𝜅
𝑇‾ℎ − 𝑇𝑐
∑  𝑛𝑖  𝜙𝑖

 (14) 

Analyzing the Eq. (14), it is interesting to note that the contribution to 𝑄𝑐 of the Joule effect 

(first term, right hand side) is always negative (descending the TE against 𝜉) since 𝜙𝑖  is also 

always negative; the contribution of heat conduction (third term) is also negative. The contribution 

of Peltier (middle term) is always positive (ascending) and does not depend on the geometry. 

With the previous expression, and applying a maximization approach similar to the one described 

in Section 3.1, we obtain the compact equation 

𝐼𝑜𝑝 = −
𝛼 𝛾 𝑇𝑐𝑠𝑠
∑  𝑛𝑖  𝜙𝑖

 (15) 

where only the denominator changes with respect to Eq. (6). It can be shown that the linear geometry 

of Eq. (6), is recovered from Eq. (15) by taking the limit of the equation for 𝜙𝑖 so that a continuous 

linear geometry is represented. 

The maximum heat taken from the cold side at steady-state is determined by replacing Eq. (15) 

into Eq. (14) 

𝑄𝑐𝑠𝑠 =
2𝜅(𝑇‾ℎ − 𝑇𝑐𝑠𝑠) − 𝛼

2𝛾𝑇𝑐𝑠𝑠
2

2∑  𝑛𝑖  𝜙𝑖
 (16) 

If the BC 𝑄𝑐 = 0 is applied to Eq. (16), we recover Eq. (7), finally demonstrating that 𝑇𝑐𝑠𝑠 
does not depend on the geometry of the TE under CP and disambiguating Eq. (15). 

 
 
4. General geometry, variable properties 

 

To find completely general solutions, VP must be considered and therefore an iterative method 

based on CP layers is proposed. Analogously to the previous subsection, 𝑇𝑖  can be calculated 

solving Eq. (2) for 𝑇𝑖(𝜉𝑖) using the adjacent unknown temperatures as BC; then the flux continuity 

of Eq. (11) is again applied. The counterpart of Eq. (13) is obtained as 
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Fig. 4 Steady-state temperature distributions along a thermoelement for geometry E from 

Fig. 5. Four iterations of the semi-analytical solution based on Eq. (18) (lines) and finite 

element under variable properties (circles) 

 

 

𝑇𝑖 =

𝐼2

2 (
𝜙𝑖
𝛾𝑖
+
𝜙𝑖+1
𝛾𝑖+1

) + 𝑇𝑖−1
𝜅𝑖
𝜙𝑖
+ 𝑇𝑖+1

𝜅𝑖+1
𝜙𝑖+1

𝐼(𝛼𝑖 − 𝛼𝑖+1) +
𝜅𝑖
𝜙𝑖
+
𝜅𝑖+1
𝜙𝑖+1

 (17) 

valid for each 1 ≤ 𝑖 ≤ 𝑛 − 1 and function of 𝛼𝑖 = 𝛼(𝑇𝑎𝑣|𝑖) to be calculated with the a priori 

unknown layer average 𝑇𝑎𝑣|𝑖 = (𝑇𝑖−1 + 𝑇𝑖)/2 substituted in Eq. (1); the same dependency holds 

for 𝜅𝑖 and 𝛾𝑖. Due to this additional implicitness, an iterative method must be applied. First, the 

Eq. (17) is particularized to the top interface of the bottom layer to calculate 𝑇1; the unknowns of 

the right-hand side are now the material properties of layers 𝑖 = 1,2 , besides 𝑇𝑐 , 𝑇2  and 𝐼. 
Subsequent particularizations to the other layers give 𝑛 − 1 implicit equations. Rearranging this 

system, 𝑇-expressions dependent now on the unknowns 𝑇𝑐 , 𝐼 plus the properties of all layers are 

given by the following functions 𝑓 

𝑇1 = 𝑓1(𝑇𝑐 , 𝑇‾ℎ , 𝐼, 𝛼1, 𝜅1, 𝛾1, … , 𝛼𝑛, 𝜅𝑛, 𝛾𝑛)

𝑇2 = 𝑓2(𝑇𝑐 , 𝑇‾ℎ , 𝐼, 𝛼1, 𝜅1, 𝛾1, … , 𝛼𝑛, 𝜅𝑛, 𝛾𝑛)

⋮
𝑇𝑛−1 𝑓𝑛−1(𝑇𝑐 , 𝑇‾ℎ , 𝐼, 𝛼1, 𝜅1, 𝛾1, … , 𝛼𝑛, 𝜅𝑛, 𝛾𝑛)

 (18) 

The 𝑓 explicit forms are too long to be written even for a few layers and they cannot directly be 

solved since an expression for 𝑇𝑐 such as Eq. (7) cannot be explicitly found under VP. 

The next step is to apply Eq. (5) to the bottom of the first layer 

𝑄𝑐 = −
𝐼2

2𝛾1
𝜙1 + 𝛼1𝐼𝑇𝑐 − 𝜅1

𝑇1 − 𝑇𝑐
𝜙1

 (19) 

In this formula, the influence of the complete TE is in 𝑇1, to be substituted by the first of Eq. 

(18). 

The maximization of 𝑄𝑐 to calculate 𝐼𝑜𝑝 (similar to Eq. (6)) adds one equation. Finally, 𝑄𝑐 =
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0 considering this 𝐼𝑜𝑝 (similar to Eq. (14)) solves for 𝑇𝑐𝑠𝑠, but since these two equations cannot 

be derived in a closed form, a numerical approximation based on iterations is necessary. 

The procedure is general, but as an example the process is presented for geometry E (defined in 

the next section) with just eight layers. First 𝑇𝑐 is guessed as an arbitrary −15 [ºC] and 𝑇(𝜉) 
linearly interpolated between this value and 𝑇‾ℎ (straight dotted line in Fig. 4). With the resulting 

set of 𝑇𝑎𝑣|𝑖, the first iteration for the material properties is calculated for Eq. (18); the first additional 

equation gives 𝐼𝑜𝑝 and the second 𝑇𝑐𝑠𝑠. With all 𝑇 at the interfaces, the non-linear curve for the 

second iteration can be drawn. In this iteration the distribution does not have continuity of derivative 

at the first interface (𝜉 = 0.125), but in the third iteration the continuity is already completely 

fulfilled. 

When 𝐼𝑜𝑝  and/or 𝑇𝑐𝑠𝑠  converge (usually with only three-four iterations) the final 𝑇 

distribution and the 𝐼𝑜𝑝 value are found. Notice that although the first estimate of 𝑇𝑐 is not close 

to the final value of −32 [ºC], just in the second iteration an accurate value is obtained. 

For further validation, the 𝑇 distribution (considered “exact”) from the steady-state FEVP is 

plotted in the figure, achieving the semi-analytical model a very good agreement with it. The 

coincidence implies that the splitting of the general geometry into eight CP layers is accurate enough. 

At any rate, the main interest of the analytical developments of this section is not to find 𝑇 

distributions but to rapidly obtain precise values of 𝐼𝑜𝑝 for the FE runs, saving CPU resources for 

the time-consuming processes of transient behavior, optimization of geometry, pulse etc. 

 
 
5. Parametric study 

 

Six representative geometries shown of Fig. 5, each one divided into only eight equally spaced 

layers are studied in this section. There are no reasonable restrictions on the geometries to handle, 

although to avoid singular shapes, minimum and maximum widths are imposed. Geometry S is the 

traditional and the linear A and B the commonly studied in the literature of the last years (viz. Sahin 

and Yilbas (2013)). The rest are quadratic (C, D) and cubic (E). By construction and for comparison 

purposes, the smallest cross-section is half the width 1.5 × 10−3 [m] of the largest one for the first 

five geometries; therefore, in D the cold face is necessarily larger than that of E since its maximum 

is right above the cold face. The constant width of S is 2𝑐 = 1.125 × 10−3 [m], an average of the 

maximum and minimum. 

 

 

 

Fig. 5 Thermoelement geometries for parametric study: linear “pyramids” A and B, quadratic “barrel” C and 

“hourglass” D, cubic “vase” E, constant “straight” S. Cold face at bottom, hot face at top and equal maximum 

and minimum widths for all variable sections 
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Table 2 Optimal intensities to maximize overcooling at steady-state for thermoelement geometries of Fig. 5 

(except S) with different lengths. Constant material properties and Finite Elements (FECP) and analytical 

(Anlt. CP) from Section 3.3 with eight layers 

Geom. 
𝑙 × 10−3 

𝑇𝑐𝑠𝑠 𝐼𝑜𝑝 𝑇𝑐𝑠𝑠 𝐼𝑜𝑝 

FECP Anlt. CP 

[m] [ºC] [A] [ºC] [A] 

A 4 -28.41 1.39 -29.04 1.41 

B 3 -28.06 1.84 -29.04 1.88 

C 7 -28.55 0.88 -29.04 0.89 

D 5 -28.62 0.99 -29.04 1.00 

E 6 -28.61 0.92 -29.04 0.93 

 

 

To present a broad sample and to investigate the dependency of 𝐼𝑜𝑝 with the geometry, for all 

calculations the TE lengths are randomly assigned from the integer set 𝑙 ∈ {3,4,5,6,7} × 10−3 [m] 
as listed in the next two tables. 

Table 2 shows values of 𝑇𝑐𝑠𝑠 calculated from Eq. (7) and numerically with the FECP. The Table 

also shows the optimal intensities calculated from Eq. (15) and using the bisection method of the 

FECP described in Pérez-Aparicio et al. (2016a). This method is much more time consuming 

because implies guessing an initial value, running four-five times the code and interpolating. 

The FECP solution is used as a reference since it includes several nonlinearities, full process 

coupling, dynamics and all the materials of Fig. 1. The analytical solution is relatively simple to 

apply, it is based on a 1D geometry and only simulates the TM. In spite of these simplifications, 

the maximum errors are very small while the CPU and process times are orders of magnitude higher 

for FE. The 𝑇𝑐𝑠𝑠 values from the analytical solution are constant since Eq. (7) is independent of 

geometry and length at steady-state (in transient-state the situation is different). But the values from 

FECP are not exactly equal due to the FE 3D discretization, which captures direction changes of 

fluxes from 𝑥3  to 𝑥2  and 𝑥3  in the union between TE and 𝐶𝑢 and in changes of 𝐴(𝜉): the 

shorter the TE the more important these 3D effects are. 

In any case, the variable geometries and lengths have a small influence of only 3.4% and 2% 

for 𝑇𝑐𝑠𝑠 and 𝐼𝑜𝑝 respectively, partially validating the method of Section 3.3. As demonstrated in 

the previous section, 𝐼𝑜𝑝 is not simply proportional to the inverse of 𝑙 (as was the case for straight 

TE), but now to the inverse of the form factors. 

Table 3 shows the same results as those of Table 2 but now under the VP hypothesis and using 

the semi-analytical method described in Section 3.4. The most important change between the two 

tables is a difference of 4% for 𝐼𝑜𝑝 in geometry B and consequently 1.5% for 𝑇𝑐𝑠𝑠 (in Kelvin 

scale). These differences are due to the inclusion of the Thomson effect d𝛼/d𝑇  in the FEM 

formulation and in general to the completeness of its VP formulation. The variations among the 𝑇𝑐𝑠𝑠 
values for the different shapes are again small and similar to those of Table 2; for 𝐼𝑜𝑝 they are 

even smaller. 

All values of 𝑇𝑐𝑠𝑠 are almost constant in spite of the geometry variation, for instance almost the 

same values are listed for S and D although with more electric consumption in the latter. But for 

transient-state studies (not developed in the current article), the advantages of some of the variable 

geometries will be significant. 
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Table 3 Optimal intensities to maximize overcooling at steady-state for geometries of Fig. 5; several lengths. 

Variable material properties and Finite Elements (FEVP) and semi-analytical (s-Anlt. VP) from Section 3.4 

with eight layers 

Geom. 
𝑙 × 10−3 

𝑇𝑐𝑠𝑠 𝐼𝑜𝑝 𝑇𝑐𝑠𝑠 𝐼𝑜𝑝 

FECP Anlt. CP 

[m] [ºC] [A] [ºC] [A] 

A 4 -31.86 1.45 -31.93 1.43 

B 3 -31.51 1.92 -31.92 1.91 

C 7 -32.01 0.91 -31.93 0.91 

D 5 -32.07 1.03 -31.92 1.02 

E 6 -32.05 0.95 -31.92 0.94 

S 7 -32.12 0.77 -31.92 0.77 

 

 

Fig. 6 Steady-state temperature distributions along the thermoelement center for the geometries of Fig. 5 using 

Finite Elements, variable material properties and the intensities of Table 3. Cold face 𝑇𝑐𝑠𝑠 ≈ −32 [ºC] for all 

geometries with the same TE length of 5 × 10−3 [m] 

 

 

The 𝑇 distributions along the TE obtained with FEVP and under the different optimal intensities 

of Table 3 are plotted in Fig. 6 left. Note that the slope is highest (due to the Joule concentration) 

near the cold face for A and C with small cross-section on this face. For the same reason, the slope 

is highest in the middle of D and close to the hot face for E. This Joule concentration mostly 

determines the performance of each geometry as indicated by the last term of Eq. (2), inversely 

proportional to 𝐴2(𝜉). Even if the equation is valid only in 1D, the electrical flow is mostly 1D and 

therefore the conclusion is valid for general symmetric geometries. 

The 𝑇-values are substantially lower for E than for A, since the special geometry of the former 

is able to force a linear distribution up to the necking instead of a global quadratic for the latter: that 

is, for the same 𝑇 values at both faces the vase shape reduces almost to half the Joule effect around 

the TE middle. The curvatures of the distributions at each position 𝜉/𝑙 are in general proportional 

to the geometrical widths, except close to the hot face where all temperatures must tend to the BC 

𝑇‾ℎ = 50 [ºC]. The distribution of S is similar to that of E, but its 𝑇 values are substantially higher 

in the middle. 
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These facts can also help to interpret the Eq. (5): as mentioned before its first term represents the 

Peltier effect function of 𝑇(𝜉), moving thermal energy from the cold to the hot face and the second 

term the Fourier effect function of d𝑇/d𝜉. 

Near the hot face it can be appreciated that the slope of the distributions is almost horizontal, 

which means that the Fourier term must be very small since it is proportional to d𝑇/d𝜉; this nullity 

would not happen when the feeding electric intensity is smaller than 𝐼𝑜𝑝. On the other hand, near 

the cold face the BC 𝑄𝑐 = 0 implies that both terms must cancel each other, that is, the Fourier 

term and consequently the 𝑇-slope are different than zero. 

In the right Fig. 6 the corresponding voltage distribution along the TE are plotted. The straight S 

shape produces an almost linear distribution, while C and D are non-linear but its values similar to 

those of 𝑆. The change of curvature of the last two is due to their symmetry with respect to the 

middle. The decreasing (with 𝜉) of the E and B distributions are very similar and maximize 𝑉 at 

the center of the TE; the increasing a minimizes the voltage at the center for the contrary reason. In 

spite of their very different shapes, all geometries give a similar voltage at the cold face since its 

approximated expression is 𝑉𝑜𝑝 = 𝛼 𝑇‾ℎ, independent of geometry. 

 

 

 

Fig. 7 Finite element distributions (under variable properties) for geometry E from Fig. 5 approximated with 

eight layers, along the vertical 𝑥3 direction 

 

 

In the Fig. 7 the 2D distributions obtained with FEVP are drawn; the refined mesh is built with 

3D elements of 27 -nodes. Although as commented all materials of Fig. 1 are simulated, only the 

TE is shown. In the second left figure, the temperature is represented by almost horizontal isolines, 

giving validity to the second hypothesis assumed in Section 3. The spacing between color levels is 

constant in the first TE vertical half, and variable in the second in accordance with the distribution 

of the left Fig. 6. The voltage distribution of the left figure is also almost horizontal and equally-

spaced except in the middle. The small departure from the horizontality is due to the variation of 

area. 

For the two right figures the curvature of the isolines is much more evident, since the represented 

magnitude is the vertical component of the fluxes; both 𝑞3 and 𝑗3 are counterparts of 𝑄 and 𝐼 
per unit area; in any case, this curvature is so small that the unidimensionality is consider valid. The 

alterations in the necking are due to the non-zero horizontal component that reduces the module of 

the vertical component; that of the cold and specially the hot face to the change of direction of the 
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fluxes between the TM and copper, see the Fig. 1. 
The hypotheses made in Section 3 can be verified in the Fig. 7: the isolines are almost horizontal 

implying constant 𝑇, and very similar values at the TE ends with respect to the real hot and cold 

faces: 51 vs. 50 top, −30.7 vs. −30.5 [ºC] bottom. 

 
 
6. Conclusions 

 

In this article, compact analytical solutions are developed for the optimal intensity during steady-

state of Peltier cells working as heat pumps, under the assumption of constant (with temperature) 

material properties and for general piecewise thermoelement geometries. For variable properties, an 

iterative semi-analytical method is presented and form factors for the new geometries are defined in 

all solutions. 

The parametric study shows that at steady-state, the thermoelement geometry greatly affects the 

temperature distributions but not that of the cold face. The geometry also affects the Joule generation 

and the conduction but not the Peltier effect at steady-state. In future works it will be demonstrated 

that sophisticated geometries substantially affect the performance during the transient-state. 

One of the interesting results is that for general geometries the optimal electric intensity is not 

proportional to the inverse of the thermoelement length (as for straight geometries) but to the inverse 

of trigonometric or logarithmic form factors dependent on the shape. 
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Nomenclature 
 

Symbol Description Units 

𝐴 Thermoelement cross-section m2 

𝑙 Thermoelement length m 

𝜅 Thermal conductivity W/K 

𝛼 Seebeck coefficient V/K 

𝛾 Electric conductivity 1/Ω 

𝐼 Electric current A 

𝑥𝑖, 𝜉  Coordinates m 

𝑐𝑖 Half-width thermoelement m 

𝜙 Form factor 1/m 

𝑄 Heat power W 

𝑉 Electric potential (voltage) V 

𝑇 Temperature ºC 
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𝑛 Number of layers  

𝑖 Spatial direction, counter  

𝑗 Counter  

ℎ Hot side  

𝑐 Cold side  

0 Reference  

𝑜𝑝 Optimal  

𝑎, 𝑏 Sections: 0, 𝜉, or 𝑙  

 
 
Abbreviations 
 
TM Thermoelectric Materials  

TE Thermoelement  

FE Finite Element  

TEG Thermoelectric Generator  

TC Thermocouples  

BC Boundary Condition  

VP Variable Properties  

CP Constant Properties  

1D, 2D, 3D One–, Two–, Three–Dimensional   

FEVP Finite Element code under Variable Properties  

FECP Finite Element code under Constant Properties  
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