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Abstract.  The main aim of this paper is the identification of the model parameters for the constitutive model of 
concrete and concrete-like materials capable of representing full set of 3D failure mechanisms under various stress 
states. Identification procedure is performed taking into account multi-scale character of concrete as a structural 
material. In that sense, macro-scale model is used as a model on which the identification procedure is based, while 
multi-scale model which assume strong coupling between coarse and fine scale is used for numerical simulation of 
experimental results. Since concrete possess a few clearly distinguished phases in process of deformation until failure, 
macro-scale model contains practically all important ingredients to include both bulk dissipation and surface 
dissipation. On the other side, multi-scale model consisted of an assembly micro-scale elements perfectly fitted into 
macro-scale elements domain describes localized failure through the implementation of embedded strong 
discontinuity. This corresponds to surface dissipation in macro-scale model which is described by practically the same 
approach. Identification procedure is divided into three completely separate stages to utilize the fact that all material 
parameters of macro-scale model have clear physical interpretation. In this way, computational cost is significantly 
reduced as solving three simpler identification steps in a batch form is much more efficient than the dealing with the 
full-scale problem. Since complexity of identification procedure primarily depends on the choice of either experimental 
or numerical setup, several numerical examples capable of representing both homogeneous and heterogeneous stress 
state are performed to illustrate performance of the proposed methodology. 
 

Keywords:  concrete failure model; embedded discontinuity; multi-surface yield criteria; multiscale 

approach; optimization; parameter identification; strong coupling 

 
 
1. Introduction 
 

In the last few decades, heterogeneous materials have been widely used in various fields of 

industry such as civil, mechanical, aerospace engineering, etc. and there is tendency for their 
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increasing application. First of all, this development is initiated by contemporary achievements in 

material technology that enable a rapid trend of producing of high performance materials. In 

addition, an implementation of numerical methods in terms of use with modern computers, with 

optimized calculation algorithms have enabled obtaining results pretty quickly on quite complex 

models with satisfactory accuracy. Hence, the representation of discretized fields of interest such as 

displacement field, stress field, etc. can be obtained in a rather straightforward way.   

In this paper, the focus is put on the parameter identification of the plasticity constitutive model 

capable of describing the failure of massive structures built by concrete and concrete-like materials. 

The identification procedure is performed in the spirit of the multiscale approach, while previously 

stated plasticity constitutive model acting as a macro-scale model is used as a model on which 

identification procedure is based and pure multiscale model with strong coupling between fine and 

coarse scale is used for a numerical simulation of experimental results. Due to specific model 

structure featured by well-defined and clear physical interpretation of its parameters, we are allowed 

to divide identification procedure in three completely separate stages. Furthermore, influence of 

each of these parameters is limited only to clearly defined phase of material behavior (elastic, 

hardening or softening) leading to substantial reduction in computational time and resulting in great 

simplification of the identification procedure itself. 

In the context of model structure for identification procedure, 3D macro-scale model capable of 

representing a full set of 3D failure modes in tension, compression and shear is utilized for numerical 

reproduction of a very complex nature of the material with a pronounced heterogeneity of internal 

structure that directly affects the behavior under the action of different quasi-static load cases. This 

model of concrete-like materials considers multi-surface plasticity with Drucker-Prager yield 

criteria governing hardening behavior and strain softening behavior is represented with St-Venant 

criterion in strain space defined by three surface as explained in the Section 2. In the spirit of 

multiscale approach, this macro-scale model can represent initial stages of concrete cracking 

followed by a large number of narrow cracks in a concrete domain close to surface, their coalescence 

inside the element and gradual propagation until fully developed failure mode with clearly visible 

macro-cracks triggered with St-Venant plasticity criterion in strain space, as previously stated.  

On the other side, multiscale model with embedded discontinuity discrete approximation is 

utilized for numerical simulations of various kinds of experimental results. In this way structural 

failure modeling can be very successfully performed by assuming homogenized response on macro-

scale, incorporating damage mechanisms and 3D failure modes defined at micro-scale.. Each macro-

scale element represents the domain of micro-scale elements in such a way that the set of micro-

scale elements completely fits inside the macro-element domain. For the purpose of establishing 

compatibility between both scales assuming strong scale coupling, constraint over displacement 

field is imposed over the macro-element boundary producing highly efficient displacement based 

coupling in the spirit of localized Lagrange multipliers.  

An efficient framework for dealing with localized failure is enabled through implementation of 

embedded discontinuity inside the macro-scale elements. A proposed methodology can provide a 

full insight into reproducing of 3D failure modes with very satisfying performance regardless of the 

stress state in the element. A more detailed description of model setup is presented in the Section 3. 

The sequential identification approach employed in this work is accomplished due the fact that 

all macro-scale parameters have a clear physical interpretation and its limit only to a clearly defined 

phase of material behavior (elastic, hardening or softening). The two most significant advantages of 

this approach are: first, simplification through solving individual identification steps individually 

instead of solving full-scale problems and, as a second, only part of a test simulation for each of the 
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three stages can be performed leading to substantial computational time savings.  

Optimization algorithm used to find minimum of objective function adopted in this work is 

downhill simplex or Nelder-Mead method. The Nelder-Mead method attempts to minimize a scalar-

valued nonlinear function of n real variables using only function values, without any derivative 

information (explicit or implicit) (Lagarias et al. 1998). It is worth mentioning that variety of 

techniques is available for procedure of identification parameters via optimization methods 

(Mahnken 2004, Kucerova et al. 2009) such as gradient-based methods, stochastic evolutionary 

algorithms and adaptive smoothing of objective function by artificial neural networks.  

Gradient-based methods have been widely used in various identification problems due to its 

computationally efficient optimization algorithms. Iacono et al. (2006) provide a parameter 

identification for gradient-enhanced continuum damage model analyzing tensile behavior of 

concrete as an important feature to have a clearer insight in the mechanisms governing the fracture 

process. Mahnken and Stein (1995) presents a strategy for identification of material parameters of 

viscoplastic constitutive equation from uniaxial test. Least squares functional are minimized by 

gradient based descent method, while stability of numerical results for material results is investigated 

by use of the eigenvalues for the Hessian of the least squares-functional. Mahnken (2004) deals with 

parameter identification for constitutive equations on the basis of experimental data by introducing 

four different identification methods for analyzing inverse problems illustrated by simple examples. 

Meier et al. (2005) presents inverse analysis in fracture mechanics which, among other areas of 

application, can also be used for deterministic characterization of concrete-like materials by 

traditional three-point-bending tests. In a case when sensitivity determination is fairly difficult, the 

accuracy between numerical and “exact” sensitivities is driven by the choice of the pseudo-time step 

used in numerical simulation. In order to reduce computational time, pseudo-time should be as large 

as possible leading to non-smooth response based objective function. As a result, the gradient-based 

methods are unlikely to be very successful (Kucerova et al. 2009). 

Alternatively, stochastic evolutionary algorithm as a soft-computing technique have been used 

in many recent works for obtaining solution of identification procedure on a level of either material 

(Ibrahimbegovic et al. 2021) or on a level of simple structures (Furukawa and Yagawa 1997, 

Ibrahimbegovic et al. 2004, Lepš 2005, Pyrz and Zairi 2007). In addition to previous approaches, 

adaptive smoothing of objective function by an artificial neural network can be used as a technique 

for identification procedure. Kucerova et al. (2009) describes parameter identification of damage 

model whose approximation is provided by the radial basis function network (RBFN). Waszczyszyn 

and Ziemiański (2006) show the application of this approach in the analysis of various problems 

such as the identification of damage parameters of steel beam, concrete fatigue durability and soil-

structure interaction, while Pichler et al. (2003) proposes a parameter identification method for 

determination of unknown model parameters in geotechnical engineering. Similar goal is followed 

in Kozar et al. (2018) for fiber reinforced concrete. 

The main novelty of this work is the procedure of parameter identification that can be carried out 

either on a basis of standard experimental results or numerical simulation results. We compare and 

advise on these two alternatives for identification and give some recommendations for preserving 

robustness of the proposed procedure. In this work, the procedure of parameter identification in each 

phase is implemented, by using the software MATLAB and FEAP. While FEAP is used for finite 

element analysis (FEA) for the corresponding material parameters, MATLAB is used for obtaining 

objective functions and its minimization assuming the Nelder-Mead algorithm. In the fourth section 

of the paper, objective functions for particular stages of material behavior are presented. 

The outline of the paper is as follows. In the next section, description of a macro-scale multi 
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surface plasticity yield criteria is presented. Description of the multiscale model with embedded 

discontinuity discrete approximation is presented in third section. The complete description of 

macro-scale model is presented in Karavelic et al. (2019), while the multiscale model is presented 

in details in Ibrahimbegovic et al. (2021). In fourth section a review of used either numerical or 

experimental setup is presented, while results of parameter identification procedure with remarks on 

the optimization procedure for each stage of material behavior is described in fifth section. The last 

section provides the conclusions with some remarks on perspectives.  

 

 

2. Macro-scale model description 
 

In the following section we present macro-scale model on which identification procedure is 

based. In that context, multi-surface plasticity model of concrete that can reproduce full set of 3D 

failure modes for tension, compression and shear is considered. From pure mechanical and empirical 

view, it is known that concrete passes through several clearly distinguish phases in a process of 

deformation starting by creation of the fracture process zone with larger number of micro-cracks 

and subsequent fully developed failure mode with macro-crack clearly visible in final crack pattern.  

These effects are recognized in the model in such a way that the fracture process zone is 

represented with non-associated Drucker-Prager plasticity criterion with hardening, while macro-

crack is represented with strong displacement discontinuity in the spirit of embedded discontinuity 

FEM.  

In order to describe macro-scale model in following we define three main ingredients for 

constitutive model of plasticity sufficient for the stress tensor computation as well as internal 

variables evolution: 

• additive decomposition of total strain into elastic and plastic component by assuming the 

independence of the elastic response on plastic flow  

 𝛆 = 𝛆𝑒 + 𝛆𝑝 (1) 

• the free energy function constructed as a quadratic form in terms of deformation assuming that 

elastic response remains linear and thus reducing to Hooke’s law 

 𝜓(ϵ, ϵ𝑝, 𝜁): =
1

2
(ϵ − ϵ𝑝) ⋅ 𝐂̂(ϵ − ϵ𝑝) +

1

2
𝜁𝐾𝜁 (2) 

• the yield criterion shown in Fig. 1 which corresponds to the classical Drucker-Prager model as 

a function of stress tensor 𝛔 and stress-like internal variable q 

 𝜙𝑦(𝛔, 𝑞): =∥ 𝑑𝑒𝑣[𝛔] ∥ +
1

3
𝑡𝑎𝑛(𝜑)𝑡𝑟[𝛔] − √

2

3
(𝜎𝑦 − 𝑞) (3) 

while plastic potential function is slightly different from yield function and defined as 

 𝜙𝑝,𝑠(𝛔, 𝑞): =∥ 𝑑𝑒𝑣[𝛔] ∥ +
1

3
𝑡𝑎𝑛(𝜑)𝑡𝑟[𝛔] (4) 

where ∥ 𝑑𝑒𝑣[𝛔] ∥ is the deviatoric part of the stress tensor, ∥ 𝜎 ∥: = √𝜎: 𝜎is the Frobenius norm, 

𝑡𝑎𝑛(𝜑) is material parameter that can characterize the internal friction, 𝑡𝑎𝑛(𝜓) is material 

parameter describing the angle of dilatancy and 𝜎𝑦 is uniaxial yield stress identified from a tension  
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Fig. 1 Multisurface plasticity criterion in plasticity stress space (Karavelic et al. 2019) 

 

 
Fig. 2 Displacement discontinuity surface in localized element dividing domain into 

Ω𝑒+and Ω𝑒− (Ibrahimbegovic et al. 2021) 

 

 

test. 

It should be emphasized that the material instability occurs even in hardening phase in latter case 

of difference between plastic potential and yield function as one of practical consequences of the 

presented model setup. Furthermore, another material instability referred to typical case is associated 

with the softening. Standard finite element implementation is enriched by strong discontinuity 

formulation, which is adopted for representing the cracking of concrete both in tension and 

compression, in a very similar manner as for the incompatible mode method. 

In particular, in tension we can observe elastic stage accompanied by unstable softening branch, 

while in compression we can observe three different deformation stage: linear elastic, nonlinear 

inelastic and localized softening as in standard stress-strain diagram of concrete. Naturally, behavior 

representing of massive structures with macro-scale model is achieved by including the following 

dissipative mechanisms: 

1. bulk dissipation characterized by the initiation and development of micro-cracks (contribution 
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of fracture process zone) 

2. surface dissipation at the level of the localization zones represented by a discontinuity surface 

in terms of macro-cracks triggered by St-Venant plasticity criterion 

The latter is defined in strain space defined by three surfaces, but it can be written in standard 

format in stress space 

 

𝜙1(𝛔) =
3𝐾 + 𝐺

9𝐾𝐺
𝜎1 −

3𝐾 − 2𝐺

18𝐾𝐺
(𝜎2 + 𝜎3) − (𝜎𝑦 − 𝑞) ≤ 0 

𝜙2(𝛔) =
3𝐾 + 𝐺

9𝐾𝐺
𝜎2 −

3𝐾 − 2𝐺

18𝐾𝐺
(𝜎1 + 𝜎3) − (𝜎𝑦 − 𝑞) ≤ 0 

𝜙3(𝛔) =
3𝐾 + 𝐺

9𝐾𝐺
𝜎3 −

3𝐾 − 2𝐺

18𝐾𝐺
(𝜎1 + 𝜎2) − (𝜎𝑦 − 𝑞) ≤ 0 

(5) 

In the proposed model, the softening constitutive law is chosen in exponential form implying the 

following expression for stress-like internal variable for plasticity 

 𝑞̄̄ = 𝜎𝑦 (1 − 𝑒𝑥𝑝 (−𝜁
𝜎𝑦

𝐺𝑓
)) (6) 

where 𝐺𝑓 is the fracture energy parameter for which the appropriate value should be chosen to 

provide appropriate representing of the inelastic micro-cracking mechanisms in compression and 

tension (Ibrahimbegovic 2009). 

As illustrated in Fig. 3, corresponding amount of fracture energy can be substantially different 

for tension and compression failure mechanisms due to typically large discrepancy in number of 

cracks.  

 

 

         

Fig. 3 Crack patterns for tension and compression failure mechanisms with corresponding fracture 

energies (Karavelic et al. 2019) 

 

 

Spatial discretization of domain is performed by using 3D 8-node hexahedron element providing 

standard discretization procedure to construct the finite element based displacement approximation. 

On the other side, time discrete approximation is carried out numerically by using the 

unconditionally stable backward Euler time integration scheme in the spirit of the operator split 

method.  

The weak form of equilibrium can be written as a system of global and local equilibrium 

equations. 

 𝐴𝑒=1
𝑛𝑒𝑙 (𝐟𝑖𝑛𝑡,(𝑒) − 𝐟𝑒𝑥𝑡) = 0;   𝐟𝑖𝑛𝑡,(𝑒) = ∫ 𝐁𝑇 ∙ 𝛔𝑛+1𝑑𝑉

Ω𝑒
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 𝐡𝑛+1
(𝑒)

= ∫ 𝐆𝑣

𝑇

Ω𝑒
(𝐱) ⋅ 𝛔𝑛+1𝑑𝑉 + ∫ 𝑡𝑚,𝑛+1

Γ𝑠

𝑑𝐴;  ∀𝑒 ∈ [1, 𝑛𝑒𝑙] (7) 

The final set of equilibrium equations after performing consistent linearization can be written for 

a time step tn+1 and iteration (i) 

 

𝐴𝑒=1
𝑛𝑒𝑙 [𝐊𝑛+1

𝑒,(𝑖)
Δ𝐮𝑛+1

(𝑖)
+ 𝐅𝑛+1

𝑒,(𝑖)
Δ𝛂𝑛+1

(𝑖)
] = 𝐴𝑒=1

𝑛𝑒𝑙 [𝐟𝑛+1
𝑒𝑥𝑡,𝑒 − 𝐟𝑛+1

𝑖𝑛𝑡,𝑒,(𝑖)
] 

𝐡𝑛+1
𝑒,(𝑖)

+ (𝐅𝑣,𝑛+1
𝑒,(𝑖)

+ 𝐊𝑑,𝑛+1
(𝑖)

) Δ𝐮𝑛+1
(𝑖)

+ (𝐇𝑛+1
𝑒,(𝑖)

+ 𝐊𝛼,𝑛+1
(𝑖)

) Δ𝛂𝑛+1
(𝑖)

= 0 

(8) 

where 

𝐊𝑛+1
𝑒,(𝑖)

= ∫ 𝐁𝑇
Ω𝑒 𝐂𝑛+1

𝑒𝑝,(𝑖)
𝐁𝑑𝑉 ,  𝐅𝑛+1

𝑒,(𝑖)
= ∫ 𝐁𝑇

Ω𝑒 𝐂𝑛+1
𝑒𝑝,(𝑖)

𝐆𝐦𝑑𝑉 

𝐅𝑣,𝑛+1
𝑒,(𝑖)

= ∫ 𝐦𝑇

Ω𝑒
𝐆

𝑇
𝐂𝑛+1

𝑒𝑝,(𝑖)
𝐁𝑑𝑉 

𝐇𝑛+1
𝑒,(𝑖)

= ∫ 𝐦𝑇

Ω𝑒
𝐆

𝑇
𝐂𝑛+1

𝑒𝑝,(𝑖)
𝐆𝐦𝑇𝑑𝑉 

𝐊𝑑,𝑛+1
𝑒,(𝑖)

= 𝐴Γ𝑠
𝑒

∂𝑡𝑚

∂𝑢
|𝑛+1
(𝑖)

, 𝐊𝛼,𝑛+1
𝑒,(𝑖)

= 𝐴Γ𝑠
𝑒

∂𝑡𝑚

∂𝛼
|𝑛+1
(𝑖)

 

In this way, displacement jump increment Δ𝛂𝑛+1
(𝑖)

 can be obtain for a given value of the 

displacement field increment Δ𝐮𝑛+1
(𝑖)

 by solving second equation of previously stated set taking 

advantage that is written locally in each localized element. 

 

 

3. Multiscale model description 
 

In this section, multiscale model with enriched discrete approximation by introducing embedded 

discontinuity inside the localized element is presented. In the context of parameter identification 

procedure, the model is utilized for numerical simulation of various kinds of experimental results.  

In the spirit of a multiscale approach, macro-scale is used for description of homogeneous 

structural response, while micro-scale is utilized for representing full set of 3D inelastic damage 

mechanisms. Both 4-node tetrahedron and 8-node hexahedron are implemented for spatial macro-

scale discretization, while micro-scale mesh consists of an assembly of Timoshenko beam in a lattice 

form featuring the plasticity model is able to represent localized failure in mode I, mode II and mode 

III. 

The proposed model is based on strong coupling between coarse and fine scale using 

displacement based coupling. It implies continually exchanging information between scales during 

the numerical analysis and the computation advances simultaneously on both scales. Since 

nonlinearity effects occur practically from the start of analysis, both macro and micro-scale iterative 

computations are executed with one iterative sweep at macro-scale accompanied by many iterations 

at micro-scale at each time step. From practical point of view in terms of FEM, this should provide 

admissible solution for current iterative values at macro-scale. Let us mention that solely when 

convergence is achieved at both scales, the computation progress to the next time. The computation 

is carried out in the spirit of the operator split method.  

Considering the essential settings of finite element method (FEM), the constitutive equations 

commonly are not defined on the macro-element implying its element arrays are obtained from the  
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Fig. 4 3D isoparametric macro-scale element: 4-node tetrahedron and 8-node hexahedron 

(Ibrahimbegovic et al. 2021) 

 

 

Fig. 5 Macro and micro-scale element mesh connected in the spirit of Lagrange multipliers over a macro-

element boundary (Ibrahimbegovic et al. 2021) 

 

 

corresponding micro-scale computations. Besides the particular individual settings of micro and 

macro-scale, it is essential to provide the compatibility between them. In that context, localized 

Lagrange multiplier method is utilized which allows setting a constraint on the discrete displacement 

field over the boundary of macro-elements. Consequently, computation of macro-element tangent 

stiffness matrix as well as residual vectors is performed by an assembly of micro-scale elements 

contributions, which are statically condensed at the macro scale.  

The representation of the localized failure on the macro-scale level is performed within a 

framework of the incompatible mode method presented in (Ibrahimbegovic and Wilson 1991).  

The incompatible mode function M for a macro-scale element in the natural coordinate space (𝜉, 𝜂, 𝜁) 

can be written as 

 𝑀(𝜉, 𝜂, 𝜁) = 𝐻Γ𝑠
(𝜉, 𝜂, 𝜁) − ∑ 𝑁𝑏

𝑀

𝑏∈Ω𝑒+

(𝜉, 𝜂, 𝜁) (9) 

where 𝐻Γ𝑠
(𝜉, 𝜂, 𝜁) is the Heaviside step function.  

For a localized macro-element crossed by discontinuity, macro-scale element displacement field 

accounting for the incompatible mode function M and displacement jump 𝛂𝑀,𝐸can be written as 

: macro-nodes : Lagrange multipliers : micro-nodes
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 𝐮𝑛+1
𝑀 |

Γ𝑀𝑚,𝐸(𝐱𝑚) = ∑ 𝐍𝑎
𝑀,𝐸

𝑎∈Γ𝑀𝑚,𝐸

(𝐱𝑚)𝐝𝑎,𝑛+1
𝑀,𝐸 + 𝐌𝑀,𝐸𝛂𝑛+1

𝑀,𝐸
 (10) 

where 𝐍𝑎
𝑀,𝐸

are macro-scale shape functions and 𝐝𝑎,𝑛+1
𝑀,𝐸

is macro-scale displacement field. 

As previously stated, micro-scale nodal displacements can be written accounting for crack 

opening and Lagrange multiplier method as 

 𝐝̄𝑛+1
𝑚 |

Γ𝑀,𝐸 = 𝐓𝐸𝐝𝑛+1
𝑀,𝐸 + 𝐒𝐸𝛂𝑛+1

𝑀,𝐸
 (11) 

where T and S are element connectivity matrices based on particular values of macro-scale shape 

functions and incompatible mode function, respectively. 

By solving linearized system of the equations at macro-scale 

 [
𝐊𝑀

(𝑁×𝑁)
𝐅𝑀

(𝑁×3)

𝐅𝑀,𝑇

(3×𝑁)
𝐇𝑀

(3×3)

] [
Δ𝐝𝑀

(𝑁×1)

Δ𝛂𝑀

(3×1)

] = − [
𝐫𝑀

(𝑁×1)

𝐡𝑀

(3×1)

] (12) 

we can compute firstly displacement jump increment on macro-scale, and then the increment of 

displacement field on macro-scale. In previous equation, sub-matrices can be computed in a manner 

of constraint Eq. (12) 

 

, ,
1 1

( ) ( )( ) ( )

, ,
1 1

( ) ( 3)( 3) ( )

, ,
1 1

(3 ) ( 3)(3 3) ( )

M E E T m E
n n

N n n NN N n n

M E E T m E
n n

N n nN n n

M E E T m E
n n

n nn n

 
 

 
 

 
 

+ +
  

+ +
  

+ +
  

=

=

=

K T K T

F T K S

H S K S

 (13) 

On the other side, Timoshenko beam finite elements in a lattice form are used for constructing 

micro-scale discrete approximation (Hadzalic et al. 2019, Karavelic et al. 2019). 3D micro-scale 

mesh is constructed by domain division into Voronoi cells while adjacent cells are connected by 

cohesive links. In this way, the displacement jump in the middle of the beam element can be very 

successfully simulated assuming the crack initiates and propagates at the interface of an adjacent 

Voronoi cells. The adopted beam plasticity model is capable of representing failure mechanisms in 

crack opening mode (mode I), as well as in in-plane and out-of plane sliding (mode II and mode III).  

The finite element interpolation of the total micro displacement field within the incomatible mode 

framework can be written as 

 

 

 

Fig. 6 Geometry and degrees of freedom for Timoshenko beam finite element (Ibrahimbegovic et al. 2021) 
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 𝐮𝑚(𝑥) = ∑ 𝑁𝑎

2

𝑎=1

(𝑥)𝐝𝑎
𝑚 + 𝑀(𝑥)𝛂𝑚 (14) 

where 𝐝𝑎
𝑚  is micro-scale displacement vector and 𝛂𝑚  is the micro-scale displacement jump 

vector. 

Similarly, enhanced strain field can be written as 

 𝛆 = ∑ 𝐁𝑎

2

𝑎=1

𝐝𝑎 + 𝐆𝛂 (15) 

where the matrix 𝐁𝑎 contains the derivatives of the shape functions and the matrix 𝐆 contains the 

derivatives of the incompatible mode function 𝐺(𝑥)  that can be split into regular 𝐺̄(𝑥)  and 

singular part 𝐺̄̄(𝑥). 

𝐺(𝑥) = 𝐺̄(𝑥) + 𝐺̄̄(𝑥),  𝐺̄(𝑥) = −
1

𝐿𝑒
,  𝐺̄̄(𝑥) = 𝛿𝑥̄(𝑥) 

In micro-scale framework, the weak form of equilibrium can be written as a system of global and 

local equilibrium equations 
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,
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f f
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A
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The final set of equilibrium equations after performing consistent linearization can be written for 

a time step tn+1 
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where tangent stiffness matrices are defined in the following form: 
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The increment of displacement jump vector Δ𝛂𝑛+1
𝑚  can be computed after performing static 

condensation in the following form 

 
1

1 1( ) ( )m m m m m m

n v d n

−

+ + = − + + αα H K F K d  (18) 

By substituting Δ𝛂𝑛+1
𝑚  back into eq. 1, the increment of the displacement vector Δ𝐝𝑛+1

𝑚  can be 

written as 

 
1

1 , 1 , 1[ ( ) ( )] ( )m m m m m m m m m

v d n int n ext n

−

+ + +− + +  = − −αK F H K F K d f f  (19) 
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4. Parameter identification procedure 
 

The proposed identification procedure relies on experimental measurements (typically 

displacements and total force on testing machine) and on numerical results obtained by multiscale 

model simulations (energy, dissipation). We make an effort to be able to use experimental results 

and optimize this identification procedure without limitation only to experimental measurements. 

Particularly, there are eleven independent material properties to be identified: 

a) Elastic parameters: Bulk modulus 𝐾 and shear modulus 𝐺 

b) Hardening parameters: uniaxial yield stress 𝜎𝑦, angle of internal friction 𝑡𝑎𝑛(𝜑), angle of 

dilatancy 𝑡𝑎𝑛(𝜓), hardening modulus for linear hardening 𝐾ℎ,𝑙𝑖𝑛 and hardening parameter 𝛽 

that governs the rate with which saturation is achieved 

c) Softening parameters: Limit stress until stress increase 𝜎∞, ultimate stress which triggers the 

softening 𝜎𝑢, fracture energy in tension 𝐺𝑓,𝑡 and fracture energy in compression 𝐺𝑓,𝑐 

In a broad sense, identification procedure analysis is carried in two essential step: 

1. The definition of objective function based on experimental results or, in case of data 

deficiency, based on numerical simulations capable of representing all fields of interest in 

successfully way.  

2. The minimization of objective function using appropriate numerical algorithm leading to 

identified model parameters of proposed constitutive model 

Essentially, objective function can be defined as gap between measured and computed response 

values (displacement, stress, deformation, reaction force and etc.) (Imamovic et al. 2015) 

 𝐽(𝐝𝑝) = ∑ 𝑤

𝑗∈𝐽

(𝐮𝑗
𝑐𝑜𝑚(𝐝𝑝) − 𝐮𝑗

𝑒𝑥𝑝
()2) (20) 

where 𝐝𝑝 are the model parameters we seek to identify, while 𝐮𝑗
𝑐𝑜𝑚 and 𝐮𝑗

𝑒𝑥𝑝
 are computed and 

experimentally (or numerically) measured values of displacement/strains/stresses, respectively and 

w is the weighting factor for different terms of objective function. The corresponding values for w 

have to be chosen in order to obtain similar norm of each summation term.  

Minimization of objective function can formally be written as minimization under constraint 

 𝑚𝑖𝑛
𝐺(𝜎;𝛿𝑤)=0

𝐽(𝐝𝑝) = ∑ 𝑤

𝑗∈𝐽

(𝐮𝑗
𝑐𝑜𝑚(𝐝𝑝) − 𝐮𝑗

𝑒𝑥𝑝
()2) (21) 

where the weak form of the equilibrium equations is the corresponding constraint. 

The initial constrained minimization of objective function can be switched into unconstrained 

minimization by using Lagrange multiplier method (e.g., Ibrahimbegovic et al. 2004) 

 𝑚𝑎𝑥
∀𝜆

𝑚𝑖𝑛
𝐺(𝜎;𝐝𝑝)=0

𝐿(𝜎, 𝐝𝑝, 𝜆) = 𝐽(𝐝𝑝) + 𝐺(𝜎, 𝐝𝑝, 𝜆) (22) 

where λ are Lagrange multipliers inserted into the weak form of equilibrium equations instead of 

the virtual displacement.  

Since this type of minimization of objective function is very complex for large number of 

unknowns, this paper deals with splitting of the unconstrained minimization process of objective 

function into three completely independent stages owing to specific model structure. All the 

numerical computations are performed by using MATLAB and FEAP, which are linked during the 

whole computation process.  
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Table 1 Adopted material parameters for Timoshenko beams 

General material parameters Adopted Value 

Young’s modulus E 40000 MPa 

Poisson’s ration v 0.20 

Axial yield stress in tension 𝜎̄𝑥 4.5 MPa 

Axial yield stress in tension 𝜎̄𝑦 1.0 MPa 

Axial yield stress in tension 𝜎̄𝑧 1.0 MPa 

Material parameters for weakened elements a Adopted value 

Axial ultimate stress in tension 𝜎̄̄𝑥 4.5 MPa 

Shear ultimate stress in tension 𝜎̄̄𝑦 1.0 MPa 

Shear ultimate stress in tension𝜎̄̄𝑧 1.0 MPa 

Axial fracture energy in tension 𝐺𝑓𝑡,𝑥 0.06 N/mm 

Shear fracture energy in tension𝐺𝑓𝑡,𝑦 0.015 N/mm 

Shear fracture energy in tension 𝐺𝑓𝑡,𝑧 0.015 N/mm 

a Ultimate stresses and fracture energies for non-weakened elements are set to high values 

implying the softening phase cannot be reached 

 

 

Fig. 7 Multiscale model results in terms of load-displacement curve for the compression test 

 

 

In general, the complexity of identification procedure is influenced to a large extend by the choice 

of numerical or experimental setup. In the following, experimental setups numerically simulated in 

many examples are explained with the most important theoretical and practical settings. 

 

4.1 Tension test 
 

In the context of the parameter identification, the simplest test to execute is simple tension test. 

However, this kind of test cannot be carried out experimentally, contrarily to steel. Hence, we carried 

out this only with respect to the numerical modeling. Multiscale model is utilized for that purpose 

whereas a 8-node hexahedron is chosen as a macro element and a total of 1838 Timoshenko beams 

are adopted as a micro-scale elements. In this way, the geometry of cube shaped specimen with sides 

equal to 50 mm is formed.   
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Fig. 8 Displacement and stress field at micro-scale at the end of numerical simulation 

 

 

Fig. 9 Experimental load-displacement curve from compression test 

 

 

In order to avoid localized failure in all micro-scale elements at the same time as well as 

numerical round-off errors, some elements in the middle of domain are weakened. The following 

table shows the general parameters of the material, as well as those corresponding to the weakened 

elements. 

Global stress-strain diagram on multiscale can be divided into two parts which is in agreement 

with macro-scale response in tension: the first one which corresponds to the elastic response and the 

second one describing the softening regime.  

The corresponding graphical representation of displacement and stresses at micro-scale is shown 

below. 

Following the same pattern we can perform calibration of model parameters: first, from elastic 

part the bulk modulus K and the shear modulus G are determined, followed by elasticity limit stress 

𝜎𝑦 and fracture energy in tension 𝐺𝑓,𝑡 estimated from softening part.  

 

4.2 Compression test 
 

Compression test is surely the most performed experimental setup to obtain ultimate compressive 
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strength of concrete sample. Unlike the tension test, much simpler imposed load causes fairly 

different stress state leading to significantly different crack pattern and failure mechanism as well. 

Having in mind these statements, it is possible to identify parameters from each stage of deformation 

process including linear elastic, nonlinear inelastic and softening branch.  

For the purpose of the parameter identification of previously mentioned Drucker-Prager plasticity 

model by using compression test as experimental setup, the same cube shaped geometry is 

considered. The experimental load-displacement curve used for the identification procedure is 

shown below. 

 

 

5. Results of numerical simulation 
 

Several numerical simulations for various kinds of experimental setups are performed to illustrate 

performance of the proposed methodology for identifying the corresponding material parameters. 

 

5.1 Elastic phase 
 

Following these tests (tension test, compression test, three-point bending test), elastic parameters 

tend to be the same, because concrete is statistically isotropic material (Ibrahimbegovic et al. 2020). 

Therefore, we adopt to identify tensile elastic parameters. For such identification procedure one can 

choose between two alternatives in terms of experimental setup: uniaxial tension test and three-point 

bending test. Practically, three-point bending test is not very convenient for experimental 

identification of elastic parameters due to the complexity of creating such setup for this kind of 

identification. Therefore, identification of tensile elastic parameters is preferentially carried out by 

including the numerical results of simple tension test obtained by multiscale model. However, three-

point bending test can be very successfully simulated and predicted in the spirit of the multiscale 

approach as it shown in the work (Ibrahimbegovic et al. 2021).  

In that context, objective function for identification elastic parameters G and K is given in the 

following form 

 
𝐽(𝐺, 𝐾) = (𝐿𝑟𝑒𝑓(𝑢) − 𝐿𝑐𝑜𝑚(𝑢))

2
𝑤1 + (Δ𝑙𝑟𝑒𝑓(𝑢) − Δ𝑙𝑐𝑜𝑚(𝑢))

2
𝑤2; 

𝑢 = 0.0001 mm 

(23) 

where 𝐿𝑟𝑒𝑓(𝑢) and 𝐿𝑐𝑜𝑚(𝑢) are corresponding loads related to the target displacement u obtained 

in simple tension test on multiscale and macro-scale model, respectively. Similarly, the quantities 

Δ𝑙𝑟𝑒𝑓(𝑢)and Δ𝑙𝑐𝑜𝑚(𝑢) are corresponding lateral elongations form multi-scale and macro-scale 

model, respectively.  

Graphical representation of objective function 𝐽(𝐺, 𝐾) is shown in Fig. 10. Objective function 

remains convex over the complete considered (K,G) domain, thus making optimization procedure 

rather computationally effective. The identified pair of elastic parameters is: ( 𝐺𝑜𝑝𝑡 , 𝐾𝑜𝑝𝑡 =
12.56,15.94) [GPa].  

 

5.2 Hardening phase 
 

Once we have successfully identified elastic parameters, we can carry on with estimation of the 

parameters of Drucker-Prager yield surface defined by the expression (2) 
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Fig. 10 Objective function J(G,K) 

 

 

𝜙𝑦(𝛔, 𝑞): =∥ 𝑑𝑒𝑣[𝛔] ∥ +
1

3
𝑡𝑎𝑛(𝜑)𝑡𝑟[𝛔] − √

2

3
(𝜎𝑦 − 𝑞) 

where q is stress-like internal variable 

 𝑞 = −(𝜎∞ − 𝜎𝑦)[1 − 𝑒𝑥𝑝(−𝛽𝜁)] − 𝐾ℎ,𝑙𝑖𝑛 ⋅ 𝜁 (24) 

In the upper equation, 𝛽 is the hardening parameter that governs the rate with which saturation 

is achieved, 𝜎∞ is the limit stress until the stress increase and 𝐾ℎ,𝑙𝑖𝑛 is the hardening modulus. 

Taking the advantage of the proposed model, linear hardening can be simply obtained by assuming 

𝐾ℎ,𝑙𝑖𝑛 = 0 while nonlinear hardening can be obtained by taking 𝛽 = 0. 

Identification procedure of hardening parameters is divided in the two separate and independent 

steps owing to the specific structure of the proposed macro-scale model. Indeed, the yield stress 𝜎𝑦 

and internal friction parameter 𝑡𝑎𝑛(𝜑) are sufficient to define Drucker-Prager yield point in an 

unique way making it as a main point of consideration in the first step of hardening parameter 

identification. Objective function for the identification of the yield stress 𝜎𝑦 and internal friction 

parameter 𝑡𝑎𝑛(𝜑) is given in the following form 

 𝐽(𝜎𝑦, 𝑡𝑔𝜑) = (𝐿𝑟𝑒𝑓,𝑐(𝑢𝑦) − 𝐿𝑐𝑜𝑚,𝑐(𝑢𝑦))
2

𝑤1 + (𝑉𝑟𝑒𝑓,𝑐(𝑢𝑦) − 𝑉𝑐𝑜𝑚,𝑐(𝑢𝑦))
2

𝑤2 (25) 

taking into account load L and volumetric strains V from experimental uniaxial compression test and 

proposed macro-scale model for the target yield displacement 𝑢𝑦. Objective function 𝐽(𝜎𝑦, 𝑡𝑔𝜑) 

for the hardening constitutive parameters using this approach is illustrated in Fig. 11. 

The identified pair is 𝜎𝑦
𝑜𝑝𝑡 = 6.81 MPa, 𝑡𝑔𝜑𝑜𝑝𝑡 = 0.321 . Concerning the second step, 

identification of linear hardening parameters is performed. In order to better approximate hardening 

behavior, notional yield stress is moved to the level when the residual plastic deformation is 0.2%. 

In this case, objective function is defined in the form 
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Fig. 11 Objective function 𝐽(𝜎𝑦 , 𝑡𝑔𝜑) 

 

  
(a) (b) 

Fig. 12 (a) Measurements for objective function J(σy, Kh,lin), (b) objective function J(σy, Kh,lin) 

 

 

𝐽 (𝜎𝑦, 𝐾ℎ,𝑙𝑖𝑛) = ∑(𝐿𝑟𝑒𝑓(𝑢𝑖) − 𝐿𝑐𝑜𝑚(𝑢𝑖))
2

𝑤1

3

𝑖=1

+ ∑(Δ𝑙𝑟𝑒𝑓(𝑢𝑖) − Δ𝑙𝑐𝑜𝑚(𝑢𝑖))
2

𝑤2

3

𝑖=1

 (26) 

with a total of 3 measurements of load L and lateral elongation Δ𝑙 on experimental setup and 

macro-scale model, respectively. Graphical representation of objective function 𝐽(𝜎𝑦, 𝐾ℎ,𝑙𝑖𝑛) is 

shown in Fig. 12(b). Objective function remains convex over the complete considered (𝜎𝑦, 𝐾ℎ,𝑙𝑖𝑛) 

domain, thus making optimization procedure rather straightforward. The identified pair of hardening 

parameters is: 𝜎𝑦
𝑜𝑝𝑡 = 15.27 MPa, 𝐾ℎ,𝑙𝑖𝑛

𝑜𝑝𝑡 = 24.52 GPa.  

In the Fig. 13, comparison between experimental results and macro-scale model is presented.  

Obviously, linear hardening parameters are not sufficient for appropriate representation of real 

hardening behavior of concrete. Therefore, we should turn to another approach that better 

approximates the post-elastic phase of concrete deformation. This implies saturation (nonlinear)  
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Fig. 13 Comparison between experimental and macro-scale model results for linear hardening 

 

  

Fig. 14 Objective function 𝐽(𝛽, 𝑡𝑔𝜓, 𝜎∞) 

 

 

hardening, taking into account hardening parameter 𝛽, dilatancy parameter 𝑡𝑎𝑛(𝜓) and 𝜎∞ as the 

ultimate stress. Objective function is constructed in the same manner as for linear hardening in the 

form, only now including three parameters 

𝐽(𝛽, 𝑡𝑔𝜓, 𝜎∞) = ∑(𝐿𝑟𝑒𝑓(𝑢𝑖) − 𝐿𝑐𝑜𝑚(𝑢𝑖))
2

𝑤1

3

𝑖=1

+ ∑(Δ𝑙𝑟𝑒𝑓(𝑢𝑖) − Δ𝑙𝑐𝑜𝑚(𝑢𝑖))
2

𝑤2

3

𝑖=1

 (27) 

The graphical representation of objective function is presented in Fig. 14. 

Comparison between experimental results and macro-scale model for saturation hardening is 

presented in Fig. 15. 

Indeed, saturation hardening much more appropriate represents the microstructural response 

upon initiating and starting propagation concrete cracks comparing to linear hardening.  

 

5.3 Softening phase 
 

Firstly, identification of compression softening parameters is performed. According to the  
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Fig. 15 Comparison between experimental and macro-scale model results for linear hardening 

 

  
(a) (b) 

Fig. 16 (a) Measurements for objective function J(Gf,c), (b) objective function J(Gf,c) 

 

 

specific model structure, identification of 𝜎∞ is already performed in previous stage making the 

fracture energy in compression 𝐺𝑓,𝑐 as the only parameter that should be identified. Therefore, it is 

sufficient to take into account just force measurement defining objective function in the following 

form 

 𝐽(𝐺𝑓,𝑐) = ∑(𝐿𝑟𝑒𝑓,𝑐(𝑢𝑖) − 𝐿𝑐𝑜𝑚,𝑐(𝑢𝑖))𝑤1

4

𝑖=1

 (28) 

The graphical representation of measurements for objective function is depicted in Fig.16a, while 

objective function 𝐽(𝐺𝑓,𝑐) is shown in Fig. 16(b).  

Comparison between experimental results and macro-scale model results for all different stages  

is presented in Fig. 17. 
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Fig. 17 Complete response comparison between experimental and macro-scale model results in compression 

 

  

Fig. 18 Objective function 𝐽(𝜎𝑢) 

 

 

The identified value of fracture energy in compression is 𝐺𝑓,𝑐
𝑜𝑝𝑡 = 0.0175 N/mm.  

Identification of tensile softening parameters involves the identification of ultimate stress which 

triggers softening in tension 𝜎𝑢  and fracture energy in tension 𝐺𝑓,𝑡 . Since, the value 𝜎𝑢  is 

independent from 𝐺𝑓,𝑡, the corresponding objective function should be defined in the form: 

 𝐽(𝜎𝑢) = (𝐿𝑐𝑜𝑚, 𝑚𝑎𝑥𝑟𝑒𝑓,𝑚𝑎𝑥
2𝑤1) (29) 

where 𝐿𝑟𝑒𝑓,𝑚𝑎𝑥  and 𝐿𝑐𝑜𝑚,𝑚𝑎𝑥  are maximum loads (reactions) from the load-displacement 

diagram obtained in simple tension test on multiscale and macro-scale model, respectively. 

The identified value of ultimate stress which triggers softening is 𝜎𝑢 = 5.04 MPa. Having in 

mind the identified value of 𝜎𝑢, we can identify the fracture energy in tension 𝐺𝑓,𝑡. Similarly to the 

softening in the compression, a total of 4 load measurements are adopted for defining objective 

function.  
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Fig. 19 Measurements for objective function J(Gf,t) 

 

  
(a) (b) 

Fig. 20 (a) objective function J(Gf,t), (b) comparison between multiscale and macro-scale model 

 

 

Objective function can be written in the form 

 𝐽(𝐺𝑓,𝑡) = ∑(𝐿𝑟𝑒𝑓,𝑡(𝑢𝑖) − 𝐿𝑐𝑜𝑚,𝑡(𝑢𝑖))𝑤1

4

𝑖=1

 (30) 

where the subscript t denotes measurements on the tension test for multiscale and macro-scale model, 

respectively. Objective function 𝐽(𝐺𝑓,𝑡) is shown in Fig. 20(a), and comparison between multiscale 

and macro-scale model in simple tension test is depicted in Fig. 20(b). 

Objective function is convex and rather simple for optimization by adopted Nelder-Mead 

algorithm. The identified value of fracture energy in tension is 𝐺𝑓,𝑡 = 1.041 ⋅ 10−4 N/mm.  

As in the previous case for compression test, the results of the macro-scale model simulation 

carried out with optimized parameters fits very well with multiscale results for simple tension test 

as well. 
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5.4 Final remarks 
 

The results provide very satisfying performance for all numerically simulated experimental 

setups. In addition to the diagrams, the efficiency of the Nelder-Mead optimization algorithm for 

the objective functions is presented. It can be concluded that proposed algorithm is rather 

computationally effective, since time of computation for all objective functions is in even greater 

extent optimized and reduced to reasonable degree. The related data are presented in the Table 2 

below. 

 

 
Table 2 The efficiency of the Nelder-Mead optimization algorithm 

Objective function 
Number of 

Iterations Evaluations 

𝐽(𝐺, 𝐾) 38 72 

𝐽(𝜎𝑦 , 𝑡𝑔𝜑) 21 50 

𝐽 (𝜎𝑦 , 𝐾ℎ,𝑙𝑖𝑛) 30 58 

𝐽(𝛽, 𝑡𝑔𝜓, 𝜎∞) 30 63 

𝐽(𝜎𝑢) 3 11 

𝐽(𝐺𝑓,𝑡) 3 11 

𝐽(𝐺𝑓,𝑐) 3 11 

 

 

6. Conclusions 
 

In this work, we evaluated the concrete parameter identification procedure by using real 

experimental measurements and numerical simulation results on multiscale model. The macro scale 

model is capable of describing elastic response, hardening with the Drucker-Prager plasticity model 

and full set of 3D failure mechanisms in softening. The numerical simulation of micro-scale model 

is one developed in the work (Ibrahimbegovic et al. 2021.). Identification procedure is based on 

Nelder-Mead optimization algorithm that proved very robust making the computation very effective 

in terms of computational time. The main ingredient that guarantees robustness is appropriate choice 

of cost function. 

The identification procedure for elastic parameters is the most robust. Any of real experiments 

or numerical simulations is suitable to obtain the elastic parameters mainly either simple tension test 

carried out numerically, compression test or three point bending test carried out experimentally with 

result with equivalent values of elastic parameters. The reason is that concrete can be considered as 

statistically isotropic material, as already confirmed in the work (Ibrahimbegovic et al. 2020). 

Identification of tensile softening parameters cannot be carried out experimentally. Mainly we 

cannot put concrete specimen in the simple tension-testing machine contrary to steel. However, the 

proposed multiscale modeling can be used to obtain very effectively the tensile yield stress and 

fracture energy in tension with the very robust computation using multiscale model. The simplicity 

of this procedure is in contrast against the complexity of three-point bending test on specially 

prepared concrete specimen with notches needed to obtain experimental results that in general used 

to determine the same tensile failure parameters. 

The final conclusion concerns the identification of parameters for hardening in compression. We 
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show that different levels of more comprehensive measurements would result in more robust 

identification procedure than the one based upon force - displacement diagram (usual measurements 

in compression test). One can obtain linear hardening parameters but also show linear hardening 

parameters are not suitable for describing hardening behavior of concrete. We need something like 

the saturation hardening for more appropriate representing the experimental load-displacement 

curve. For identifying saturation hardening parameters, one should either add additional 

measurements for lateral displacements or use numerical simulation of dissipated energy in order to 

provide cost functions that are capable of making the identification procedure more robust.   
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