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Abstract.  Quite often we have a lot of measurement data and would like to find some relation between them. One 
common task is to see whether some measured data or a curve of known shape fit into the cumulative measured data. 
The problem can be visualized since data could generally be presented as curves or planes in Cartesian coordinates 
where each curve could be represented as a vector. In most cases we have measured the cumulative ‘curve’, we know 
shapes of other ‘curves’ and would like to determine unknown coefficients that multiply the known shapes in order to 
match the measured cumulative ‘curve’. This problem could be presented in more complex variants, e.g., a constant 
could be added, some missing (unknown) data vector could be added to the measured summary vector, and instead of 
constant factors we could have polynomials, etc. All of them could be solved with slightly extended version of the 
procedure presented in the sequel. Solution procedure could be devised by reformulating the problem as a measurement 
problem and applying the generalized inverse of the measurement matrix. Measurement problem often has some errors 
involved in the measurement data but the least squares method that is comprised in the formulation quite successfully 
addresses the problem. Numerical examples illustrate the solution procedure. 
 

Keywords:  factor analysis; least squares method; measurement data; measurement error; measurement 

problem 

 
 
1. Introduction 
 

Engineering experiments produce a lot of measurement data that have to be somehow related to 

one another or to results of some known formulation. One often makes cumulative measurements in 

a process that comprises other simpler relations, e.g., we are measuring a cumulative mixture of 

some constituents or forces in a structure that includes some simpler mechanisms. Usually, factor 

analysis is applied to this type of problem (see e.g., Menke 2012). In Kožar et al. (2020) cumulative 

curve stochastically comprises experimental data and factor analysis is applied as 𝑺 = 𝑪𝑭 where 

𝑺  is the matrix of experimental results, 𝑭  is the matrix of factors that comprise experimental 

results, 𝑪  is the matrix of factor loadings. The matrix 𝑺  that is known is decomposed using 

singular value decomposition into a product of matrices 𝑪 and 𝑭 that are to be determined. The 

resulting eigenvalues describe the presence of factors within the cumulative curve. However, the 

above decomposition is not unique and only the largest eigenvector has a physical meaning, it 

represents the mean of the contributing curves. 

 

Corresponding author, Professor, E-mail: ivica.kozar@gradri.uniri.hr 



 

 

 

 

 

 

Ivica Kožar, Danila Lozzi Kožar and Neira Torić Malić 

Other approaches are possible as well and in this work we will treat the problem as a 

measurement problem and in vector notation (e.g., see Kožar 2016, Ibrahimbegović et al. 2009). It 

is well known (see e.g., Gibbs 2011) that any vector can be represented as a sum of vectors that span 

its vector space, 𝒗 = ∑
𝑖=1

𝑚

𝑐𝑖𝒉𝑖 . This problem is further complicated with errors in measurement, 

represented as an error vector that can be additive or multiplicative; in the later case error is 

correlated with measurement since larger measurements have lager error. This is important in 

formulation of correction schemes like weighted least squares, etc. In this paper error correction is 

formulated as the weighted least squares procedure based on the calculation residual. 

 

 

2. Formulation of the problem 
 

A common task in engineering experimental analysis is to see whether some measured data fit 

into another measured data, see e.g., Kožar and Lozzi-Kožar (2017), Lozzi-Kožar and Kožar (2017) 

or Kožar et al. (2011). There are n independent experiments, each having m measured data values. 

The problem can be visualized since data could generally be represented as curves in the Cartesian 

coordinate plane (or in the space for 3D data). Each curve could be represented as a vector 𝒒 with 

m components and the mathematical formulation of our problem is a problem of vector 

representation 𝑸 = ∑
𝑖=1

𝑛

𝑐𝑖𝒒𝑖 where ‘i’ is the number of measurement curves (or components), 𝒒𝑖 

is the result of a series of measurements belonging to the ‘i-th’ experiment in the vector form 

comprising m data values, 𝑐𝑖  is an unknown coefficient describing the content of the ‘i-th’ 

component in the cumulative data and 𝑸 is the total result. In most cases we have measured 𝑸 and 

we (somehow) know 𝒒𝑖 (e.g., from the theory of the problem we are analyzing) and would like to 

determine its contribution to the total result (determine unknown coefficients 𝑐𝑖). This problem 

could be presented in more complex variants, e.g., a constant could be added, some missing 

(unknown) data vector could be added to the measured summary vector, instead of constant factors 

𝑐𝑖 we could have polynomials, like 𝑸 = ∑
𝑖

𝑛

(𝑐𝑖0𝑥2 + 𝑐𝑖1𝑥 + 𝑐𝑖2)𝒒𝑖, etc. All of them could be solved 

with slightly extended version of the procedure presented in the sequel. Our measurement problem 

often has some error involved in the measurement data, so the general formulation is 

𝑸 = ∑
𝑖=1

𝑛

𝑐𝑖𝒒𝑖 + 𝒒𝑒𝑟𝑟                            (1) 

or 

𝑸 = ∑
𝑖

𝑛

(𝑐𝑖0𝑥2 + 𝑐𝑖1𝑥 + 𝑐𝑖2)𝒒𝑖 + 𝒒𝑒𝑟𝑟                      (2) 

where 𝒒𝑒𝑟𝑟  is the measurement error vector. We assume that terms in the error vector are iid 

(independent and identically distributed) with zero-mean distribution, i.e., 𝐸[𝒒𝑒𝑟𝑟] = 0, see JCGM 

(2008). 

Solution procedure can be devised using the measurement matrix 𝑯 (see e.g., Kožar 2019) and 

reformulating the problem into 

𝑸 = 𝑯𝒄                                   (3) 
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where 𝒄 is the vector of unknown coefficients and 𝑯 is the measurement matrix constructed 

according to the problem, i.e., problem represented with Eq. (1) or Eq. (2), etc. For the problem 

described with Eq. (1) we have 𝑯𝑗,𝑖 = (𝒒𝑖)𝑗. The matrix 𝑯 has dimension [𝑚 × 𝑛], 𝑚 ≥ 𝑛 and 

its rank should be equal to n, the number of unknown parameters. The case of rank deficiency of the 

measurement matrix 𝑯 will not be discussed here since then the decomposition according to Eq. 

(1) is not possible although we could apply some regularization technique like e.g., Tikhonov 

regularization (see Lozzi-Kožar and Kožar 2017). 

Solution procedure of the measurement problem given by Eqs. (1) or (2) could be obtained using 

the equation 𝒄 = 𝑯−1𝑸, where 𝑯−1 is the generalized inverse of the measurement matrix. That 

formulation is equivalent to application of the least squares method on the measurement problem. 

In the case 𝑟𝑎𝑛𝑘(𝑯) = 𝑛, 𝑯−1 is invertible and the vector of unknown coefficients 𝒄 could be 

found. 

It is possible to check whether the number of parameters in the model is appropriate by 

establishing a relationship between the number of data and parameters. We introduce the residual of 

the model 𝒓 = 𝑸 − 𝑯𝒄. For the least squares measurement problem the expected value of the sum 

of squares of the residual 𝐸(𝒓𝑇𝒓) is 𝐸(𝒓𝑇𝒓) = 𝜎𝑟
2𝑡𝑟[𝑰 − 𝑯(𝑯𝑇𝑯)−1𝑯𝑇] where 𝜎𝑟 is variance 

of the residual. Applying SVD (singular value decomposition) we obtain the control relationship 

𝑡𝑟[𝑰 − 𝑯(𝑯𝑇𝑯)−1𝑯𝑇] = 𝑚 − 𝑛                          (4) 

In Eq. (4) 𝑚 is number of data points and 𝑛 is the number of parameters. 

Other versions of the least squares method are possible, like Levenberg-Marquardt method 

(Kožar et al. 2018). One common way of treating a measurement error is use of the weighted least 

squares (Gibbs 2011) where we give different importance to different measured values. 

Minimization of the measurement problem described with Eq. (3) could be enhanced with 

introduction of the positive definite symmetric weighing matrix 𝑾 into the optimization goal 𝐽 =
(𝑸 − 𝑯𝒄)𝑇𝑾(𝑸 − 𝑯𝒄) . This changed optimization function 𝐽  leads to somewhat different 

solution equations (derived from 
𝜕𝐽

𝜕𝒄
= 0) 

𝒄 = 𝑷−1𝑸𝑊     𝑷 = 𝑯𝑇𝑾𝑯  𝑸 = 𝑯𝑇𝑾𝑸                     (5) 

The matrix 𝑷−1 is the information or Fisher matrix and it represents the theoretical information 

available in the measurement since 𝑷 = 𝐸[𝒄𝒄𝑇] (the ‘a posteriori’ error covariance). Eq. (5) can 

outperform the Eq. (3) only with the proper formulation of the matrix 𝑾. General advice is to use 

the inverse covariant matrix of the measurement noise 𝑹, so 𝑾 = 𝑹−1 . 𝑹 is assumed to be 

diagonal (meaning error covariances are not correlated) since that greatly simplifies the 

computations but that is not a restriction. The matrix 𝑹  can be formulated from the known 

covariance of measurement errors of given sensors. In our example errors are produced as a series 

of random numbers, completely uncorrelated with any function value so we do not have any ‘a 

priori’ information. Instead, we will use ‘a posteriori’ error analysis and correction, i.e.,  

With weighted least squares check whether the number of parameters in the model is appropriate 

is somewhat more involved. Here we are looking at the weighted expected value of the sum of 

squares of the residual 𝐸(𝒓𝑇𝑹−1𝒓)  which is 𝐸(𝒓𝑇𝑹−1𝒓) = 𝑡𝑟[𝑰 −
𝑳−1𝑯(𝑯𝑇𝑳−𝑇𝑳−1𝑯)−1𝑯𝑇𝑳−𝑇] where 𝑳−1 comes from the factored covariance matrix 𝑹 = 𝑳𝑳𝑇 

that is easily determined for diagonal 𝑹. Applying SVD (singular value decomposition) we obtain 

𝑳−1𝑯 = 𝑼𝑺𝑽𝑇 and the control relationship is 

𝑡𝑟[𝑼2𝑼2
𝑇] = 𝑚 − 𝑛                              (6) 
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In Eq. (6) 𝑼 = [𝑼1𝑼2]  where 𝑼1  is [𝑚 × 𝑛]  matrix and 𝑼2  is [𝑚 × (𝑚 − 𝑛)]  matrix 

(belonging to zero eigenvalues). 

In order to properly formulate the matrix 𝑹 one should understand the nature of errors appearing 

in the measurement process. 

Various numerical examples have been performed, with and without an error, and the 

effectiveness of the proposed method has been demonstrated. Also, we have some examples where 

missing data has been successfully identified. 

 

 

3. Numerical examples 
 

3.1 Least-squares examples 
 

The first example is of the form  𝑸 = ∑
𝑖=1

𝑛

𝑐𝑖𝒒𝑖 + 𝒒𝑒𝑟𝑟 with ten measurement points, m=10 and 

two unknown coefficients, 𝑐1 and 𝑐2, i.e., 𝑛 = 2. We will apply the forward model to produce the 

data, add some error and then try to estimate the coefficients used in the forward model. We will 

make two examples with different curve shapes and the forward model data is 

a) example 

𝒒1 = [2.0,3.0,5.0,7.0,11.0,13.0,17.0,19.0,23.0,29.0] 
𝒒2 = [1.841,2.909,3.141,3.243,4.041,5.721,7.657,8.989,9.412,9.456] 
𝒒𝑒𝑟𝑟 = [0.042, −0.042,0.012,0.026,0.029,0.002, −0.015, −0.019,0.015,0.003] 
𝐸[𝒒𝑒𝑟𝑟] = 0.0053 

b) example 

𝒒1 = [2.0,1.5,1.67,1.75,2.2,2.17,2.43,2.38,2.56,2.9] 
𝒒2 = [−0.683, −1.319,0.051,1.764,2.118,0.725, −1.171, −1.854, −0.713,1.188] 
𝒒𝑒𝑟𝑟 = [−0.154, −0.203, −0.372,0.107, −0.278, −0.115, −0.386,0.440,0.334,0.155] 
𝐸[𝒒𝑒𝑟𝑟] = −0.04718 

In the first example the first vector is formed from prime numbers, the second is sampled from 

the function 𝑘 + sin(𝑘); 𝑘 = [1, … , 𝑛] and the error vector is made from uniformly distributed 

random numbers with the zero mean; as it is evident, the mean is not exactly zero. In the second 

example the first vector is formed from prime numbers decided by their position, the second is 

sampled from the function 
1

𝑘
+ 2sin(𝑘); 𝑘 = [1, … , 𝑛] and the error vector is made from uniformly 

distributed random numbers with the zero mean but, as before, the mean is not exactly zero. 

Note: The mean could be made equal to zero by subtracting it from all elements in a vector. 

However, it did not appeared to be significant for the examples. If there are zeros in data vectors, it 

is best to leave out that data since it reduces accuracy. 

The cumulative vector (including an error) is now 𝑸 = 𝑐1𝒒1 + 𝑐2𝒒2 + 𝒒𝑒𝑟𝑟 and for 𝑐1 = 1.23 

and 𝑐2 = −0.56 it follows (rounded to 3 decimal figures) 

a) example 

𝑸 = [1.471,2.019,4.403,6.820,11.296,12.788,16.607,18.317,23.034,30.378] 
b) example 

𝑸 = [2.689,2.381,1.654,1.272,1.242,2.148,3.258,4.406,3.882,3.056] 
Graphical representation of data vectors is given in Fig.1 where 𝑸0 = 𝑐1𝒒1 + 𝑐2𝒒2  is the 

cumulative vector without an error and 𝑸 = 𝑸0 + 𝒒𝑒𝑟𝑟 is the cumulative vector with the error; one 
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could see the influence of data vectors 𝒒1 and 𝒒2 represented graphically. Fig. 1 also enables 

assessment of the magnitude of the error vector, i.e., comparison of vectors 𝑸 and 𝑸0. It should 

be clear that recovery of the exact coefficients 𝑐1 and 𝑐2 is not possible when the error vector is 

too large (introduction of an error vector, i.e., replacement of the vector 𝑸 with 𝑸0 changes the 

original problem). 

 

 

  
(a) First example (b) Second example 

Fig. 1 Two examples of data vectors 

 

 

“Unknown” coefficients [𝑐1, 𝑐2] are estimated using the measuring equation 𝒄 = 𝑯−1𝑸 where 

𝑯 is the measuring matrix [𝒒1, 𝒒2]𝑇 and (∙)−1 represents the generalized inverse of a matrix. 

Solution of the measuring equation gives the estimate (the exact value is 𝒄 = [𝑐1, 𝑐2] =
[1.23, −0.56]) 

a) example 

𝒄 = 𝑯−1𝑸 = [𝑐𝑒1 𝑐𝑒2] = [1.2319, −0.5643] 
b) example 

𝒄 = 𝑯−1𝑸 = [𝑐𝑒1 𝑐𝑒2] = [1.2200, −0.5919] 
Residual 𝒓𝐿𝑆 = 𝑸 − 𝑐𝑒1𝒒1 − 𝑐𝑒2𝒒2 resulting from this estimate is (in %) 

a) example 

𝒓𝐿𝑆 = [−3.13,1.74, −0.36, −0.39, −0.23, −0.02,0.08,0.09, −0.05,0.03] 
b) example 

𝒓𝐿𝑆 = [5.78,9.65,21.36, −14.23,15.17,3.28,12.27, −9.19, −8.67, −7.23] 
Residual in the second example is noticeably larger because the error vector much has larger 

mean, -0.04718 compared to 0.0053, which is almost 9 times larger in absolute value. 

Note that residual is calculated in relation to the measurement with error and the residual related 

to the exact (unknown) measurement 𝑸0 = 𝑐1𝒒1 + 𝑐2𝒒2 is significantly smaller (in %) 

a) example 

𝒓0𝐿𝑆 = [−0.29, −0.09, −0.01,0.03, −0.002, −0.006, −0.006, −0.02,0.01,0.04] 
b) example 

𝒓0𝐿𝑆 = [0.064,1.048, −0.903, −6.326, −5.885, −1.977,0.359,0.892, −0.079, −2.302] 
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In practice this residual can not be calculated since the exact measurement 𝑸0 is unknown. This 

confirms the previous statement that we are searching for the projection of the measurement vector 

in the component space. 

 

3.2 Weighted least-squares examples 
 
We are solving the same examples as before with the same 𝒒1, 𝒒2, 𝒒𝑒𝑟𝑟 only this time with a 

weighing matrix 𝑹 following the weighted least squares procedure. 

a) example 

We have adapted the covariance matrix to the error vector, which we could not do in reality since 

𝒒𝑒𝑟𝑟 is unknown. Absolute error in percent relative to the measured value 𝑸 is  

𝒒𝑝𝑒𝑟 = [2.86,2.08,0.27,0.38,0.26,0.02,0.09,0.1,0.07,0.01] 

𝑹 = 𝑑𝑖𝑎𝑔[𝒒𝑝𝑒𝑟] 

𝑷−1 = (𝑯𝑇𝑾𝑯)−1 = [
5.1717𝐸 − 06 −1.4505𝐸 − 05

−1.4505𝐸 − 05 4.1427𝐸 − 05
]  

𝑸 = 𝑯𝑇𝑾𝑸 = [11128283.9 3882869.3] 
𝒄 = 𝑷−1𝑸𝑊 = [𝑐𝑤1, 𝑐𝑤2] = [1.2308, −0.5619] 
For this example with small error we have obtained only slightly better results then with the least 

squares procedure. 

b) example 

Here, the absolute error in percent relative to the measured value 𝑸 is much larger (over 20% 

for measuring points) 

𝒒𝑝𝑒𝑟 = [5.72,8.53,22.48,8.44,22.36,5.35,11.85,10.0,8.59,5.06] 

𝑹 = 𝑑𝑖𝑎𝑔[𝒒𝑝𝑒𝑟] 

𝑷−1 = (𝑯𝑇𝑾𝑯)−1 = [
0.001662 −0.0001787

−0.0001787 0.005731
] 

𝑸 = 𝑯𝑇𝑾𝑸 = [736.407 −75.4468] 
𝒄 = 𝑷−1𝑸𝑊 = [𝑐𝑤1, 𝑐𝑤2] = [1.2375, −0.5640] 
For this example with large error we have obtained much better results then with the least squares 

 

 

  
(a) First example (b) Second example 

Fig. 2 Residuals for two examples 
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procedure. Residual (in %) 𝒓𝐿𝑆 = 𝑸 − 𝑐𝑤1𝒒1 − 𝑐𝑤2𝒒2 resulting from this estimate is much smaller 

than for pure least squares. 

 

3.3 Polynomial example 
 

Here the example is of the form 𝑸 = ∑
𝑖

𝑚

[(𝑐11𝑥𝑖 + 𝑐12)𝒒1 + 𝑐20𝒒2] with fifteen measurement 

points, m=15 and three unknown coefficients, 𝑐11, 𝑐12 and 𝑐20, i.e., 𝑛 = 3. We will apply the 

forward model to produce the data, add some error and then try to estimate the coefficients used in 

the forward model. Parameters for the forward model are 

𝑐11 = −0.2222;     𝑐12 = 3.2222;     𝑐20 = −0.56 

𝒒1 = [2.0,1.5,1.67,1.75,2.2,2.17,2.43,2.38,2.56,2.9] 
𝒒2 = [−0.683, −1.319,0.051,1.764,2.118,0.725, −1.171, −1.854, −0.713,1.188] 
𝒒𝑒𝑟𝑟 = [−0.154, −0.203, −0.372,0.107, −0.278, −0.115, −0.386,0.440,0.334,0.155] 
𝐸[𝒒𝑒𝑟𝑟] = −0.3159 

𝑸 = [5.746,6.319,10.30,13.74,20.31,20.67,23.69,22.12,23.03,23.36,18.59,13.16,6.209,  
−3.510, −14.76] 

Graphical representation of data vectors is given in Fig. 3 where 𝑸0 is the cumulative vector 

without an error and 𝑸 = 𝑸0 + 𝒒𝑒𝑟𝑟 is the cumulative vector with the error; one could see the 

influence of data vectors 𝒒1 and 𝒒2 represented graphically and asses the error introduced with 

the error vector 𝒒𝑒𝑟𝑟. 

Solution (the exact coefficients are 𝒄 = [𝑐11, 𝑐12, 𝑐20] = [−0.2222,3.2222, −0.5600])  

𝒄 = 𝑯−1𝑸 = [𝑐𝑒11 𝑐𝑒12 𝑐𝑒20] = [−0.2198,3.1784, −0.5468]. The errors in percent are [-

1.08%, -1.36%, -2.4%] respectively. Here, the measurement matrix 𝑯 is [15 × 3] and comprises 

the Vandermonde matrix 𝑽 where 𝑉𝑖𝑗 = 𝑥𝑖
𝑗−1

 and data vectors 𝑯𝑗,𝑖 = [𝑉𝑗1𝑞𝑗1, (𝒒𝑖)𝑗]. 

 

 

 

Fig. 3 Graphical representation of data vectors in the example 
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3. Discussion 
 

Error vector is not known in advance and cannot be directly included into the solution procedure. 

Introduction of an error vector changes the original problem and the recovery of the exact value of 

the model coefficients is not possible when the error vector is too large. We have obtained very good 

results with weighted least squares procedure only because we have assumed some knowledge about 

the error vector. One could use various assumptions about error stochastic properties (e.g., the error 

is represented as a random filed with a stationary mean) to improve the procedure for recovery of 

the unknown coefficients. There are many possible procedures for error treatment: one could use 

weighted least squares (Gibbs 2011), some ‘a priori’ assumptions like in Ibrahimbegović et al. 

(2020), Sarfaraz et al. (2018) or some ‘a posteriori’ assumptions. However, improvements in error 

handling remain open for further investigation. 

One should mention that nowadays neural networks could be used for the problems presented 

here as they are capable of computing any function (Nielsen 2015). However, solving for presence 

of known functions in another function is better suited for the approach based on the least squares 

method as given in the paper. 

 

 
4. Conclusions 
 

Data vectors are a common result of measurements on engineering structures. Often we old like 

to know the relationships between various data vectors, i.e., perform a factor analysis. We have 

demonstrated how one could perform factor analysis on data vectors corrupted with some sensor 

errors by transforming the formulation into a measurement problem. This greatly simplifies the 

problem and enables the use of least squares methods, like least squares or weighted least squares. 

The most important factor in weighted least squares is a proper determination of the error covariance 

matrix. Results obtained in practical examples are satisfactory for practical engineering applications. 
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