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Abstract.  The key parameter that affects the consolidation process of soil is the coefficient of permeability. The 
common assumption in the consolidation analysis is that the coefficient of permeability is porosity-dependent. 
However, various authors suggest that the strain-dependency of the coefficient of permeability should also be taken 
into account. In this paper, we present results of experimental and numerical analyses, with an aim to determine the 
strain-dependency of the coefficient of permeability. We present in detail both the experimental procedure and the 
finite element formulation of the two-dimensional axisymmetric numerical model of the oedometer test (standard 
and modified). We perform a set of experimental standard and modified oedometer tests. We use these experimental 
results to validate our numerical model and to define the model input parameter. Finally, by combining the 
experimental and numerical results, we propose the expression for the strain-dependent coefficient of permeability. 
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1. Introduction 
 

The consolidation represents the time change in the volume of the saturated soil due to applied 

load. Namely, when the load is applied to the saturated soil, it is first carried by the water in the 

pores, which causes the rapid increase in the pore water pressures, called excess pore pressures. 

The excess pore pressure build-up causes the water to drain out of the pores. During this process, 

the load is gradually transferred from pore water to the soil skeleton, resulting in the rise of the 

effective stresses. This causes the compression of the soil skeleton, resulting in a decrease in the 

soil volume, i.e., the settlements. After the excess pore pressures drop to zero, there is no more 

change in the effective stresses, hence neither in the volume of the soil sample, and we can state 

that the consolidation has ended. One of the key parameters that determine the rate of soil 

consolidation is the permeability of the soil, expressed through the coefficient of permeability 

(Liang et al. 2017). For high-permeability soils, such as sand or gravel, the consolidation occurs 
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practically immediately after the load is applied. On the other hand, for low-permeability soils, 

such as clays, the consolidation can last for a very long time, measured in years.  

The pioneering works in the mathematical formulation of soil consolidation are Terzaghi’s 

theory of one-dimensional consolidation (Terzaghi 1943) and Biot’s theory of three-dimensional 

consolidation (Biot 1941). Both theories assume that the soil is linear elastic, deformations are 

small, and the pore water flow is governed by Darcy’s law. Furthermore, the compressibility and 

the permeability of the soil are assumed constant during the consolidation process.  

Biot’s theory of three-dimensional consolidation is commonly used in the numerical modeling 

of the solid phase-pore fluid interaction problems (Singh and Sawant 2014, Tasiopoulou et al. 

2015a, 2015b, Hadzalic et al. 2018, 2019, 2020, Radhika et al. 2020), such as the embankment 

consolidation analysis (Borges 2004, Huang et al. 2006, Al-Shakarchi et al. 2009, Oliveira nad 

Lemos 2011). The end result of the embankment consolidation analysis is the consolidation curve: 

time-embankment settlement, which is used in the embankment design and the embankment 

construction schedule. The value of the embankment settlement is controlled by the deformability 

parameters of the soil, and the rate of the settlement by the coefficient of permeability, which is 

usually assumed to be to be porosity-dependent (Di and Sato 2003, Xie and Leo 2004, Zhuang et 

al. 2005, Geng et al. 2006, Zou et al. 2017, Plaxis 3D Reference Manual 2021). The coefficient of 

permeability of the soil can be determined directly from the constant head or falling head 

permeability tests, or indirectly from the standard oedometer test. 

In a standard oedometer test, the lateral movements of the soil sample are restrained and the 

deformation occurs only in the vertical direction. The load is applied, and the settlements of the 

soil sample in time are monitored. The conditions simulated in the standard oedometer test are 

valid only in narrow central areas in the soil under the embankment, where the lateral movements 

are indeed prevented (Fig. 1, zone A) (Wood 2009). However, in other areas, this assumption no 

longer holds since the deformation occurs in both vertical and horizontal directions (Fig. 1, zone B 

and C). Due to this, various authors suggest that the strain-dependency of the coefficient of 

permeability should also be taken into account in the numerical analysis of soil consolidation 

(Rowe 1959, Kirby and Blunden 1991, Wong and Li 2001). 

 

 

 

Fig. 1 Zones in soil under the embankment with different strain states 

 

 

In this paper, we aim to establish the relation between the strain state and the coefficient of 

permeability. To achieve this goal, we combine the results of experimental and numerical analyses. 

First, we confirm the strain-dependency through a series of experimental tests on clay samples. 

Namely, we measure the value of the coefficient of permeability before and after sample 

deformation in a modified oedometer test, which allows lateral movements. For determining the 
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value of the coefficient of permeability we use the falling head permeability test. Next, we form a 

numerical model of the oedometer test. First, we verify the proposed numerical model by 

comparing the computed results for a standard oedometer test against those obtained 

experimentally. Second, we combine the experimental results with the results of numerical 

simulations of the modified oedometer test, and we propose the expression for the strain-

dependent coefficient of permeability. 

The outline of the paper is as follows. In Section 2, we introduce an experimental testing 

procedure for confirming the strain-dependency of the coefficient of permeability, which combines 

the falling head permeability test and modified oedometer test. In Section 3, we present the main 

details of the finite element formulation of a two-dimensional axisymmetric numerical model of 

the standard and the modified oedometer test. In Section 4, we present the results of experimental 

and numerical analyses. We compare the computed results against those obtained experimentally, 

and we propose the expression for the strain-dependent coefficient of permeability. In Section 5, 

we give our concluding remarks. 

 

 

2. Experimental analysis  
 

The coefficient of permeability k can be determined directly from the constant head or falling 

head permeability tests, or indirectly from the coefficient of consolidation cv, which is commonly 

determined from the standard oedometer test. The relation between the coefficient of permeability 

and the coefficient of consolidation is given as 

 
oed

v
w

k E
c




=  (1) 

where Eoed is the oedometer or constrained modulus, and w is the unit weight of the water. The 

relation between the oedometer modulus, and Young’s modulus E and Poisson ratio  is given as 
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In this Section, we first aim to experimentally confirm the strain-dependency of the coefficient 

of permeability. To do so, we combine the falling head permeability test and the modified 

oedometer test. Namely, we first conduct a falling head permeability test on a clay sample and 

obtain the value of the coefficient of permeability before deformation. Next, we subject the clay 

sample to deformation by performing a modified oedometer test, which allows lateral movement. 

Finally, we repeat the falling head permeability test on a deformed clay sample, and we obtain the 

value of the coefficient of permeability after deformation. In total, we test five clay samples from 

two different locations (Table 1).  

The falling permeability test is performed in a specially designed apparatus (Fig. 2), which 

enables the test to be conducted before and after the deformation of the sample. Namely, the 

device is equipped with two profiled pipes with diameters of 94 mm and 79 mm. We first perform 

the falling head permeability test for the clay sample 20 mm high with a diameter of 94 mm placed 

in the larger diameter pipe. Next, we cut the sample to the diameter of 70 mm required by the 

apparatus for the oedometer test, and we perform the modified oedometer test. Finally, we again 

perform the falling head permeability test where we place the deformed sample from the modified  
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Fig. 2 Modified falling head permeability test 

 

 

Fig. 3 Standard oedometer test 

 

 

oedometer test in the pipe with a diameter of 79 mm. The profile pipe diameter of 79 mm is 

chosen because the diameter of the deformed sample from the modified oedometer test is no 

longer 70 mm, but larger due to free lateral movement. The new diameter of the sample is known 

only after the test. Due to this, we have chosen the diameter of 79 mm, to be able to use the same 

profiled pipe for all tested samples. The gap between the pipe and the sample has been sealed with 

acrylic putty in order to ensure the flow of the water only through the clay sample.  

The modified oedometer test is conducted by removing the stiff ring which prevents lateral 

movement from the standard odometer apparatus (Fig. 3). The modified oedometer test is 

performed as follows: A clay sample 20 mm high with a diameter of 70 mm, placed between the 

porous plates, is submerged into the water and loaded with the vertical load of 100 kPa. The 

settlement of the sample in time is monitored. The testing ends when the consolidation curve time-

settlement flattens out, suggesting the end of the consolidation. 
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Table 1 Experimentally obtained values of coefficient of permeability before and after deformation 

Sample No. Location 
Coefficient of permeability before 

deformation kA [10-9 cm/s] 

Coefficient of permeability after 

deformation kB [10-9 cm/s] 
Ratio 

1 Bugojno 2.82 8.51 3.02 

2 Bugojno 2.53 7.43 2.94 

3 Bugojno 2.85 9.43 3.34 

4 Maglaj 6.70 13.7 2.05 

5 Maglaj 10.2 24.5 2.40 

 
Table 2 Experimental results of standard oedometer tests 

Sample 

No. 
Location 

Coefficient of 

consolidation cv [10-4 cm2/s] 

Initial settlement sp 

[mm] 

Settlement during primary 

consolidation spk [mm] 

Oedometer moduli 

Eoed [kPa] 

a Bugojno 3.70 0,106 0.0840 23 683 

b Bugojno 4.03 0,344 0.1060 18 543 

c Bugojno 3.67 0,418 0.1035 18 919 

d Maglaj 4.02 0,423 0.0555 36 732 

 

 

The experimentally obtained values of the coefficient of permeability before and after the 

deformation are presented in Table 1. The experimental results confirm that the coefficient of 

permeability depends on the strain state of the sample. 

We also perform standard oedometer tests with an aim to use the results from these tests to 

validate our numerical model for the case of the standard oedometer test. In total, we test four clay 

samples from two different locations (Table 2). The results of experimental tests in terms of 

coefficient of consolidation, initial settlement, settlement during primary consolidation, and 

oedometer moduli are summarized in Table 2. The initial settlement is due to adjustment of the 

sample and the porous plates, and its value can be significantly larger than the settlement during 

the primary consolidation. This initial settlement is not included in the numerical model, which is 

presented in the next Section. 

 

 
3. Numerical model  
 

In this Section, we present a two-dimensional axisymmetric numerical model of the oedometer 

test (standard and modified), which implements Biot’s theory of consolidation (Lewis and 

Schrefler 1998, Smith and Griffiths 2004, Zienkiewicz and Taylor 2005, Ibrahimbegovic 2009).  

The basic assumptions of Biot’s theory are that the soil is saturated and linear elastic, the 

deformations are small, the pore water and soil particles are incompressible, and the pore water 

flow is governed by Darcy’s law. Biot’s theory assumes that the compressibility and the 

permeability of the soil remain constant during the consolidation process.  

To define the governing equations of the coupled problem, Biot’s theory combines equilibrium 

and continuity equation. The equilibrium equation implements Terzhagi’s principle of effective 

stresses, which states that the total normal stress  is equal to the sum of the effective stress ’ 
carried by the soil skeleton and the pore pressure p carried by the water in the pores, written as 
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 ' bp= +   (3) 

where b is the Biot coefficient; if the soil particles and the water in the pores are assumed to be 

incompressible, which are basic assumptions in soil mechanics, then b=1. The effective part of the 

total normal stress is computed from the constitutive equations.  

The strong form of the equilibrium equation in cylindrical coordinates is written as 

 

0

0

rr zr

rz rz z
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where σr is the radial normal stress, σθ is the tangential normal stress, σz is the vertical normal 

stress, τrz is the shear stress, r is the distance from the axis of symmetry, and z is the vertical 

coordinate axis. 

The constitutive equations for the linear elastic behavior of soil are written as 
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where εr is the radial strain, εθ is the tangential strain, εz is the vertical strain, γrz is the shear strain, 

and λ and μ are Lame’s coefficients. The strains are given as 
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where u and w are displacements in the radial and vertical direction. 

The strong form of the continuity equation is written as 
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where kr and kz are the coefficients of permeability in the radial and vertical direction, p is the pore 

pressure, and γw is the unit weight of the water. 

Next, we perform the standard finite element discretization procedure and we introduce the 

finite element approximations for the unknown displacement and pore pressure fields. For finite 

element approximation of displacement and pore pressure fields, we use Q8-P4 finite element, 

which assumes quadratic interpolation of the displacement field and linear interpolation of the pore 

pressure field.  

The end result of the standard finite element discretization procedure is the following global 

system of equations, written as 

 T

K u + Cp f

C u - K p 0

m

c

=

=
 (8) 

where Km is the stiffness matrix, Kc is the permeability matrix, C is the coupling matrix, f is the 
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external load vector, u is the vector of unknown nodal displacements, u is the vector of time 

derivatives of nodal displacements, and p is the vector of unknown nodal pore pressures.  
For the standard oedometer test, where lateral movements are restrained and the strain εθ is 

equal to zero, the stiffness matrix Km, the permeability matrix Kc, the coupling matrix C are 

written as 
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(10) 

Here, N u denotes the quadratic interpolation function for the displacement field, and N p  

denotes the linear interpolation function for the pore pressure field. 

For the modified oedometer test, where lateral movements are not restrained and the εθ is not 

equal to zero, in some members of the matrices, r appears in the denominator, which prevents the 

value of these members to be computed accurately when r approaches zero (Smith and Griffiths 

2004). To solve this problem, both equations in (8) are multiplied with r, which results in modified 

B and T matrices that contains the derivatives of shape functions and modified external load 

vector f. The stiffness matrix Km, the permeability matrix Kc, the coupling matrix C, for the 

modified oedometer test, are written as 
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The global system of equations is solved by the means of the trapezoidal rule (Smith and 

Griffiths 2004).  

 

 

4. Numerical results  
 

In this Section, we present the results of several numerical simulations. First, we validate our 

numerical model of the standard oedometer test by comparing computed results in terms of 

consolidation curves against those obtained experimentally. Next, by combining experimental and 

numerical results of the modified oedometer test, we propose the expression for the strain-

dependent coefficient of permeability. 

All numerical implementations and simulations are performed by using the finite element code 

developed by the authors in Fortran. The geometry of the model, finite element mesh, and the 

boundary conditions for standard and modified oedometer test are shown in Fig. 4. The 

dimensions of the clay sample are 20×33 mm. The stone porous plate, 3 mm thick, is placed on the 

top of the sample. The sample is loaded with 100 kPa.     

 

 

 
(a)                                                                      (b) 

Fig. 4 Geometry of the model, boundary conditions and finite element mesh (a) standard oedometer test (b) 

modified oedometer test 
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We assume that the stone porous plate and the clay sample are linear elastic. The material 

properties of the stone porous plate are: Young’s modulus E=30 000 MPa, Poisson’s ratio υ=0.2, 

and coefficient of permeability k=10 000 mm/min. 

In all numerical simulations, we assume that the coefficient of permeability and oedometer 

moduli of clay sample change in time but that the coefficient of consolidation remains constant 

(Eq. (1)) (Davis and Raymond 1965). For both numerical models of standard and oedometer tests, 

we explain in detail how the values of these parameters are selected. 

 
4.1 Standard oedometer test 
 

In Table 3, we give the average values of coefficient of permeability by locations: the average 

values of coefficient of permeability before and after deformation, and the values of coefficient of 

permeability computed from average values of coefficient of consolidation and oedometer moduli, 

obtained from standard oedometer tests, using Eq. (1). 

 

 
Table 3 Average values of coefficient of permeability by locations 

Sample 

No. 
Location 

Coefficient of permeability 

before deformation 

kA [10-9 cm/s] 

Coefficient of permeability 

after deformation 

kB [10-9 cm/s] 

Coefficient of permeability 

obtained from Eq. (1) 

kC [10-9 cm/s] 

I Bugojno 2.73 8.46 1.94 

II Maglaj 8.45 19.1 1.11 

 

 

From the results shown in Table 3, we can conclude that the average values of coefficient of 

permeability before deformation kA obtained from the falling head test are about 40% higher than 

the values of coefficient of permeability obtained using Eq. (1). The difference is due to the initial 

settlement in the standard oedometer test, which is due to the porous plates adjustment. In order to 

overcome this difference, the initial value of the coefficient of permeability k0 in our numerical 

model is obtained by combining the values kA and kC using the following expression 

 ( )0

p

A A C

p pk

s
k k k k

s s
= − −

+
 (13) 

The coefficient of permeability is assumed to be porosity-dependent. The porosity dependence 

coefficient of permeability is usually defined with the following expression (Plaxis 3D Reference 

Manual 2021) 

 
0

0 10 k

e e

c
k k

−

=   (14) 

where e0 is the initial void ratio of the clay sample, e is the void ratio of clay sample in time and ck 

is the constant (0.4-0.5) e0.  

In our numerical simulations, we assume that the coefficient of permeability changes from the 

initial value computed based on the initial void ratio, and the final value computed based on the 

final value of the void ratio. The initial void ratio e0 and the final void ratio ek are obtained from 

the experimental standard oedometer tests for different locations. Based on the initial value of the 

coefficient of permeability and initial oedometer moduli, we can compute the coefficient of  
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Table 4 Input material parameters of clay sample for numerical model of standard oedometer test 

Sample No. I II 

Location Bugojno Maglaj 

Initial void ratio e0 0.690 0.568 

Final void ratio ek 0.681 0.564 

Initial coefficient of permeability k0 [10-9 cm/s] 2.13 1.96 

Final coefficient of permeability kk [10-9 cm/s] 1.98 1.88 

Initial oedoemeter moduli Eoed,0 [kPa] 18 649 35 273 

Final oedoemeter moduli Eoed,k [kPa] 20 103 36 732 

Coefficient of consolidation [10-4 cm2/s] 4.05 7.05 

 

 

Fig. 5 Numerical and experimental consolidation curves for standard oedometer test, location Bugojno 

 

 

Fig. 6 Numerical and experimental consolidation curves for standard oedometer test, location Maglaj 

 

 

consolidation of the clay sample, which we assume remains constant throughout the simulation. 

Using Eq. (1) we are able to compute the final value of the coefficient of permeability kk. Then, 

from the known value of the coefficient of consolidation and the final value of the coefficient of 

permeability, we are able to compute the final value of oedometer moduli. The input material 

parameters of the clay sample for the numerical model of the standard oedometer test are given in 

Table 4.   

In our numerical simulations, the values of the coefficient of permeability and oedometer 

moduli are linearly increased at each time step from the initial to the final value, whereas the value 
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of the coefficient of the consolidation remains constant at each time step. 

The results of numerical simulations in terms of consolidation curves are given in Figs. 4 and 5. 

We can conclude that the computed consolidation curves show a good match with those obtained 

experimentally.  

Next, we perform the numerical simulations of the modified oedometer test in order to establish 

the strain-dependency of the coefficient of permeability.  

 

4.2 Modified oedometer test 
 

The oedometer modulus is the modulus that corresponds to the conditions of restrained lateral 

movement. The values of initial oedometer modulus given in Table 4 are obtained from an 

experimentally performed standard oedometer test, in which the lateral movements of the sample 

are restrained. If these values were to be used in numerical simulations of the modified oedometer 

test, we would not be able to obtain a match between numerical and experimental results, because 

of different boundary conditions. Thus, the new initial and the final value of oedometer moduli are 

obtained by matching the experimentally and numerically obtained values of settlement, for the 

case of the modified oedometer test. On the basis of the assumption that the coefficient of 

consolidation remains constant with the values given in Table 4, the initial and the final value of 

the coefficient of permeability are computed using Eq. (1). The input material parameters of the 

clay sample for the numerical model of the modified oedometer test are given in Table 5.  

In our numerical simulations, the values of the coefficient of permeability and oedometer 

moduli are linearly increased at each time step from the initial to the final value, whereas the value 

of the coefficient of the consolidation remains constant at each time step. The experimental and 

 

 
Table 5 Input material parameters of clay sample for numerical model of modified oedometer test 

Sample No. I II 

Location Bugojno Maglaj 

Initial coefficient of permeability k0 [10-9 cm/s] 2.66 2.10 

Final coefficient of permeability kk [10-9 cm/s] 3.39 2.63 

Initial oedoemeter moduli Eoed,0 [kPa] 14 906 32 958 

Final oedoemeter moduli Eoed,k [kPa] 11 731 26 330 

Coefficient of consolidation [10-4 cm2/s] 4.05 7.05 

 

 

Fig. 7 Numerical and experimental consolidation curves for modified oedometer test, location Bugojno 
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Fig. 8 Numerical and experimental consolidation curves for standard oedometer test, location Maglaj 

 

 

computed consolidation curves are shown in Figs. 6 and 7. We can conclude that a good match 

between the results is obtained.  

Next, we aim to identify the strain-dependency of the coefficient of permeability. We assume 

that the strain-dependency of the coefficient of permeability is defined with the following 

expression 

 
0

0 10
0.66

k

e e

cs vk k
 



−

=     (15) 

where εv is the volumetric deformation, εs is the shear deformation, α is the coefficient of the 

change in permeability, and the value of 0.66 represents the ratio of shear and volumetric 

deformation in standard oedometer test. The volumetric deformation εv and the shear deformation 

εs, are computed as 

 

1 2

2 2

3 3

v z

s r

 

 

 
    =   

 −   
 

 (16) 

The change in the void ratio Δe at each time step is computed following the expression 

 0(1 )ve e =   +  (17) 

where Δεv is the change in the volumetric deformation. At each time step, the new value of void 

ratio e is equal to 

 0e e e= −  (18) 

Then, based on the computed value of the void ratio, and computed values of volumetric and 

shear deformation, we proceed to compute the numerical value of the coefficient of permeability 

using Eq. (15). The only unknown parameter in Eq. (15) is the parameter α. We identify this 

parameter by matching the expression on the right side of Eq. (15) with the input value of the 

coefficient of permeability. The identified values of parameter α for locations Bugojno and Maglaj 

are given in Table 6.  
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Identification of the strain-dependent coefficient of permeability by combining the results… 

Table 6 Identified values of the coefficient of the change in permeability α 

Sample No. I II 

Location Bugojno Maglaj 

Coefficient of change in permeability α [-] 0.355 0.329 

 
 

5. Conclusions 
 

In this paper, we have performed experimental and numerical oedometer tests, both standard 

and modified, with an aim to identify the strain-dependency of the coefficient of permeability.  

First, we have presented an experimental testing procedure, which combines the falling head 

permeability test and oedometer test. The obtained experimental results confirm the assumption 

that the value of the coefficient of permeability depends on the strain state. Next, we have 

presented a two-dimensional axisymmetric numerical model of the oedometer test, which 

implements Biot’s porous media theory. The input values of model parameters are obtained from 

experimental results. The numerical model was first validated by comparing the computed 

consolidation curves against those obtained experimentally, for the case of the standard oedometer 

test. Then, by performing the numerical simulations of the modified oedometer test and by 

combining the experimental and numerical results, the expression for strain-dependency of the 

coefficient of permeability is proposed, and the unknown parameter of change in permeability α is 

identified. 

The research in this paper can have practical importance, Namely, the use of the strain-

dependent value of the coefficient of permeability in the embankment design can result in the 

earlier start of works on pavement structure, hence in an earlier finish of the complete works. The 

plans for future works include an extension to the case of nonlinear behavior of soil.     
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