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Abstract.  In this work, we present the development of a 3D lattice-type model at microscale based upon the 
Voronoi-cell representation of material microstructure. This model can capture the coupling between mechanic and 
electric fields with non-linear constitutive behavior for both. More precisely, for electric part we consider the 
ferroelectric constitutive behavior with the possibility of domain switching polarization, which can be handled in the 
same fashion as deformation theory of plasticity. For mechanics part, we introduce the constitutive model of plasticity 
with the Armstrong-Frederick kinematic hardening. This model is used to simulate a complete coupling of the chosen 
electric and mechanics behavior with a multiscale approach implemented within the same computational architecture. 
 

Keywords:  finite element method; lattice model; multi-scale model; piezoelectricity; Voronoi-cell 
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1. Introduction 
 

This works seeks to provide a multi-scale strategy for analysis of smart materials and structures, 

which is very timely effort nowadays. There is a noticeable trend of miniaturization in the state-of-

the-art smart materials applications. The smaller these devices are, the more efficient they tend to 

be due to the control of the microstructure Rowe (2018). Namely, the inclusion of thermoelectric 

materials in a crystal lattice structure helps improving performance by reducing the thermal 

conductivity White (2008). Also, this miniaturization has allowed placing an increasing number of 

sensors and actuators on a structure to monitor and control the current state and structure health. 

Numerically, the direct study of macro models is no longer valid to describe the behavior of a 

structure without a correct homogenization process. The inclusions of devices or materials in the 

microstructure requires a more detailed study of micro or even nanoscales. 

Additionally, the more realistic models for electromagnetics and mechanics induce localizations 

that are easier to represent in a reliable manner only at a smaller scale. 
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There is a large number of references on homogenized solid finite element computation with 

localized failure and plasticity for mechanics only such as Belytschko et al. (1988), Simo et al. 

(1993), Armero and Garikipati (1996), Brancherie and Ibrahimbegovic (2009), Saksala et al. (2015), 

Do et al. (2017), Karavelić et al. (2019), but none is meant for the problem studied herein. 

Different numerical representations of micro-models are available. In terms of numerical 

efficiency, a structure in terms of Voronoi cell representation with an irregular cohesive discrete 

lattice model is quite advantageous. This representation is best suited when trying to replicate the 

multi-scale behavior of a material composed of different micro-behaviors Ostoja Starzewski (2002). 

The cohesive links are one-dimensional finite elements, such as trusses or beams. This 

representation can fully replicate the behavior of an equivalent continuum structure Nikolić et al. 

(2018). 

In the literature, several papers can be found on the inclusion of embedded discontinuity models 

in lattice-type structures such as Nikolic and Ibrahimbegovic (2015), Schlangen and Garboczi 

(1997), Ibrahimbegovic and Delaplace (2003), Ibrahimbegovic and Melnyk (2007), Bui et al. 

(2014). In terms of coupling mechanics with other physics, there are a few references available, for 

instance, poroplastic media with fluids Hadzalic et al. (2019), Nikolic et al. (2016), or coupling with 

thermal field Ngo et al. (2013). 

Regarding more elaborated constitutive models in terms of ferroelectrics, there are a handful of 

references that describe this behavior for macro-scale in a similar fashion as plasticity, such as Miehe 

et al. (2011), McMeeking and Landis (2002), Huber et al. (1999), McMeeking and Hwang (1997). 

Other references focus on the behavior of the crystals at a micro-scale level, for example Hwang et 

al. (1995), Chen and Lynch (1998). A complete description on the typical ferroelectric hysteresis 

loops can be found in Damjanovic (2006), including the description of Debye models, such as Palma 

et al. (2018). References on multi-scale modeling of ferroelectrics and ferromagnetics can be found 

as well in the literature like Labusch et al. (2016), Daniel et al. (2004, 2008, 2014), among others. 

The main objective and novelty of this work is to obtain a numerical model for lattice of beams 

to replicate the micro behavior of a ferroelectric grain. The proposed model also implements a non-

linear viscoplasticity. The remanent polarization is also described, following Hwang et al. (1995), 

as a constant value added on top of the linear electric displacement. A polarization multiplier 

determines the evolution of the remanent polarization and strain. Each beam pictures a grain of the 

material. Therefore, the lattice model produces the macro response of a heterogeneous ferroelectric 

model. This response can be obtained by averaging the internal values of the system, or through a 

process of homogenization where the stiffness terms are created by a consistent interpolation 

Rukavina et al. (2019). 

All the numerical implementations and computations are carried out with the computer code 

FEAP-Finite Element Analysis Program Zienkiewicz and Taylor (2005). This code has been 

developed at the University of Berkeley, California, by Prof. R.L. Taylor. 

The outline of the paper is as follows. In Section 2, we briefly present basic lattice model for 

mechanics. Its extension for ferroelectrics is given in Section 3. The numerical implementation is 

described in Section 4. Several numerical simulations are given in Section 5. Concluding remarks 

are stated in Section 6. 

 
 
2. Basics of a lattice-type model 

 

To create a model of this type, the domain to study is divided into polyhedral regions. The  
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Fig. 1 Left, two adjacent Voronoi cells held together by the corresponding lattice model. Right, the 

assumed shape of the beam and the approximation of the circular cross-section 

 

 

circumcenter of each polyhedron, defined as the point that is located at the same distance of each 

vertex of the polyhedron and the center of the circumscribed sphere, constitutes one of the ends of 

the lattice beam. Two adjacent Voronoi cells are held together with a lattice beam which is chosen 

as a beam Nikolić et al. (2018), Bui et al. (2014). 

In Fig. 1 left, two adjacent cells, and the corresponding lattice beam are pictured. As a property 

of the circumcenter, the beam is perpendicular to the joint face of these two cells. Also, the face 

intersects in the middle of the beam, dividing it into two halves. 

The transversal area associated with this beam is the area of the joint face, a polygon, as depicted 

in Fig. 1 right. The transversal area is assumed to be an equivalent circle with the same area to 

simplify the calculation of the beam properties. The lattice beams define the dual mesh of the 

Voronoi cell. Delaunay algorithms for the creation of tetrahedron are used to create the mesh of 

beams that will be used to solve the problem. 

 
2.1 Notation for beam model 
 

The selected model for the beam is in agreement with Timoshenko hypotheses, where the 

transversal sections can be rotated with respect to the normal of the neutral line. The degrees of 

freedom for the mechanic field are three displacements and three rotations: 

𝒖 = (𝑢1, 𝑢2, 𝑢3, 𝜑1, 𝜑2, 𝜑3)
⊤ 

The generalized strain measures are ordered in a vector: 

𝜀 = (𝜀1, 𝛾12, 𝛾13, 𝜅1, 𝜅2, 𝜅3)
⊤ 

The corresponding internal force vector: 

𝑭 = (𝑁1, 𝑁2, 𝑁3, 𝑀1,𝑀2,𝑀3)
⊤ 

Regarding the electric field, the only degree of freedom is the electric potential 𝑉. For the beam 

model, only the axial component 𝑥1 is relevant; thus, by definition, the electric field 𝐸1 and the 

electric displacement 𝐷1 are scalars along any lattice. Assuming the homogeneity of any variable 

within every section, we can define the electric charge as 𝑄1 = 𝐷1𝐴, with 𝐴 as the cross-section 

area of the beam. 
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Fig. 2 Local frame representation for a beam. The local direction 1 is oriented from local node 1 

to 2. Local directions 2 and 3 are randomly chosen, but remain perpendicular to the beam axis 

 

 

A point on the beam can also be represented in global coordinates as: 

𝒙̃ = (𝑥̃1, 𝑥̃2, 𝑥̃3)
T 

where the tilde overscript ∼ is used in this section to describe that the corresponding variable is 

expressed in the global orthonormal basis. This basis is composed of base unit vectors 𝒆𝑖
𝐺 for every 

direction 𝑖. The point can also be expressed in beam local coordinates as: 

𝒙 = (𝑥1, 𝑥2, 𝑥3)
⊤ 

Notice that the overscript omitted from the notation means that the vector is expressed in local 

coordinates. This local basis is comprised of base unit vectors 𝒆𝑖 for every direction 𝑖. The axial 

direction of the beam is alwavs the first one. Since the beam section is considered circular, transverse 

directions are taken randomly and normal to the axial direction, in agreement with the right-hand 

rule, as illustrated in Fig. 2. 

The rows of the transformation matrix 𝑻 are the base unit vectors 𝒆𝑖  expressed in global 

coordinates: 

𝑻 = (

← 𝑒̃1
⊤ →

← 𝑒̃2
⊤ →

← 𝑒̃3
⊤ →

) 

This transformation matrix is used to change the basis in which every variable is denoted. In 

general, a tensor 𝑨 of any order is expressed in global coordinates as: 

𝐴̃𝑖𝑗𝑘𝑙… = 𝑇𝐼𝑖𝑇𝐽𝑗𝑇𝐾𝑘𝑇𝐿𝑙 …𝐴𝐼𝐽𝐾𝐿… 

 
2.2 Kinematic equations 
 

Kinematic equations relate displacement and voltage degrees of freedom with generalized strains 
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Multi-scale model for coupled piezoelectric-inelastic behavior 

defining the state or primal variables. For a solid continuum model with the hypothesis on small 

displacements, the corresponding equations that define the infinitesimal strain tensor and the electric 

field vector are: 

𝜀 =
1

2
[∇ ⊗ 𝒖 + (∇ ⊗ 𝒖)⊤] = ∇sy𝒖

𝑬 = −∇𝑉

 

To obtain the reduced model for a Timoshenko beam, we need to take into account that every 

variable only changes in axial direction. Thus, the only relevant strain components are the axial 

strain 𝜀  and transversal shears 𝛾12  and 𝛾13 , as well as the axial electric field 𝐸1 , each one 

constant within the beam cross-section. Besides, as a consequence of the additional degrees of 

freedom for the mechanic field, curvatures 𝜅1, 𝜅2, and 𝜅3 have to be calculated. These assumptions 

will further specialize when considering the Timoshenko kinematic model Bui et al. (2014), the 

continuum version of (8) reduces to: 

(

 
 
 
 

𝜀1

𝛾12

𝛾13

𝜅1

𝜅2

𝜅3

𝐸1 )

 
 
 
 

=

[
 
 
 
 
 
 
 
 
 
 
 
 

∂

∂𝑥1
0 0 0 0 0 0

0
∂

∂𝑥1
0 0 0 −1 0

0 0
∂

∂𝑥1
0 1 0 0

0 0 0
∂

∂𝑥1
0 0 0

0 0 0 0
∂

∂𝑥1
0 0

0 0 0 0 0
∂

∂𝑥1
0

0 0 0 0 0 0
∂

∂𝑥1]
 
 
 
 
 
 
 
 
 
 
 
 

(

 
 
 
 

𝑢1

𝑢2

𝑢3

𝜑1

𝜑2

𝜑3

𝑉 )

 
 
 
 

  

 
2.3 Conservation equations 
 

Conservation principles are used for defining the equilibrium in a material, which are defined in 

terms of partial differential equations. The solid version of these equations is expressing equilibrium 

of mechanical forcer and electric field in the absence of external charges. For this beam model, the 

main hypotheses assumed are that body forces are neglected and a quasi-static approach is taken. 

𝜎∇= 0 

∇ ⋅ 𝑫 = 0 

The adaptation for the beam model includes the hypotheses in the previous section regarding 

one-dimensionality and homogeneity of variables in a transversal section. Thus, the simplified 

version of equilibrium equations for beams reduces to: 

∂𝑁𝑖

∂𝑥1
= 0;

∂𝑀𝑖

∂𝑥1
= 0;

∂𝑄1

∂𝑥1
= 0
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2.4 Constitutive equations for piezoelectricity 
 

Constitutive equations will relate the primal variables with stress or flow variables as 

thermodynamic duals through the given defined material properties. In the case of piezoelectric 

materials, in addition to the conventional relationship between the same kind of variables, electrical 

variables affect the behavior of the mechanical ones and vice-versa. The constitutive equations can 

be derived from the free-energy potential as defined in Moreno-Navarro et al. (2018), from which 

we can retrieve: 

𝜎 = 𝐶𝜀 − 𝑒𝑒𝐸
𝐷 = 𝜖𝐸 + 𝑒𝑒𝜀

 

The coefficients used in (12) are the fourth-order stiffness tensor 𝑪, the third-order piezoelectric 

tensor 𝑒𝑒, and the second-order permittivity tensor 𝜖, all of them obtained for assumed material 

properties of piezoelectricity. 

To reduce such constitutive model to beams, we need to account for the simplification made in 

the last sections. First, only a few components of primal variables are relevant, so are the 

corresponding material tensor entries. Second, the addition of rotational degrees of freedom for the 

mechanic field introduces new structural variables into the stiffness tensor. Finally, only axial strain 

affects the axial electric variables and vice-versa. With these assumptions in hand, we can write the 

beam-model version of (12): 

(

 
 
 
 

𝑁1

𝑁2

𝑁3

𝑀1

𝑀2

𝑀3

𝑄1)

 
 
 
 

=

[
 
 
 
 
 
 
 
𝐸̆𝐴 0 0 0 0 0 −𝑒11𝐴
0 𝑘𝑐𝐺𝐴 0 0 0 0 0
0 0 𝑘𝑐𝐺𝐴 0 0 0 0
0 0 0 𝐺𝐽 0 0 0

0 0 0 0 𝐸̆𝐼 0 0
0 0 0 0 0 𝐸̆𝐼 0

𝑒11𝐴 0 0 0 0 0 𝜖1𝐴 ]
 
 
 
 
 
 
 

(

 
 
 
 

𝜀1

𝛾12

𝛾13

𝜅1

𝜅2

𝜅3

𝐸1 )

 
 
 
 

 

where 𝐸̆ = 𝐸(1 − 𝜈)/[(1 + 𝜈)(1 − 2𝜈)] is the first term of the stiffness tensor (with 𝐸 as the 

Young's modulus and 𝜈 as the Poisson's coefficient), 𝑘𝑐 is the shear correction factor, 𝐺 is the 

shear modulus, 𝐽 is the polar moment of inertia, 𝐼 is the moment of inertia, 𝜖1 is the permittivity 

in axial direction, and 𝑒11 is the piezoelectric coefficient. Notice that inertia moments are the same 

for 𝑥2 and 𝑥3 directions, and 𝑘𝑐 ≈ 0.9 since the transversal area is considered a circle. 

 
 
3. Ferroelectric model 

 

The beams used in this section have a more elaborated constitutive model than the one presented 

in (13). This model introduces non-linear relations in mechanics (viscoplasticity) and electricity 

(ferroelectricity). A complete description of these constitutive models is presented herein. 

Polarization 𝑷 is a macroscopic magnitude that accumulates the microscopic electric dipole 

moments in a material. These dipoles are either generated in the presence of an electric field or as a 

consequence of a particular microstructure. While the former is proportional to the electric field 

applied, the latter is a permanent value, usually called remanent polarization 𝑃𝑟 , with the only 

possibility of a change of orientation or domain switching Balanis (1999). 

In general, there are three types of macroscopic behavior regarding polarization: dielectric, 

paraelectric and ferroelectric. For the first one, the polarization is linear to the electric field applied;  
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Multi-scale model for coupled piezoelectric-inelastic behavior 

 

Fig. 3 Sketch of a tetragonal unit cell for PbTiO3 below (tetragonal) and above (cubic) 

Curie temperature. Pb in black, O in white and Ti in gray 

 

 

the second one depends on the electric field as well, but the dependency is non-linear; finally, 

ferroelectrics have a dependency on the electric field and, superposed, the remanent polarization 

causing hysteresis phenomena to arise. Ferroelectricity implies always a coupling with the 

mechanical field, since only piezoelectric materials can be ferroelectrics. In fact, they also have to 

be pyroelectrics, but we are not considering in this chapter that kind of coupling Said et al. (2017). 

The appearance of this remanent polarization can be explained clearly from a microstructure 

point-of-view. In this chapter, only polarizable tetragonal cell materials are being discussed De Jong 

et al. (2015). A representative unit cell of this type is sketched in Fig. 3 for PbTiO3 with the 

different microstructure arrangements depending on the temperature. Below the Curie temperature 

𝑇𝑐 , the microstructure is tetragonal, and it behaves as ferroelectric; above this temperature, the 

microstructure is cubic, the remanent polarization is gone, and its behavior is paraelectric. 

The atoms in the center (Ti, in gray) and the corners (Pb, in black) are charged positively while 

the ones in the middle of the faces are charged negatively (O, in white). Above the Curie 

temperature, the cell is perfectly symmetric and cubic, with Ti in the center. Below the Curie 

temperature, the cell reaches minimum potential energy if Ti is ousted from the center in a direction 

towards one of the oxygen atoms. 

This eccentricity creates a microscopic electric dipole due to the misalignment compared with 

the cubic structure. Notice as well that the cell has been enlarged in the same direction of the 

misalignment since Ti repels the top O. If the position of Ti switches to any of the other five 

equilibrium positions, the remanent polarization and the cell enlargement will change as well. 

A strong electric field has to be applied in the desired direction to switch the central atom into 

any of the other minimum positions. This position is also modified if a compressive stress is applied 

in the direction of the current remanent polarization or traction in any of the corresponding 

transversal directions. The angle between the old and the new vector 𝑷𝑟 determines the two types 

of switching: 180∘ and 90∘. An oriented electric field can cause both 180∘ and 90∘ switches, 

whereas stress can only generate a 90∘ switch. 

The selected criteria to determine whether a switch occurs are extracted from Keip and Schröder 

(2011) with the combination of both electric field and stress taken into account. Each switch criterion 

is cast as an energy criterion at a microscopic level, and several possibilities have to be evaluated at 

the same time for both kinds of switch. Namely, a switch can take place if the following conditions 

meet: 
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𝑬 ⋅ Δ𝑷𝑟

2𝑬 ⋅ 𝑷𝑠
≥ 1,   for 180∘ switch 

𝑬 ⋅ Δ𝑷𝑟

𝑬 ⋅ 𝜀𝑠
+

𝝈 ⋅ Δ𝜺𝑟

𝜎 ⋅ 𝜺𝑠
≥ 1,   for 90∘ switch 

 

where the increments Δ𝑷𝑟  and Δ𝜀𝑟  are respectively the tensors of change for remanent 

polarization and strain, while 𝑷s  and 𝜀𝑠  are respectively the spontaneous values of remanent 

polarization and strain induced by internal microstructure. We note that the above conditions need 

to be evaluated for each of the five alternative directions of polarization. 

Any such switch introduces a change in the microstructure and alters the isotropy of the material, 

making it transversally isotropic with a preferential direction in the remanent polarization 

orientation. In Labusch et al. (2016), the authors provide a comprehensive description of the 

enthalpy for magneto-electro-mechanical polarizable materials at a microscale model. We obtain the 

corresponding constitutive equations through the derivation of the enthalpy with respect to the dual 

variables. Since this definition of enthalpy is quadratic, the constitutive coefficients are constant. A 

switch in polarization makes these coefficients to change their value. 

As in the previous solid model for our beam lattice model, the coefficients in (13) are also 

subjected to change with every polarization switch, which implies a change in 𝐸̆, 𝐺, 𝑒11, and 𝜖1. 

The factor that modifies these properties from its non-polarized to its polarized value is the 

polarization multiplier 𝑚 defined through the following linear distributions: 

𝐸̆ = 𝐸̆np + |𝑚|(𝐸p˘ − 𝐸̆np)

𝐺 = 𝐺np + |𝑚|(𝐺p − 𝐺np)

𝑒11 = 𝑒11
np

+ 𝑚(𝑒11
p

− 𝑒11
np

)

𝜖1 = 𝜖1
np

+ |𝑚|(𝜖1
p

− 𝜖1
np

)

 

where the superscripts np and 𝑝 stand for non-polarized and polarized values of each coefficient 

and |𝑚| stands for the absolute value of 𝑚. The values for remanent polarization and remanent 

strain are also a function of this multiplier as defined as follows: 

𝑃1
r = 𝑚𝑃1

s

𝜀1
r = 𝜀1

np
+ |𝑚|(𝜀1

p
− 𝜀1

np
)
 

The activation of these remanent variables modify the constitutive equation (13) in the following 

way: 

(

 
 
 
 

𝑁1

𝑁2

𝑁3

𝑀1

𝑀2

𝑀3

𝑄1)

 
 
 
 

=

[
 
 
 
 
 
 
 
𝐸̆𝐴 0 0 0 0 0 −𝑒11𝐴
0 𝑘𝑐𝐺𝐴 0 0 0 0 0
0 0 𝑘𝑐𝐺𝐴 0 0 0 0
0 0 0 𝐺𝐽 0 0 0

0 0 0 0 𝐸̆𝐼 0 0
0 0 0 0 0 𝐸̆𝐼 0

𝑒11𝐴 0 0 0 0 0 𝜖1𝐴 ]
 
 
 
 
 
 
 

(

 
 
 
 

(𝜀1 − 𝜀1
𝑟)

𝛾12

𝛾13

𝜅1

𝜅2

𝜅3

𝐸1 )

 
 
 
 

+

(

 
 
 
 

0
0
0
0
0
0

𝑃1
r𝐴)

 
 
 
 

 

Two models to represent the switching of polarization and to define the polarization multiplier 

are presented here. For the first one, the only switch considered is the 180∘ since beams lattice can 

only take into account axial variations in voltage. Therefore, 90∘  switches are not possible to 

simulate, the strain is not a factor for 𝑚, and a compressive force cannot depolarize the beam in 

axial direction. 
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Fig. 4 Flowchart to select the switch-state for the next time step 𝑠𝑛+1 based on its previous value 𝑠𝑛 and the 

current value of electric field 𝐸𝑛+1 

 

 

A more refined version of this model requires a small variation to take into account the effect of 

compression and traction in the bar. The idea is to include a third state of the switch of no remanent 

polarization as the replacement for 90∘ switching. This way, every beam can take three states: 

positive, negative, and no axial remanent polarization or zero polarization. This can be enforced as 

a constraint in the same manner as modeling the inextensible beam deformation Medić et al. (2013). 

A numerical difficulty arises when the switch in polarization is implemented as a Heaviside step 

once one of the conditions in (14) is met. This abrupt change can lead to oscillating residual norms 

in the finite element method computations due to the uncertainty in a scenario with one or more of 

the beams getting simultaneously polarized. Such computational difficulty is handled with a smooth 

correction to this Heaviside step proposed for these two models through the hyperbolic tangent 

function. The idea is to make a bijective function between electric field and electric displacement, 

removing any possible uncertainty and introducing a rapid yet smooth change of slope. Once the 

polarization switches, the constitutive model changes to represent hysteresis behavior. 

 
3.1 Switching model 1 
 

The flowchart for the switching model 1 is depicted in Fig. 4. In this model, every beam starts 

with the zero switch-state 𝑠𝑛 = 0, where subscript 𝑛 denotes that the variable is taken at time 𝑡𝑛. 

It will remain in this state until the beam reaches the coercive electric field 𝐸𝑐 or −𝐸𝑐. This forces 

the switch-state to change in the next time step to either 𝑠𝑛+1 = 1 or 𝑠𝑛+1 = −1, denoting positive 

or negative polarization respectively. After the beam is polarized, the beam can only switch to the 

opposite polarized state (180∘) once it reaches the opposite value of the coercive electric field, i.e., 

either −𝐸𝑐 for 𝑠𝑛 = 1 or 𝐸𝑐 for 𝑠𝑛 = −1. 

Even though the three states of polarization are implemented in this model, we make the 

restriction that once a beam is polarized either positive or negative, it cannot return to the zero-state. 

This first model is quite simple; yet, it allows us to obtain a good approximation in macroscopic 

electric displacement 𝑫. 

Although the switch-state changes suddenly as a step function, the polarization multiplier is in 

fact chosen as a smooth function, continuous, and differentiable, cast in terms of the hyperbolic 

tangent. This regularized multiplier depends on the current axial electric field in the beam 𝐸1,𝑛+1 

and the switch from the previous time step 𝑠𝑛, which is defined as follows: 
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Fig. 5 Left, smoothed polarization multiplier 𝑚 curves for negative switch-state 𝑠𝑛 = −1 with different 

values of parameter 𝑎 = {10,25,60,160,400,1000}. Right, detail of curves with chosen value 𝑎 = 200 for 

|𝑠𝑛| = 1 and 𝑎 = 244 for 𝑠𝑛 = 0 

 

 

𝑚𝑛+1(𝐸1,𝑛+1, 𝑠𝑛) =
1 − 𝑠𝑛

2
tanh [

𝑎(𝑠𝑛)

𝐸𝑐
(𝐸1,𝑛+1 − 𝐸𝑐) + 3] +

1 + 𝑠𝑛

2
tanh [

𝑎(𝑠𝑛)

𝐸𝑐
(𝐸1,𝑛+1 + 𝐸𝑐) − 3]

 

In terms of the hyperbolic tangent is a function with odd symmetry such as a smoothed version 

of a Heaviside step, with horizontal asymptotic values of −1 and 1 for the former instead of 0 and 

1 for the latter. In our case, the chosen form of the argument is 𝑎/|𝑥0|(𝑥 ∓ |𝑥0|) ± 3. The last 

number has been selected in agreement with tanh (3) = −tanh (−3) ≈ 0.995 to translate the 

function so that when |𝑥| > |𝑥0| we can consider that the function has already arrived at the other 

asymptotic value. 

In (18), the normalized parameter 𝑎(𝑠𝑛) controls how smooth or how sharp the curve is as 

illustrated in Fig. 5 left, where the value of 𝑠𝑛 = −1 has been adopted. The higher the value of 𝑎 

is, the more similar to a Heaviside step function the regularized polarization multiplier is. The 

decision for taking such value of 𝑎 is representative of a crystal with 𝑚 that starts to change from 

one asymptotic value to the next one. For this model, we adopted a value of 𝑎 = 200 for 𝑠𝑛 = ±1 

that corresponds to 𝑚 ≈ ±0.995 when 𝐸1,𝑛+1 = ∓0.97𝐸𝑐. If 𝑠𝑛 = 0 then we choose 𝑎 = 244 

to adjust the final part of the curve to the one with polarization as illustrated in Fig. 5 right. 

The polarization multiplier curves for the three switch-states are drawn in Fig. 6 left, where the 

typical hysteresis loop for ferroelectric materials can be observed Hwang et al. (1995). The choice 

of parameters for this model makes the behavior of variables affected by polarization very similar 

to the Heaviside step. Hence, the derivative with respect to the electric field is comparable to the 

Dirac delta function, as can be seen in the detail of Fig. 6 right. 

 
3.2 Switching model 2 
 

Switching model 2 is capable of representing the depolarization of the beams since the switching 

criteria include the dependency on mechanical stress. The flowchart for this model is depicted in 

Fig. 7. 
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Fig. 6 Left, smoothed polarization multiplier 𝑚 curves for all three previous state of polarization 𝑠𝑛 with 

the chosen 𝑎 = 200. Right, detail of the corresponding derivatives of 𝑚 with respect to the electric field 

 

 
Fig. 7 Flowchart to select the switch for the next time step based on the previous state of switch 𝑠𝑛, the current 

value of electric field 𝐸𝑛+1, and the previous value of axial force 𝑁1,𝑛 

 

 

Every beam starts with the zero switch-state 𝑠𝑛 = 0. A 90∘ switching condition is tested to 

check if the beam is getting polarized in the main axial directions: 

𝑠𝑛+1 = −1;  if  
−𝐸1,𝑛+1

𝐸𝑐
+

𝑁1,𝑛

𝑁𝑐
> 1

𝑠𝑛+1 = 1;  if  
𝐸1,𝑛+1

𝐸𝑐
+

𝑁1,𝑛

𝑁𝑐
> 1

 

This condition is derived from (14) combined with the beam model hypotheses. Once the beam 

gets polarized into one of the axial directions, both 180∘ and 90∘ switchings can happen. The 

former can be reached only with a significant change in electric variables. As for the latter, only 

mechanical variables are relevant since electric variables are non-zero in any transversal direction. 

The switching criterion is the simplified version of (14). Namely, for 𝑠𝑛 = 1 

𝑠𝑛+1 = −1;  if 𝐸1,𝑛+1 < −𝐸𝑐

𝑠𝑛+1 = 0;  if 𝑁1,𝑛 < −𝑁𝑐
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Fig. 8 Smoothed polarization multiplier 𝑚 curves for switching model 2 with different values of the 

previous switching state 𝑠𝑛 = 1 for top left, 𝑠𝑛 = −1 for top right, and 𝑠𝑛 = 0 for bottom figure 

 

 

Whereas for 𝑠𝑛 = −1: 

𝑠𝑛 = 1;  if 𝐸1,𝑛+1 > 𝐸𝑐

𝑠𝑛 = 0;  if 𝑁1,𝑛 < −𝑁𝑐
 

One can notice that these criteria, once the beam is polarized in any of the axial directions, are 

decoupled. i.e., 90∘  switching depends only on the mechanic stress, while 180∘  switching 

depends only on the electric field. We observe as well that the axial force is considered at the 

previous time step in order to simplify the recursive calculation of local variables. An iterative 

method to obtain the current axial force could be developed, but the assumption is that the time step 

is small enough to consider major differences between previous and current values. 

The regularized polarization multiplier for this model is created similarly to the one in the 

previous model by using the hyperbolic tangent function. The main difference is that, for every 

polarization state, there is a different expression: 

𝑚𝑛+1(𝐸1,𝑛+1, 𝑁1,𝑛) =
1

2
{1 + tanh [

𝑎(0)

𝑁𝑐
(𝑁1,𝑛 + 𝑁𝑐) − 3]}

tanh [
𝑎(1)

𝐸𝑐
(𝐸1,𝑛+1 + 𝐸𝑐) − 3] ;  if 𝑠𝑛 = 1

𝑚𝑛+1(𝐸1,𝑛+1, 𝑁1,𝑛) =
1

2
{1 + tanh [

𝑎(0)

𝑁𝑐
(𝑁1,𝑛 + 𝑁𝑐) − 3]}

tanh [
𝑎(1)

𝐸𝑐
(𝐸1,𝑛+1 − 𝐸𝑐) + 3] ;  if 𝑠𝑛 = −1;

𝑚𝑛+1(𝐸1,𝑛+1, 𝑁1,𝑛) =
sign (𝐸1,𝑛+1)

2
{1 +

tanh [𝑎(0) (
|𝐸1,𝑛+1|

𝐸𝑐
+

𝑁1,𝑛

𝑁𝑐
− 1) + 3]} ;  if 𝑠𝑛 = 0
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Multi-scale model for coupled piezoelectric-inelastic behavior 

In Fig. 8, all three polarization multiplier situations are illustrated, with 𝐸1,𝑛+1 and 𝑁1,𝑛 as the 

independent variables. The change of value for 𝑚 takes place near the coercive values 𝐸𝑐 or 𝑁𝑐 

for the axial polarization state with the same smoothened pattern as in the previous model. As for 

the depolarized beam, the combined criterion creates a diagonal line of values that nullify the 

argument of the hyperbolic tangent. Notice that near 𝐸1,𝑛+1 = 0 there is a jump for the polarization 

multiplier, which should not affect the stability of the element since once 𝑚𝑛+1 ≈ ±1 , the 

polarization state switches to the other corresponding criteria. 

 

3.3 Viscoplasticity model 
 

The proposed mechanic model will change once the material has reached the yield stress. Here, 

we adapt to the one-dimensional beam model framework the viscoplasticity with Armstrong-

Frederick non-linear kinematic hardening (proposed in Ibrahimbegovic 2009). This model is 

implemented independently both for the axial strain and the two shear strains. The description of 

this constitutive model starts with the hypothesis of additive decomposition of the strains into elastic, 

plastic, and remanent parts induced by polarization only taken for the case of axial strain: 

𝜀‾1 = 𝜀1
𝑒 + 𝜀1

vp
+ 𝜀1

r;  𝛾‾12 = 𝛾12
𝑒 + 𝛾12

vp
;  𝛾‾13 = 𝛾13

𝑒 + 𝛾13
vp

 

where the bar indicates the total regular part of the total strains, superscript 𝑒 denotes the elastic 

part, 𝑣𝑝 the viscoplastic part, and 𝑟 the remanent part. We note in passing that the curvatures 𝜅𝑖 

are kept elastic considering they are not affected by the viscoplasticity in ferroelectric model. Also, 

the electric charge is split into elastic and remanent (saturated polarization) parts according to 𝑄1 =
𝑄1

𝑒 + 𝑃1
r. Consequently, the free energy potential 𝜓 is decomposed into three decoupled terms: 

𝜓‾1(𝜀1
𝑒 , 𝜁‾1, 𝐸1) =

1

2
𝜀1

𝑒𝐸̆𝜀1
𝑒 +

1

2
𝜁‾1𝐻𝑖𝑠,1𝜁‾1 − 𝑒11𝜀1

𝑒𝐸1 −
1

2
𝐸1𝜖1𝐸1

𝜓‾2(𝛾12
𝑒 , 𝜁‾2) =

1

2
𝛾12

𝑒 𝑘𝑐𝐺𝛾12
𝑒 +

1

2
𝜁‾2𝐻𝑖𝑠,2𝜁‾2

𝜓‾3(𝛾13
𝑒 , 𝜁‾3) =

1

2
𝛾13

𝑒 𝑘𝑐𝐺𝛾13
𝑒 +

1

2
𝜁‾3𝐻𝑖𝑠,3𝜁‾3

 

The total dissipation is defined through the standard procedure (e.g., Ibrahimbegovic 2009), 

applying the second principle of thermodynamics, and the Legendre transformation in order to the 

internal energy to exchange the role of 𝑄1 and 𝐸1: 

𝒟̅1 = −𝜓‾̇1 −
1

𝐴

∂(𝑄1
𝑒𝐸1)

∂𝑡
+

𝑁1

𝐴
𝜀‾̇1 +

𝑄1

𝐴
𝐸̇1 =

𝑁1

𝐴
(𝜀1

vp
+ 𝜀1

r) + 𝑞‾1𝜁‾̇1 + 𝐸1

𝑃̇1
r

𝐴

𝒟̅2 = −𝜓‾̇2 +
𝑁2

𝐴
𝛾‾̇12 =

𝑁2

𝐴
𝛾̇12

vp
+ 𝑞‾2𝜁‾̇2

𝒟̅3 = −𝜓‾̇3 +
𝑁3

𝐴
𝛾‾̇13 =

𝑁3

𝐴
𝛾̇13

vp
+ 𝑞‾3𝜁3

 

In order to get the final result defined by the previous expressions, the following constitutive 

relations have been enforced: 

𝑁1 = 𝐴
∂𝜓‾1
∂𝜀1

𝑒 ;  𝑁2 = 𝐴
∂𝜓‾2

∂𝛾12
𝑒 ;  𝑁3 = 𝐴

∂𝜓‾3

∂𝛾13
𝑒 ;  𝑄1

𝑒 = −𝐴
∂𝜓‾1
∂𝐸1

𝑞‾1 = −
∂𝜓‾1

∂𝜁‾1
;  𝑞‾2 = −

∂𝜓‾2

∂𝜁‾2
;  𝑞‾3 = −

∂𝜓‾3

∂𝜁‾3
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where each 𝑞‾𝑖 is the stress-resultant hardening variable in direction 𝑖. The viscoplastic part of the 

dissipation is extracted from (25) by removing the remanent part of the strain and the polarization 

terms because they are governed by different evolution equations as described in the previous 

section. The yield functions governing the change of viscoplastic dissipation are chosen following 

Ibrahimbegovic (2009) and Ibrahimbegovic (1997) as: 

𝜙‾𝑖 = |𝑁𝑖 − 𝜒𝑖𝐴| − (𝑁𝑖,𝑦 − 𝑞‾𝑖𝐴) 

where 𝑁𝑖,𝑦 is the yield stress-resultant in direction 𝑖, and 𝜒𝑖 is the backstress in direction i. The 

corresponding evolution equation and stress-resultant equivalent to those defined for the Armstrong-

Frederick model in terms of implicit differential equations: 

𝜒̇1 = 𝐻𝑙,1𝜀1
vp

− 𝐻𝑛,1𝜁‾̇1𝜒1

𝜒̇2 = 𝐻𝑙,2𝛾̇12
vp

− 𝐻𝑛,2𝜁‾̇2𝜒2

𝜒̇3 = 𝐻𝑙,3𝛾̇13
vp

− 𝐻𝑛,3𝜁‾̇3𝜒3

 

The principle of maximum viscoplastic dissipation can be applied to obtain the final evolution 

equations of the viscoplastic variables by introducing the corresponding regularized Lagrangian 

(e.g., Ibrahimbegovic 2009). The main difference with respect to plasticity is that the values of 𝜙‾𝑖 >
0 are admissible but with penalizing positive values of the yield function proportional to the inverse 

of the viscosity coefficient 𝜂𝑖 as follows: 

ℒ̅1 = −𝒟̅1
vp

+
⟨𝜙‾1⟩

𝜂1

ℒ̅2 = −𝒟̅2
vp

+
⟨𝜙‾2⟩

𝜂2

ℒ̅3 = −𝒟̅3
vp

+
⟨𝜙‾3⟩

𝜂3

 

where ⟨⋅⟩  is the Macaulay bracket, an operator defined as ⟨𝜙⟩ = 𝜙  if 𝜙 > 0  and ⟨𝜙⟩ = 0 

otherwise. The evolution of the viscoplastic variables can then be calculated: 

∂ℒ̅1

∂𝑁1
= −𝜀1

vp
+

⟨𝜙‾1⟩

𝜂1
sign (𝑁1 − 𝜒1𝐴) = 0 ⇒ 𝜀1

vp
= 𝛾‾̇1sign (𝑁1 − 𝜒1𝐴)

∂ℒ̅1

∂𝑞‾1
= −𝐴𝜁‾̇1 + 𝐴

⟨𝜙‾1⟩

𝜂1
= 0 ⇒ 𝜁‾̇1 = 𝛾‾̇1

∂ℒ̅2

∂𝑁2
= −𝛾̇12

vp
+

⟨𝜙‾2⟩

𝜂2
sign (𝑁2 − 𝜒2𝐴) = 0 ⇒ 𝛾̇12

vp
= 𝛾‾̇2sign (𝑁2 − 𝜒2𝐴)

∂ℒ̅2

∂𝑞‾2
= −𝐴𝜁‾̇2 + 𝐴

⟨𝜙‾2⟩

𝜂2
= 0 ⇒ 𝜁‾̇2 = 𝛾‾̇2

 
∂ℒ̅3

∂𝑁3
= −𝛾̇13

vp
+

⟨𝜙‾3⟩

𝜂3
sign (𝑁3 − 𝜒3𝐴) = 0 ⇒ 𝛾̇13

vp
= 𝛾‾̇3sign (𝑁3 − 𝜒3𝐴)

∂ℒ̅3

∂𝑞‾3
= −𝐴𝜁‾̇3 + 𝐴

⟨𝜙‾3⟩

𝜂3
= 0 ⇒ 𝜁‾̇3 = 𝛾‾̇3

 

where we denoted the viscoplastic multiplier 𝛾‾̇𝑖 = ⟨𝜙‾𝑖⟩/𝜂𝑖. 
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3.4 Local computation 
 

At iterative sweep (𝑗 + 1), the values of the previous iteration for nodal displacements, rotations, 

and voltage are known: a𝑎,𝑛+1
𝑢𝑖,(𝑗) , a𝑎,𝑛+1

𝜑𝑖,(𝑗) , a𝑎,𝑛+1

𝑉𝑖,(𝑗)
. First, the electric field is calculated in order to obtain 

the value of the polarization multiplier. The previous stored value of axial force 𝑁1,𝑛 is used as 

well if the switching model 2 is activated. 

A trial step, denoted by superscript tr, is assumed as elastic, where all viscoplastic variables 

remain unchanged from the converged values in the previous time step: 

𝜀1,𝑛+1
vp,tr

= 𝜀1,𝑛
vp

; 𝛾12,𝑛+1
vp,tr

= 𝛾12,𝑛
vp

;  𝛾13,𝑛+1
vp,tr

= 𝛾13,𝑛
vp

;  𝜁‾𝑖,𝑛+1
tr = 𝜁‾𝑖,𝑛

𝑞‾𝑖,𝑛+1
tr = 𝑞‾𝑖,𝑛;  𝛼𝑖,𝑛+1

tr = 𝛼𝑖,𝑛;  𝜁‾𝑖,𝑛+1
tr = 𝜁‾̅𝑖,𝑛;  𝑞‾̅𝑖,𝑛+1

tr = 𝑞‾̅𝑖,𝑛
 

The computation is followed by the calculation of the axial strain, modified by polarization 

material properties in (15), and the constitutive terms in (16). The trial forces, moments, and the 

electric charge are computed with so chosen previous values as follows: 

𝑁1
tr = 𝐸̆𝐴(∑  

2

𝑎=1

 ℬ𝑎𝐚𝑎,𝑛+1
𝑢1 − 𝜀1,𝑛

vp
− 𝜀1,𝑛+1

r + 𝒢̅𝛼1,𝑛) + 𝑒11𝐴 ∑  

2

𝑎=1

 ℬ𝑎,𝑛+1a𝑎
𝑉

𝑁2
tr = 𝑘𝑐𝐺𝐴(∑  

2

𝑎=1

 ℬ𝑎𝐚𝑎,𝑛+1
𝑢2 − 𝒩𝑎𝐚𝑎

𝜑3 − 𝛾12,𝑛
vp

+ 𝒢̅𝛼2,𝑛) ;

𝑁3
tr = 𝑘𝑐𝐺𝐴(∑  

2

𝑎=1

 ℬ𝑎a𝑎,𝑛+1
𝑢3 + 𝒩𝑎𝐚𝑎

𝜑2 − 𝛾13,𝑛
vp

+ 𝒢̅𝛼3,𝑛) ;

𝑀1
tr = 𝐺𝐽 ∑  

2

𝑎=1

 ℬ𝑎a𝑎,𝑛+1
𝜑1

𝑀2
tr = 𝐸̆𝐼 ∑  

2

𝑎=1

 ℬ𝑎a𝑎,𝑛+1
𝜑2

𝑀3
tr = 𝐸̆𝐼 ∑  

2

𝑎=1

 ℬ𝑎a𝑎,𝑛+1
𝜑3

𝑄1
tr = 𝑒11𝐴(∑  

2

𝑎=1

 ℬ𝑎a𝑎,𝑛+1
𝑢1 − 𝜀1,𝑛

vp
− 𝜀1,𝑛+1

r + 𝒢̅𝛼1,𝑛) − 𝜖1𝐴 ∑  

2

𝑎=1

 ℬ𝑎𝐚𝑎,𝑛+1
𝑉

 

Plasticity is triggered when the yield limit 𝑁𝑖,𝑦 is reached. The yield criteria is tested with trial 

values: 

𝜙‾𝑖,𝑛+1
tr = |𝑁𝑖,𝑛+1

tr − 𝜒𝑖,𝑛+1
tr 𝐴| − (𝑁𝑖,𝑦 − 𝑞‾𝑖,𝑛+1

tr 𝐴) 

If 𝜙‾𝑖,𝑛+1
tr ≤ 0, the hypothesis of elastic regime is correct and all local variables remain the same 

as in the previous time step. Otherwise, the viscoplastic step is accepted. 

 
3.5 Viscoplastic regime 
 

In the case that 𝜙‾𝑖,𝑛+1
tr > 0 , the evolution of the viscoplastic variables defined in (30) is 
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computed by an implicit time integration scheme. The following development is an extension to the 

one presented in Ibrahimbegovic et al. (1998) Ibrahimbegovic (1997). This computation is 

analogous for any local directions, taking into account the equivalent role of the internal variables 

for all directions. For direction 1 we have: 

𝜀1,𝑛+1
vp

= 𝜀1,𝑛
vp

+ 𝛾‾1,𝑛+1sign (𝑁1,𝑛+1 − 𝜒1,𝑛+1𝐴)

𝜁‾1,𝑛+1 = 𝜁‾1,𝑛 + 𝛾‾1,𝑛+1;

𝑞‾1,𝑛+1 = −𝐻𝑖𝑠𝜁‾1,𝑛+1

𝜒1,𝑛+1 = 𝜒1,𝑛 + 𝐻𝑙,1𝛾‾1,𝑛+1sign (𝑁1,𝑛+1 − 𝜒1,𝑛+1𝐴) − 𝐻𝑛,1𝛾‾1,𝑛+1𝜒1,𝑛+1;

𝑁1,𝑛+1 = 𝑁1,𝑛+1
tr − 𝐸̆𝐴𝛾‾1,𝑛+1sign (𝑁1,𝑛+1 − 𝜒1,𝑛+1𝐴)

 

Subtracting 𝜒1,𝑛+1 multiplied by the area to 𝑁1,𝑛+1, introducing the null term 

𝛾‾1𝐻𝑛,1 (−𝑁1,𝑛+1 + 𝑁1,𝑛+1
tr − 𝐸̆𝐴𝛾‾1,𝑛+1sign (𝑁1,𝑛+1 − 𝜒1,𝑛+1𝐴)) 

and further simplifying: 

(𝑁1,𝑛+1 − 𝜒1,𝑛+1𝐴) = [(1 + 𝛾‾1,𝑛+1𝐻𝑛,1)𝑁1,𝑛+1
tr − 𝜒1,𝑛𝐴] −

 𝛾‾1,𝑛+1[(𝐸̆𝐴 + 𝐻𝑙,1𝐴)sign (𝑁1,𝑛+1 − 𝜒1,𝑛+1𝐴) +

 𝐻𝑛,1(𝑁1,𝑛+1 − 𝜒1,𝑛+1𝐴) + 𝐻𝑛,1𝐸̆𝐴𝛾‾1,𝑛+1sign (𝑁1,𝑛+1 − 𝜒1,𝑛+1𝐴)]

 

By using the identity 𝑎 = |𝑎|sign (𝑎), we can recast to the previous equation in equivalent 

format: 

{|𝑁1,𝑛+1 − 𝜒1,𝑛+1𝐴| + 𝛾‾1,𝑛+1[(𝐸̆𝐴 + 𝐻𝑙,1𝐴) +

 𝐻𝑛,1|𝑁1,𝑛+1 − 𝜒1,𝑛+1𝐴| + 𝐻𝑛,1𝐸̆𝐴𝛾‾1,𝑛+1]}sign (𝑁1,𝑛+1 − 𝜒1,𝑛+1𝐴) =

 |(1 + 𝛾‾1,𝑛+1𝐻𝑛,1)𝑁1,𝑛+1
tr − 𝜒1,𝑛𝐴|sign [(1 + 𝛾‾1,𝑛+1𝐻𝑛,1)𝑁1,𝑛+1

tr − 𝜒1,𝑛𝐴]

 

By taking into account that all terms inside the braces and absolute values are positive, the 

following relation with respect to the sign operator can be established: 

sign (𝑁1,𝑛+1 − 𝜒1,𝑛+1𝐴) = sign [(1 + 𝛾‾1,𝑛+1𝐻𝑛,1)𝑁1,𝑛+1
tr − 𝜒1,𝑛𝐴] 

Furthermore, we conclude that the terms multiplying both signs in (37) must also be equal. 

Introducing the definition of viscoplastic multiplier, we can identify the yield criteria: 

𝜙‾𝑖,𝑛+1 = |𝑁1,𝑛+1 − 𝜒1,𝑛+1𝐴| − (𝑁𝑖,𝑦 − 𝑞‾1,𝑛+1) = 𝛾‾1,𝑛+1

𝜂𝑖

Δ𝑡
 

where Δ𝑡 is the current time step. Thus, the norm |𝑁1,𝑛+1 − 𝜒1,𝑛+1𝐴| in (37) can be replaced now, 

resulting in: 

|(1 + 𝛾‾1,𝑛+1𝐻𝑛,1)𝑁1,𝑛+1
tr − 𝜒1,𝑛𝐴| − (𝑁1,𝑦 + 𝐻𝑖𝑠𝐴𝜁‾1,𝑛) − 𝛾‾1,𝑛+1[𝐸̆𝐴 + 𝐻𝑙,1𝐴

 + 𝐻𝑖𝑠𝐴 +
𝜂1

Δ𝑡
+ 𝐻𝑛,1(𝑁1,𝑦 + 𝐻𝑖𝑠𝐴𝜁‾1,𝑛) + 𝛾‾1,𝑛+1𝐻𝑛,1 (

𝜂1

Δ𝑡
+ 𝐸̆𝐴 + 𝐻𝑖𝑠𝐴)] = 0

 

The Newton-Raphson iterative method is used to solve for 𝛾‾1,𝑛+1  the previous from this 

quadratic equation. Such an iterative method requires a good guess for the initial value so that the 

positive final value is found. A very good initial guess can be found in Hadzalic et al. (2019), where 

the following expression is obtained for explicit back-stress Armstrong-Frederick: 

𝛾‾1,𝑛+1
(0)

=
𝜙‾𝑖,𝑛+1

tr

𝐸̆𝐴 + 𝐻𝑖𝑠𝐴 + 𝐻𝑙,1𝐴 +
𝜂𝑖
Δ𝑡 − 𝐻𝑛,1𝐴𝜒1,𝑛
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3.6 Global step computation 
 

The starting point for the global solution step implementation is provided by the weak form of 

the equilibrium equations (11), where the approximations (??) and (??) have been introduced: 

 ∫  
𝐿

0

 ℬ𝑎w𝑎
𝑢𝑖𝑁𝑖,𝑛+1 d𝑥1 − w𝑎

𝑢𝑖𝑁‾𝑖|Γ𝑁
= 0

 ∫  
𝐿

0

 ℬ𝑎w𝑎
𝜑𝑖𝑀𝑖,𝑛+1 d𝑥1 − w𝑎

𝜑𝑖𝑀‾ 𝑖|Γ𝑀
= 0

 ∫  
𝐿

0

 ℬ𝑎w𝑎
𝑉𝑄1,𝑛+1 d𝑥1 − w𝑎

𝑉𝑄‾1|Γ𝑄
= 0

 

with 𝑤𝑎
𝑢𝑖 , 𝑤𝑎

𝜑𝑖 , and w𝑎
𝑉𝑖  as the nodal values of the corresponding virtual fields. The kinematic 

admissibility requires that these nodal values are set to zero if a Dirichlet boundary condition is 

applied to node 𝑎 . The corresponding residual is obtained by removing the virtual degrees of 

freedom in (42) above resulting with: 

ℛ𝑎,𝑛+1
𝑢𝑖 = ∫  

𝐿

0

 ℬ𝑎𝑁𝑖,𝑛+1 d𝑥1 − 𝑁‾𝑖|Γ𝑁
= 0

ℛ𝑎,𝑛+1
𝜑𝑖 = ∫  

𝐿

0

 ℬ𝑎𝑀𝑖,𝑛+1 d𝑥1 − 𝑀‾ 𝑖|Γ𝑀
= 0

ℛ𝑎,𝑛+1
𝑉 = ∫  

𝐿

0

 ℬ𝑎𝑄1,𝑛+1 d𝑥1 − 𝑄‾1|Γ𝑄
= 0

 

where the forces, moments and electric charge are defined as: 

𝑁1 = 𝐸̆𝐴(∑  

2

𝑎=1

 ℬ𝑎a𝑎,𝑛+1
𝑢1 − 𝜀1,𝑛+1

vp
− 𝜀1,𝑛+1

r + 𝒢̅𝛼1,𝑛+1) + 𝑒11𝐴 ∑  

2

𝑎=1

 ℬ𝑎a𝑎,𝑛+1
𝑉

𝑁2 = 𝑘𝑐𝐺𝐴(∑  

2

𝑎=1

 ℬ𝑎𝐚𝑎,𝑛+1
𝑢2 − 𝒩𝑎a𝑎,𝑛+1

𝜑3 − 𝛾12,𝑛+1
vp

+ 𝒢̅𝛼2,𝑛+1)

𝑁3 = 𝑘𝑐𝐺𝐴(∑  

2

𝑎=1

 ℬ𝑎𝐚𝑎,𝑛+1
𝑢3 + 𝒩𝑎a𝑎,𝑛+1

𝜑2 − 𝛾13,𝑛+1
vp

+ 𝒢̅𝛼3,𝑛+1)

𝑀1 = 𝐺𝐽 ∑  

2

𝑎=1

 ℬ𝑎𝐚𝑎,𝑛+1
𝜑1

𝑀2 = 𝐸̆𝐼 ∑  

2

𝑎=1

 ℬ𝑎𝑎𝑎,𝑛+1
𝜑2

𝑀3 = 𝐸̆𝐼 ∑  

2

𝑎=1

 ℬ𝑎𝑎𝑎,𝑛+1
𝜑3

𝑄1 = 𝑒11𝐴(∑  

2

𝑎=1

 ℬ𝑎a𝑎,𝑛+1
𝑢1 − 𝜀1,𝑛+1

vp
− 𝜀1,𝑛+1

r + 𝒢̅𝛼1,𝑛+1) − 𝜖1𝐴 ∑  

2

𝑎=1

 ℬ𝑎a𝑎,𝑛+1
𝑉
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In order to solve this set of global nonlinear equations, we use the Newton-Raphson iterative 

method: 

𝑹𝑎,𝑛+1
(𝑖+1)

= 0 ⇒  𝑹𝑎,𝑛+1
(𝑖)

+
∂𝑹𝑎,𝑛+1

∂a𝑏,𝑛+1
|

(𝑖)

Δa𝑏,𝑛+1
(𝑖)

= 0 

At each iterative sweep, we can perform the corresponding state variable updates according to: 

a𝑏,𝑛+1
(𝑖+1)

= a𝑏,𝑛+1
(𝑖)

+ Δa𝑏,𝑛+1
(𝑖)

 

We note that within each time step, the starting guess in the first iteration is assumed to be the 

converged value at the previous step: 

a𝑏,𝑛+1
(0)

= a𝑏,𝑛 

The derivative term in (45) is the stiffness matrix, which is constructed in the appropriate manner 

depending on the local regime that the particular bar is undergoing. 

 
 
4. Numerical examples 

 

In this section, we present the results of several illustrative numerical simulations. All 

computations were performed by a research version of computer code FEAP 8.4 (see Taylor 2012) 

 

4.1 Single-crystal simulation 
 

In this example, a single beam of length 𝐿 = 0.1 m is simulated to obtain the characteristic 

hysteresis loops. This beam is clamped on the left side and subjected to ground voltage. On the right 

side, a variable voltage is set in terms of a triangular force, with maximum and minimum values of 

300 and −300 V. The material properties are gathered in Table 1. 

The results are displayed in Fig. 9. On the left, the electric charge 𝑄1 has the characteristic loop 

for single crystal. The slope does not change since the non-polarized and the polarized value of the 

electric permittivity are the same. Also, the value of 𝑄1 at 𝐸 = 0 is the value of 𝑃𝑠𝐴. Fig. 9 

Electric charge and strain obtained for the beam of the numerical example. 

On the right, the computed strain history is plotted showing a typical butterfly loop. Notice that 

the strain takes negative values when the electric field is close to the coercive value; in other words, 

when the beam is close to the change of polarization. 

 

 
Table 1 Material properties for the material used in the single crystal polarization simulation 

Property Units Value 

First stiffness term 𝐸̃ GPa 100 

Poisson's coefficient 𝜈 − 0.3 

Permittivity 𝜖1 C/V 𝑚 1.5 × 10−9 

Spontaneous polarization 𝑃𝑠 C/m2 2 × 10−5 

Piezoelectric term 𝑒11 C/m2 5 × 10−7 

Non-polarized spontaneous strain 𝜀1
nP − −1 × 10−5 

Polarized spontaneous strain 𝜀1
p
 − 4 × 10−5 

Cross-section Area 𝐴  m2 0.5 
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Table 2 Material properties for the material used in the macro-model. 

Property Units Value 

First stiffness term 𝐸̌ GPa 68 

Poisson's coefficient 𝜈 − 0.3 

Permittivity 𝜖1 C/V m 56.3 × 10−9 

Spontaneous polarization 𝑃𝑠 C/m2 0.25 

Piezoelectric term 𝑒11 C/m2 1.18 × 10−9 

Coercive Electric Field 𝐸𝑐 V/m 0.36 × 106 

 

 

Fig. 9 Mesh used for the numerical examples. Left, Voronoi cell representation; right, lattice model, dual 

to Voronoi 

 

 

We note that even though the proposed lattice model may seem quite simple, it is capable of 

capturing the behavior of a heterogeneous material. We can see further in the next example. 

 
4.2 Macro-model subjected to cyclic electric field applied in vertical direction 
 

The geometry of the numerical example in this section is a cube, with sides of 20 cm as can be 

seen in Fig. 10. On the left, the Voronoi representation (Nikolić et al. 2018, Nikolic and 

Ibrahimbegovic 2015, Ibrahimbegovic et al. 2020) of the cube is pictured, where the different colors 

show the boundary faces of the Voronoi cells. On the right, the corresponding mesh of lattice beams 

is depicted. The material properties are extracted from Hwang et al. (1995), and given in Table 2. 

The top and bottom faces have prescriptions of the voltage of 𝑉 = 0  and 𝑉 = 𝑉𝑡(𝑡) , 

respectively. The voltage at the top is triangular, starting with a value of 0 increasing to 𝑉max =
0.2MV, then decreasing −𝑉max  and finally returning to 𝑉max . In planes 𝑥1 = 0, 𝑥2 = 0, and 

𝑥3 = 0, the corresponding perpendicular displacement is prescribed to simulate symmetry boundary 

conditions for one eighth of the specimen. The Neumann boundary condition is also set introducing 

a constant compressive force. Rotation degrees of freedom are left free. All switches are set initially 

to zero. 

The electric and mechanic variables calculated with the beam model have to be expressed in the 

global frame and averaged with the volume in order to obtain the corresponding macro response of  
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Fig. 10 Mesh used for the numerical examples, Left, Voronoi cell representation, right, lattice model, 

dual to Voronoi 

 

 

Fig. 11 Averaged vertical electric displacement and strain obtained for the numerical example 

 

 

the material by using: 

𝜉‾ =
∫  
Ω𝑒  𝜉dΩ

∫  
Ω𝑒   dΩ

 

Fig. 11 Averaged vertical electric displacement and strain obtained for the numerical example 

In Fig. 11, such an averaged response computed in this numerical example is plotted, where the 

typical hysteresis loops for electric displacement and strain are given on left and right, respectively. 

The curves in black are obtained without the compressive force, whereas the blue ones have the 

imposed boundary condition representing the compressive force. The difference lies in the number 

of beams that get polarized. The compressive force makes it more difficult to get polarized as 

depicted in (19). 

The averaged strain is affected as well by the introduction of the compressive force. The strain 

is almost an offset of the one without the force. The shape of the butterfly loop is not as perfect as 

in the single-crystal simulation. Namely, the minimum stress is not close to zero, and the 
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spontaneous polarization is a little bit higher than the expected value, according to Hwang et al. 

(1995). We can see here one of the limitations of this method is that cannot capture transversal 

effects with accuracy, but the axial variables are close to the ones of the continuum model. 

 
 
5. Conclusions 
 

This paper presents a theoretical micro-model formulation that couples ferroelectricity, 

viscoplasticity. Each of the elements simulates a single crystal of the whole macrostructure that can 

be polarized in the axial or transversal direction. This feature makes the element suitable for multi-

scale computations since it can replicate the behavior of the macro response of ferroelectric materials 

by introducing the properties of a single crystal. 

The introduction of an embedded discontinuity model in future versions of the element could be 

crucial in applications under significant or cyclic loadings of any kind, not only mechanical. 

Potential current and future applications of this type include microsensors that measure outside their 

usual range, overcharged actuators, solid-state batteries under charging that undergo large 

temperature gradients. 

The numerical examples presented in this work show a good agreement between experiments 

and the response of the model. In some cases, the polarization switching model 1 could be enough 

to capture the axial response accurately, although model 2 is not much more expensive in terms of 

computation resources. 
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