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Abstract.  In this paper, we discuss about the notable locking-free techniques of several simple plate bending finite 
elements for the Reissner-Mindlin plate bending theory. The brief background for Reissner-Mindlin plate theory is 
presented, in which stress and strain derivation are given along with one-field and two-field variational approaches. 
Afterwards, we classify several efficient robust techniques in a cluster of main categories to present sequentially, which 
are all able to overcome the locking phenomenon in thick plate bending problems. Only selective algorithms are 
programmed to conduct numerical simulations. The corresponding results are compared between these elements to 
show their performances. 
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1. Introduction 
 

Over the course of time, the finite element method has been developed enormously such that 

many tedious physic problems including solid, fluid, heat mechanics are now possible to be solved 

by numerical simulation. The geometry and corresponding physical properties of a given problem 

help the user to select the most appropriate finite element to be used for the simulation. We can count 

briefly some of the most common finite elements, which have been successfully employed in 

commercial programs, namely truss, beam, plane stress/strain plate, plate bending, shell, brick or 

tetrahedron, and even more, see Zienkiewicz et al. (2005), Ibrahimbegovic (2009) and Bathe (2016). 

Regarding the plate bending problem, there are many available techniques and algorithms, which 

are circulated in the environment of both research and engineering practices. To the rest of this paper, 

we pay our concentration on the development of several plate bending finite elements, which is 

challenging topic at the early time and also now in the domain of the finite element method. 
One of the pioneering works into the plate bending problem is credited by Mindlin (1951), 

Reissner (1945) and Reissner (1976), which build the fundamental theory for the thick or lately 
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named as Reissner-Mindlin plate. During that time, there are several efforts in the numerical 

approach including finite element method for bending thin plate problem or famously named as 

Kirchhoff-Love plate, see Bazeley et al. (1966), Clough and Felippa (1968), Morley (1971) and 

Hughes et al. (1977). One of the main difficulties in solving the Kirchhoff-Love plate is to maintain 

the continuity of rotation field or so-called C1 continuity. Based on this property, those finite 

elements for thin plate problem are classified into two groups including conforming (with C1 

continuity) and non-conforming (without C1 continuity), see Batoz et al. (1980), Batoz (1982) and 

Ortiz and Morris (1988). One can maintain the C1 continuity is using the penalty method, which can 

be found in the works of Cirak and Ortiz (2001) and Viebahn et al. (2017). Meanwhile, the numerical 

method for Reissner-Mindlin plate does not encounter the same problem as in the former since the 

shear strains are included in the weak form, see Robinson and Haggenmacher (1979), Hughes and 

Tezduyar (1981), Tessler and Hughes (1983) and Huang and Hinton (1984). Many research efforts 

produce a number of algorithms for plate bending problem at that time, for a thorough review see 

Hrabok and Hrudey (1984). Additionally, the recent review on hybrid-mixed low-order finite shell 

elements can also be found at Lavrencic and Brank (2021). A general overview and clarified details 

of many developed plate bending and shell problems can be found at Zienkiewicz et al. (2005), 

Batoz and Dhatt (1990) and Batoz and Dhatt (1992). Notably, with the aim to solve the problem 

better, some of the efficient algorithms are proposed by Batoz and Katili (1992), Ibrahimbegovic 

(1992), Ibrahimbegovic (1993), Katili (1993), Auricchio and Taylor (1994), Auricchio and Taylor 

(1994) and Gruttmann and Wagner (2004). 
In the modern engineering practices, there are more relevant problems evolving from plate 

bending problem such as the topic of metal forming, see Guo et al. (2000) and the topic of controlling 

of the plates, see Macchelli et al. (2005), Brugnoli et al. (2019) and Brugnoli et al. (2019). The 

laminated and composite plates are also the challenging and evolving topics, see Konno and 

Stenberg (2010), Moleiro et al. (2009) and Allaire and Delgado (2016). Similarly, the topological 

optimization for plates are also branching from the original work of plate bending problem, see 

Moleiro et al (2009), Belblidia et al. (2001) and Goo et al. (2016). And the fracture computation for 

plate bending problem can be found at Kiendl et al. (2016), Ulmer et a.l (2012) and Dolbow et al. 

(2000). As a review paper for notable locking-free algorithms in the plate bending problem, we limit 

our self in reviewing several simple and efficient numerical algorithms, particularly by finite element 

method, for the Reissner-Mindlin plate theory. The main focus is in Section 3, the assumed shear 

strain method can be found in Ibrahimbegovic (1993), Katili (1993), Batoz and Katili (1992) and 

Katili et al. (2014). Another approach is proposed by include shear forces as unknown field, which 

is added as bubble mode, can be found at Auricchio and Taylor (1994). Batoz (1982) uses the higher-

order polynomial to approximate the lateral rotation field to enhance the accuracy. And the final 

algorithm to be reviewed is the one for quadrilateral plate element, in which it is stabilized and only 

one integration point is employed in this algorithm, see Gruttmann and Wagner (2004). 
The structure of this paper is outlined as follows. In Section 2, the fundamental concepts 

including the definition of stress, curvature, shear strain and force resultants are given. We illustrate 

a displacement-based variational principle as well as mixed variational approach, in which other 

fields such as moment and shear force can also be included in the weak form as independent fields. 

In Section 3, we present some efficient techniques to overcome the locking phenomenon and 

produce an accurate solutions for the thick plate bending problem. In Section 4, correspondingly, 

only three finite elements of the above algorithms are programmed in FORTRAN language. The 

results from selective simulations are compared between these elements and the built-in FEAP plate 

element, see Auricchio and Taylor (1994). In Section 5, the conclusions are stated. 
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Fig. 1 Plate and sign convention 

 

 

2. Theoretical background 
 

The brief review on Reissner-Mindlin or so-called thick plate bending theory is discussed in the 

following section. It is well-known that the Kirchhoff-Love plate theory can be recovered by 

suppressing the shear fields from the corresponding Reissner-Mindlin plate theory. Subsequently, 

we present the practical variational approaches including the one-field and multi-field variational 

principles. The former considers only displacement as independent field, while the latter collaborates 

on other fields such as moment and shear forces. 
 

2.1 Fundamental concepts 
 
Let Ω be a bounded flat body in R3 representing a plate of thickness t, see Eq. (1a), in which the 

thickness t is small compared to the other two dimensions. The corresponding piece-wise smooth 

boundary ∂Ω, including displacement boundary ∂Ω1 and stress boundary ∂Ω2, satisfies Eq. (1b) 

 (1) 

The xy plane is placed on the mid-surface and the loading q(x, y) is considered normal to the mid-

surface, as shown in Fig. 1. The Reissner-Mindlin plate theory assumes that a straight fiber normal 

to the mid-surface before loading remains straight but not necessarily normal to the deformed mid-

surface. The corresponding rotation components of this fiber are фx and фy. The strong governing 

equations are written following closely the work of Hughes and Brezzi (1989). Both stress and 

displacement fields are considered as independent fields. The key point here is that the stress is not 

assumed to be symmetric, but the symmetry of stress tensor is enforced through corresponding 

moment equilibrium equation of the strong form of the problem ∀x ∈ Ω 

 (2) 

where (1) to (4) are, respectively, the equilibrium equations, the symmetry conditions for stress, the 
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constitutive equations and the boundary condition. A point P (see Fig. 1), outside of the mid- surface, 

has displacement components ux, uy, uz. This displacement field can be expressed in terms of lateral 

defection w at plate mid-surface and fiber rotation vector ф(фx, фy) which can be written as follows 

 (3) 

The sign convention of rotation vector θ(θx, θy) about the x and y directions is shown in Fig. 1, 

hence the transformation matrix between rotation vectors ф(·) and θ(·) is given as follows 

 (4) 

The displacement field u(ux, uy, uz) is now interpreted as functions of three selected independent 

fields 

 (5) 

The corresponding curvature κ and shear strain γ, which are work-conjugates to moment and 

shear force respectively, can be expressed as follows  

 (6) 

The internal forces include moment M and shear forces Q, which are defined by integrating of 

the non-zero stresses through the thickness of the plate, with the notable assumption σz=0 

 (7) 

The constitutive relations in the case of isotropic linear elastic material are given as follows 

 (8) 

The corresponding constitutive matrix for moment and shear forces are given explicitly as 

follows 

 (9) 

where the flexural rigidity of plate is   with E the Young’s modulus and ν the 

Poisson’s ratio. And    is shear modulus and k is the factor accounts for the parabolic 

variation of transverse shear stress in z-direction. The usual value of k for a homogeneous plate is 

k=5/6. 

 
2.2 One-field variational approach 
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For the discrete Kirchhof triangle and discrete Kirchhof quadrilateral elements, the formulation 

is based on the discretization of the strain energy without elaboration on the transverse shear strain 

energy, see Batoz (1982) 

 (10) 

in which  is the curvature matrix. Meanwhile, the Reissner-Mindlin plate, the total energy can 

be written as follows, see Ibrahimbegovic (1993) 

 (11) 

or it can be written explicitly in terms of lateral deflection and rotation fields 

 (12) 

The corresponding variational formulation is derived from the updated total energy functional of 

a body, which δw and δθ represent variations of lateral displacement, rotation fields 

 (13) 

where the external virtual work Gext (w; δw), in which δw is a variation of lateral displacement w, is 

formulated in the spirit of d’Alembert principle with an additional term from inertia force for 

elastodynamics problem 

 (14) 

This formulation, although simple as its derivation, is considered to be inefficient due to the 

locking behavior in the plate. 

 

2.3 Two-field variational approach 
 

Independent stress field 

The variational formulation is based on a Hellinger-Reissner functional, where both displacement 

and stress are viewed as independent fields, see Gruttmann and Wagner (2004) 

 (15) 

in which   and   are transverse and boundary loads. The corresponding variation equation with 

respect to displacement and stress fields are given as 

 (16) 

 

Independent shear force field 

In another approach, the shear force is introduced as additional independent field, see Auricchio 

and Taylor (1994) 

233



 

 

 

 

 

 

Cong-Uy Nguyen, Jean-Louis Batoz and Adnan Ibrahimbegovic 

 (17) 

 

Regularized variational principle 

The two-field variational formulation with displacement and stress as independent fields can be 

referred to the work of Hughes and Brezzi (1989) 

 (18) 

From the above regularize equation, we can write the corresponding regularized variational 

principle for plate problem with independent fields including lateral deflection, rotation and moment 

 (19) 

The corresponding variational formulation is derived from the updated total energy functional of 

a body, in which δw, δθ and δM represent variations of lateral displacement, rotation and moment 

fields 

 (20) 

The variation formulation of regularized functional with respect to virtual moment δM can be 

written as follows 

 (21) 

In the same manner, the regularized formulation Eq. (18) can be reconfigured by adding 

independent shear field 

 (22) 

The corresponding variational formulation with respect to variations of lateral deflection, 

rotation, moment and shear force fields can be written as follows 

 (23) 

The above proposals can be promising with an appropriate discretization of moment and shear 

force fields, which is favorable for wave propagation prolems. Several other multi-field variational 
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approaches are successfully implemented, which are mentioned correspondingly in the next section. 

The same approach is successfully applied in axisymmetric and two-dimensional plane plate 

problems, see Nguyen and Ibrahimbegovic (2020) and Nguyen and Ibrahimbegovic (2020). 

 
 

3. Notable highlights: simple and efficient locking-free approaches 
 

Due to the numerous available developments of locking-free finite plate bending elements, we 

only choose several notable algorithms to present their corresponding key ideas and methods. The 

reader is highly recommended to refer to Zienkiewicz et al. (2005), Batoz and Dhatt (1990) and 

Batoz and Dhatt (1992) for the almost full set of relevant state-of-the-art algorithms. 

 

3.1 Assumed shear strain 

 
DKMT/DKMQ element 
The so-called DKMT and DKMQ elements without spurious zero-energy modes are developped 

to pass the patch test for both thick finite plate element in an arbitrary mesh and is free of shear 

locking, see Katili (1993), Batoz and Katili (1992) and Katili et al. (2014). The variational functional 

of the modified Hu-Washizu principle is given as 

 (24) 

in which the bending Πb and shear strain Πs energies are given as 

 (25) 

The corresponding shear force, curvature, real shear strain and assumed shear strain matrices are 

given as follows 

 (26) 

The [Hb] and [Hs] matrices depend on material properties, similar as Eq. (9). The stationary 

condition of variational functional Π in Eq. (25) with respect to the independent shear field yield 

 (27) 

Hence, the real shear strain {γ}, expressed in terms of the element degree of freedom, is replaced 

by various discrete constraints on each element to relate the independent (or assumed) shear strains 

, see Fig. 2. Correspondingly, this approach can avoid shear locking {γ}. 
The displacement field is given as follows 

 (28) 

The assumed tangential shear strain fields are given as follows 
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Fig. 2 Assumed tangential shear strain at mid-edges 

 

 
Fig. 3 Assumed shear strain γ 

 

 

 (29) 

where k=5/6 is the shear correction factor, ν is Poisson’s ratio, h is the thickness of the plate, Lk is 

the length of the side k and фk is the shear influence factor. ∆βsk are the nodal values at the mid-

nodes and s denotes the tangential direction. The tangential shear angles of sides k and m is further 

expressed in terms of the shear angle components γxzi and γyzi at corner node i. Finally, the transverse 

shear strain  is interpolated independently with 

 (30) 

 

A triangular element 

To alleviate the shear locking, the nodal shear strains γi, see Fig. 3, are computed in the manner 

that ensures the constant shear strain distribution along each edge, and thus continuity between 

adjacent plate element. By enforcing the equality between the projection of the nodal shear strain 

along the edge of two neighbors, see Ibrahimbegovic (1993), the corresponding matrix of nodal 

shear strain is formed as a function of nodal unknown matrix d. 

The interpolation nodal parameters of shear strain are computed as follows. We consider a typical 

node i, with adjacent nodes j and k. The shear strain γtij along edge ij is constant and equal to 

 (31) 

while the shear strain γtik along edge ik is the constant and equal to 
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 (32) 

in which the symbols lij and nij are, respectively, the length and the outward unit normal vector for 

the edge between the corner nodes i and j 

 (33) 

The projection of the nodal shear strain γi on the edges ij and ik is imposed to be equal, 

respectively, to γtij and γtik. The vectors nik and tik are normal and tangent vectors of edge ik 

 
(34) 

Hence 

 (35) 

with indices are defined as 

 (36) 

The following identity holds ⋀𝑖 =
𝐼

𝑡𝑖𝑗
𝑇𝑛𝑖𝑘

  thanks to the symmetry property of 𝜆 = 𝑛𝑖𝑘𝑡𝑖𝑗
𝑇 − 𝑛𝑖𝑗𝑡𝑖𝑘

𝑇    

and orthogonal property between normal nik and tangent tik vectors on edge ik 

 (37) 

 
3.2 Internal bubble modes 
 
The lateral deflection, rotations and shear forces are interpolated independtly, see Auricchio and 

Taylor (1994). The rotational field is enriched by internal degrees of freedom and linked to the lateral 

deflection 

 (38) 

in which  and Ŝ denote respectively the internal rotational degrees of freedom and the shear stress 

degrees of freedom. 

 (39) 

By eliminating the internal rotational degrees of freedom and then the shear parameters, the 

stiffness matrix is condensed and the remaining unknowns are the external degrees of freedom. 

 
3.3 High-order rotation field 
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The curvature is defined in terms of rotation β field, see Batoz (1982) 

 

(40) 

The formulation of the discrete Kirchhoff quadrilateral element is thus based on the following 

considerations: 

1. Incomplete cubic polynomial for approximation of rotation field 

 

(41) 

2. The Kirchhoff assumptions are introduced 

(a) at the corner nodes: 

 
(42) 

(b) at the mid-nodes 

 
(43) 

where s represents the co-ordinate along the element boundary. 

3. w,sk is the derivative of the transverse displacement w with respect to s at the mid-node k 

 
(44) 

4. βnk varies linearly along the sides, i.e. 

 
(45) 

 
3.4 Stabilized quadrilateral element 
 
The low-order bilinear polynomials are employed to interpolate the lateral displacement and 

rotations 

 
(46) 

Correspondingly, the stress field σ is also interpolated by linear functions, see Gruttmann and 

Wagner (2004) 

 

(47) 

where the vectors β0 and β1 contain 5 and 4 parameters, respectively. The transformation coefficients  
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(a) Boundary condition (b) Lateral deflection w 

Fig. 4 Patch test 
 

 

J0 denote the components of the Jacobian matrix evaluated at the element center and transform the 

contravariant components of the stress resultant tensors to the Cartesian basis system. The 

coefficients have to be constant in order to fulfill the patch test. 

 
 
4. Numerical simulations: Selective algorithms 
 

In the following section, the efficient algorithms proposed by Ibrahimbegovic (1993) and 

Gruttmann and Wagner (2004) are programmed by FORTRAN language, which are integrated as 

user-defined subroutines in FEAP v8.4 program. Additionally, the algorithm for thin plate bending 

problem by Morley (1971) is also programmed for the comparison. The numerical results from 

above finite elements are illustrated together with Auricchio and Taylor (1994), which is a built-in 

subroutine inside FEAP. 
 

4.1 Patch test 
 
The patch test is delivered in pure bending along x direction. This test not only check the element 

performance but also reveal any spurious modes which may exist. The geometric properties of plate 

are: each side 10×10 and thickness t= 0.1. The imposed boundary conditions for the patch test are 

shown in Fig. 4(a). The regular mesh is constructed by 10×10 divisions, with total 200 triangular 

elements. The material parameters chosen in this simulation are: elastic modulus E=10.92 and 

Poisson’s ratio ν=0.3. The right edge is imposed by a rotation θy=−0.01 while the rotation θx at the 

top and bottom edges are set free. The left edge is fixed in three degrees of freedom. With this 

boundary configuration, the plate is bending upward as a simple beam in two-dimensional problem. 

It is clear that the lateral deflection w along the plate, see Fig. 4(b), is nearly equal within the four 

algorithms which includes the thick and thin finite elements. This is due to the rather small thickness 

of the plate. All elements pass the patch test with a constant curvature as εxx=−10−6. The contours of 

lateral deflection w and rotation θy over entire domain by Auricchio and Taylor (1994) are shown in 

Fig. 5. 
 

4.2 Simply supported circular plate 
 
A circular plate test is proposed to assess element’s performance for a distorted mesh. The chosen  
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(a) Lateral deflection w (b) Rotation θ 

Fig. 5 Patch test: lateral deflection w and rotation θy fields 
 

  
(a) Boundary condition (b) Mesh configuration 

Fig. 6 Circular plate boundary condition and mesh configuration 
 

 

circular plate geometry is: radius R=5 and thickness t=1. The material properties are selected as: 

Young’s modulus E=10.92 and Poisson’s ratio ν=0.3. The circular plate is imposed by a unit point 

load P=1 at the center and a surface loading q=1. The simply support boundary condition is 

considered. Only a quarter of the plate is used in this simulation with imposed symmetry boundary 

conditions on two radial lines, see Fig. 7(a). The subsequent finer meshes is generated by bisection 

of each three blocks used to construct the mesh with total 192 triangular elements, see Fig. 7(b). The 

exact solution of center deflection under surface load can be found at Batoz and Dhatt (1990) as 

follows 

 (41) 

and the flexural rigidity . Hence, the exact lateral deflection wC is 41.6 under surface 

load. 
Due to the significant thickness compared to the radius, the circular plate in this example is 

considered as the thick plate. The lateral deflection w is plotted along the radius as in Fig. 7(a) for 

the case of point load. Meanwhile, for the case of surface load, it is noted that the solution from 

Auricchio and Taylor (1994) yields 41.3, which is nearly equal the exact solution. In both case, the 

result from Morley (1971) is the lowest one. The robustness of other results can be improved by 

generate a finer mesh configuration. The corresponding contours of lateral deflection w and rotation 

θx by using the element of Ibrahimbegovic (1993) are shown in Fig. 8 for the case of point load and  
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(a) Lateral deflection w under point load (b) Lateral deflection w under surface load 

Fig. 7 Circular plate under point and surface loads 
 

  
(a) Lateral deflection w (b) Rotation θx 

Fig. 8 Circular plate under point load: lateral displacement w and rotation θx fields 
 

  
(a) Lateral deflection w (b) Rotation θx 

Fig. 9 Circular plate under surface load: lateral displacement w and rotation θx fields 
 

 

Fig. 9 for the case of surface load. Due to the different load settings, the amplitude of contours are 

clearly discriminated. Meanwhile the trend of contours are quite similar. 

 

4.3 Clamped square plate 
 
In this example, we present the response of a square plate under point load P=1 applied at the 

center and and surface load q=1. The clamped boundary condition is imposed on outer edges. The  
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(a) Lateral deflection w under point load (b) Lateral deflection w under surface load 

Fig. 10 Square plate under point and surface loads 
 

  
(a) Deflection w (b) Rotation θx 

Fig. 11 Square plate under point load: lateral displacement w and rotation θx fields 
 

  
(a) Deflection w (b) Rotation θx 

Fig. 12 Square plate under surface load: lateral displacement w and rotation θx fields 
 

 

plate is made of linear elastic isotropic material, with Young’s modulus E=10.92 and Poisson’s ratio 

ν=0.3. The side length a=10 and thickness t=1 are selected. The numerical results are obtained by 

10×10 regular mesh with total 200 triangular elements. The lateral deflection w is plotted along the 

horizontal line going through the square center. 
In the current mesh configuration, the lateral deflection w from Morley (1971) and Auricchio and 

Taylor (1994) are comparable for both load cases, see Fig. 10. Meanwhile, the numerical solution  
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(a) Lateral deflection w under point load (b) Lateral deflection w under surface load 

Fig. 13 Thin square plate under point and surface loads 
 

 

from Morley (1971) seems to be higher than the other elements. By contrast, the result from 

Gruttmann and Wagner (2004) is lower or it tends to yield “stiffer” results than those from the other 

elements. The corresponding contours of lateral deflection w and rotation θx by Gruttmann and 

Wagner (2004) are shown in Fig. 11 for the case of point load and Fig. 12 for the case surface load. 

The contour distribution in both cases are similar. 
In the following simulations, we use the same properties as previous one with the change of 

Young’s modulus E=10.92×105 and thickness t=0.1, which can be viewed as a really thin plate. The 

numerical solutions from Auricchio and Taylor (1994) and Gruttmann and Wagner (2004) match 

together, see Fig. 13(a), (b). Meanwhile, the solution from Ibrahimbegovic (1993) is lower or 

“stiffer” than the others. It is clear that the solution from Morley (1971) is the highest one. 
 

 
5. Conclusions 
 

In this paper, we review briefly the highlights of selective locking-free algorithms for the 

Reissner-Mindlin plate bending problems. Firstly, theoretical background including fundamental 

concepts (derivation of stress and strain), one-field and two-field variational approaches are out- 

lined in a practical manner. Correspondingly, several simple and efficient techniques to overcome 

locking phenomenon in thick plate bending problems are presented and classified logically into a 

number of main categories. Finally, only selective finite elements among the illustrated algorithms 

are programmed by FORTRAN language in FEAP v8.4 program. The results from numerical 

simulations are compared between these elements and the built-in FEAP subroutine to present their 

robust performances. 
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