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Abstract.  The porosity of functionally graded materials (FGM) can affect the static and dynamic behavior of plates, 
which is important to take this aspect into account when analyzing such structures. The present work aims to study the 
effect of the distribution shape of porosity on the free vibration response of simply supported FG plate reposed on the 
Winkler-Pasternak foundation. A refined theory of shear deformation is expanded to study the influence of the 
distribution shape of porosity on the free vibration behavior of FG plates. The findings showed that the distribution 
shape of porosity significantly influences the free vibration behavior of thick rectangular FG plates for small values of 
Winkler-Pasternak elastic foundation parameters. 
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1. Introduction 
 

Functionally graded materials (FGMs) are considered as novel composite materials that are 

generally used in aerospace, nuclear, automotive, civil, marine technology, and defense industries. 

FGMs are, macroscopically, non-homogeneous compounds, in which the material properties vary 

continuously from one interface to the other. The continuity of the material properties reduces the 

influence of the presence of interfaces and avoids high interfacial stresses. The first applications of 

FGMs are in high-temperature environments, but their applications are continuously expanding, 

which requires a better knowledge of their mechanical behavior. Thus, several research works have 

been undertaken to study the static as well as the dynamic behavior of FGM plates. Such structures 

are usually supported by elastic foundations (Chaabane et al. 2019, Berghouti et al. 2019, Hassaine 

Daouadji et al. 2020). The most foundation models used to describe the mechanical behavior of 

foundations are the Pasternak model containing two parameters and the Winkler model which is a 

special case of the first one. In fact, the Winkler model assimilates the foundation as a series of 

separated vertical springs without coupling effects between each other, while the Pasternak model 

takes into account the interactions between springs and overcomes the problem of discontinuous 

deflection on the interacted surface of the plate. 

Based on the First-order shear deformation theory (FSDT), several works have been carried out 
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to study the bending of functionally graded plates. Among others, we can cite the work of several 

researchers, namely: Praveen and Reddy 1998, Refrafi, et al. 2020, Tounsi et al. 2020, Hassaine 

Daouadji et al. 2016, Zohra et al. 2016, Kaddari et al. 2020, Benhenni et al. 2019, Rabia et al. 2018, 

Al-Furjan et al. 2020c, Al-Furjan et al. 2020d, Al-Furjan et al. 2021, Alimirzaei et al. 2019, 

Bensattalah et al. 2018, Daouadji et al. 2016b, Hamrat et al. 2020, Hassaine Daouadji 2013, 

Balubaid et al. 2019, Batou et al. 2019, Belbachir et al. 2019, Bellal et al. 2020, Bourada et al. 2020 

and Bekki et al. 2019). In addition, the refined theory of shear deformation has proven its 

performance compared to other theories because it contains limited unknown variables (only 4 

parameters) (Draiche et al. 2019, Belbachir et al. 2020, Thai et al. 2013, Khiloun et al. 2020, Matouk 

et al. 2020, Mahmoudi et al. 2019, Bensattalah et al. 2016, Bouakaz et al. 2014, Chaded et al. 2018, 

Chergui et al. 2019, Daouadji et al. 2016a, Rabhi et al. 2020, Rahmani et al. 2020, Zine et al. 2020, 

Hassaine Daouadji et al. 2016, Mohamed Amine et al. 2019, Rabahi et al. 2019, Rabia et al. 2016, 

Bourada et al. 2020 and Chaabane et al. 2019), which makes its use very practical. Some researchers 

were particularly interested in studying the free vibration response of functionally graded plates. 

Talha et al. (2010) studied the free vibration and static analysis of functionally graded material 

(FGM) plates using higher-order shear deformation theory (HSDT) by modifying the transverse 

displacement by conjunction with finite element models. An exact three-dimensional elastic model 

was proposed by Ait Atmane et al. (2019) to study the free vibration response of functionally graded 

one-layered and sandwich simply-supported plates and shells. An interesting study based on the 

FSDT theory was presented by several researchers (Zhao et al. 2009, Boulefrakh et al. 2019, 

Boussoula et al. 2020, Chikr et al. 2020, Hussain et al. 2020, Khadimallah et al. 2020, Al-Furjan et 

al. 2020a, Abdederak et al. 2018, Abdelhak et al. 2016, Adim B et al. 2018, Benferhat et al. 2019, 

Belkacem et al. 2016, Benhenni et al. 2018, Rabahi et al. 2020, Tounsi et al. 2008, Tahar et al. 2016, 

Bensattalah et al. 2020, Al-Furjan et al. 2020b, Hassaine Daouadji 2017, Matsunaga et al. 2008 and 

Hosseini-Hashemi et al. 2011) and focused on the analysis of rectangular FG plates with different 

boundary conditions. On the other hand, the functionally graded materials (FGM) used in plates may 

be imperfects that are due to a possible porosity volume fraction in them, which can altercate their 

mechanical behavior. Benferhat et al. (2016) studied the effect of porosity on the bending and free 

vibration response of functionally graded plates resting on Winkler-Pasternak foundations by 

introducing in the mathematical formulation a volume fraction of porosity (α). But the distribution 

shape of porosity can also affect both static and dynamic behavior of FG plates; such influence has 

been highlighted very recently by Bekki et al. (2019) who studied the influence of several forms of 

porosity on the bending FG plates resting on elastic foundations. 

The present work is aimed to study the effect of the distribution shape of porosity on the free 

vibration response of simply supported FGM plates resting on elastic foundation. The imperfection 

or porosity is included using a modified mixture law covering the porosity phases as proposed by 

Wattanasakulponga et al. (2014). The equation of motion for FGM plates is obtained through the 

minimum total potential energy and the principle of Hamilton. The effects of pore volume fraction, 

geometry ratio, and thickness ratio on the free vibration response of FGM plate are also investigated.  

 

 

2. Mathematical formulation  
 
2.1 Geometric configuration  

 

In this study, we consider a FGM plate of length a, width b and total thickness h, made of mixture 
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of metal and ceramics, in which the composition is varied from the top to the bottom surface. The 

material in top surface and in bottom surface is ceramic and metal respectively (Fig.1).  

We also consider an imperfect FGM plate with a volume fraction of porosity α (α << 1), uniformly 

distributed between the metal and the ceramic. We use the modified mixture rule proposed by 

Wattanasakulpong and Ungbhakorn (2014) as 

         𝑃 =  𝑃𝑚 (𝑉𝑚 −
𝛼

2
) + 𝑃𝑐 (𝑉𝑐 −

𝛼

2
)                     (1) 

Now, the total volume fraction of the metal and ceramic is: Vm+Vc=1 and the power law of 

volume fraction of the ceramic is described as 

𝑉𝑐 = (
𝑍

ℎ
+

1

2
)𝑝                                  (2a) 

The modified mixture rule becomes 

𝑃 = (𝑃𝑐 − 𝑃𝑚)(
𝑧

ℎ
+

1

2
)𝑝 + 𝑃𝑚 − (𝑃𝑐 + 𝑃𝑚)

𝛼

2
                     (2b) 

 

 

 
Fig. 1 Geometry and dimensions of the FGM plate resting on elastic foundation 

 

 

Where, k is the power law index that takes values greater than or equals to zero. The FGM plate 

becomes a fully ceramic plate when k is set to zero and fully metal for large value of “p”. 

The Young’s modulus (E) of the imperfect FG can be written as a functions of thickness 

coordinate, z (middle surface), as follows (Benferhat et al. 2016, Hassaine Daouadji et al. 2019, 

Rabahi et al. 2016) 

𝐸(𝑧) = (𝐸𝑐 − 𝐸𝑚)(
𝑧

ℎ
+

1

2
)𝑝 + 𝐸𝑚 − (𝐸𝑐 + 𝐸𝑚)

𝛼

2
                      (3) 

 

2.2 Material properties 
 

The material properties of a perfect FGM plate can be obtained when the volume fraction of 

porosity α is set to zero. Considering that the Poisson ratio ν varies slightly, it can be assumed to be 

constant and fixed at υ=0.3. The properties of the material of the FGM plate are supposed to vary 

according to a power law distribution of the volume fraction of the constituents. The properties of 

the materials used in this analysis are presented in Table 1. 
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Table 1 Material proprieties  

Materiel 
Properties 

E (GPa) υ 

Ceramic (Alumina, Al2O3) 380 0.3 

Metal (Aluminum Al) 70 0.3 

 
Table 2 Deferent distribution forms of porosity 

Distribution forms of Porosity Elastic Modulus Expression 

Uniformly distributed UD 𝐸 = (𝑒𝑐 − 𝑒𝑚)(
𝑧

ℎ
+

1

2
)𝑝 + 𝑒𝑚 − (𝑒𝑐 + 𝑒𝑚)

𝛼

2
              (4a) 

Linear 

functionally 

graded 

O- L 𝐸 = (𝑒𝑐 − 𝑒𝑚)(
𝑧

ℎ
+

1

2
)𝑝 + 𝑒𝑚 − (𝑒𝑐 + 𝑒𝑚)

𝛼

2
(1 − 2

|𝑧|

ℎ
)       (4b) 

X- L 𝐸 = (𝑒𝑐 − 𝑒𝑚)(
𝑧

ℎ
+

1

2
)𝑝 + 𝑒𝑚 − (𝑒𝑐 + 𝑒𝑚)

𝛼

2
(2

𝑧

ℎ
)          (4c) 

V- L 𝐸 = (𝑒𝑐 − 𝑒𝑚)(
𝑧

ℎ
+

1

2
)𝑝 + 𝑒𝑚 − (𝑒𝑐 + 𝑒𝑚)

𝛼

2
(

1

2
+

𝑧

ℎ
)           (4d) 

Λ- L 𝐸 = (𝑒𝑐 − 𝑒𝑚)(
𝑧

ℎ
+

1

2
)𝑝 + 𝑒𝑚 − (𝑒𝑐 + 𝑒𝑚)

𝛼

2
(

1

2
−

𝑧

ℎ
)           (4e) 

Non-Linear 

functionally 

graded 

O- NL 𝐸 = (𝑒𝑐 − 𝑒𝑚)(
𝑧

ℎ
+

1

2
)𝑝 + 𝑒𝑚 − (𝑒𝑐 + 𝑒𝑚)

𝛼

2
(1 − 2

|𝑧|

ℎ
)2       (4f) 

X- NL 𝐸 = (𝑒𝑐 − 𝑒𝑚)(
𝑧

ℎ
+

1

2
)𝑝 + 𝑒𝑚 − (𝑒𝑐 + 𝑒𝑚)

𝛼

2
(2

𝑧

ℎ
)2         (4g) 

V- NL 𝐸 = (𝑒𝑐 − 𝑒𝑚)(
𝑧

ℎ
+

1

2
)𝑝 + 𝑒𝑚 − (𝑒𝑐 + 𝑒𝑚)

𝛼

2
(

1

2
+

𝑧

ℎ
)2         (4h) 

Λ- NL 𝐸 = (𝑒𝑐 − 𝑒𝑚)(
𝑧

ℎ
+

1

2
)𝑝 + 𝑒𝑚 − (𝑒𝑐 + 𝑒𝑚)

𝛼

2
(

1

2
−

𝑧

ℎ
)2         (4i) 

 

 

Several forms of porosity have been studied in the present work, such as “O”, “X”, “V” and “˄” 

forms with linear and non-linear expressions (Table 2).  

 

2.3 Displacement field and strains 
 

Based on of the theory of the higher order shear deformation plate, displacement elements are 

assumed as follow 

𝑢(𝑥, 𝑦, 𝑧) =  𝑢0(𝑥, 𝑦) − 𝑧
𝜕𝑤𝑏

𝜕𝑥
− 𝑧 [1 +

3𝜋

2
𝑠𝑒𝑐ℎ2(

1

2
)] −

3𝜋

2
ℎ tanh (

𝑧

ℎ
)

𝜕𝑤𝑠

𝜕𝑥
  

𝑣(𝑥, 𝑦, 𝑧) =  𝑣0(𝑥, 𝑦) − 𝑧
𝜕𝑤𝑏

𝜕𝑦
− 𝑧 [1 +

3𝜋

2
𝑠𝑒𝑐ℎ2(

1

2
)] −

3𝜋

2
ℎ tanh (

𝑧

ℎ
)

𝜕𝑤𝑠

𝜕𝑦
  

𝑤(𝑥, 𝑦, 𝑧) =  𝑤𝑏(𝑥, 𝑦) + 𝑤𝑠(𝑥, 𝑦)                        (5) 

Linear deformation can be obtained from kinematic relationships as 

𝜖𝑥 = 𝜀𝑥
0 + 𝑧 𝑘𝑥

𝑏 + 𝑧 [1 +
3𝜋

2
𝑠𝑒𝑐ℎ2(

1

2
)] −

3𝜋

2
ℎ tanh (

𝑧

ℎ
)𝑘𝑥

𝑠  

𝜖𝑦 = 𝜀𝑦
0 + 𝑧 𝑘𝑦

𝑏 + 𝑧 [1 +
3𝜋

2
𝑠𝑒𝑐ℎ2(

1

2
)] −

3𝜋

2
ℎ tanh (

𝑧

ℎ
)𝑘𝑦

𝑠   

𝛾𝑥𝑦 = 𝛾𝑥𝑦
0 + 𝑧 𝑘𝑥𝑦

𝑏 + 𝑧 [1 +
3𝜋

2
𝑠𝑒𝑐ℎ2(

1

2
)] −

3𝜋

2
ℎ tanh (

𝑧

ℎ
)𝑘𝑥𝑦

𝑠  

𝛾𝑦𝑧 = 1 −
𝑑(𝑧[1+

3𝜋

2
𝑠𝑒𝑐ℎ2(

1

2
)]−

3𝜋

2
ℎ tanh(

𝑧

ℎ
))

𝑑𝑧
𝛾𝑦𝑧

𝑠   

𝛾𝑥𝑧 = 1 −
𝑑(𝑧[1+

3𝜋

2
𝑠𝑒𝑐ℎ2(

1

2
)]−

3𝜋

2
ℎ tanh(

𝑧

ℎ
))

𝑑𝑧
𝛾𝑥𝑧

𝑠   

𝜀𝑧 = 0                                  (6) 
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Where 

𝜖𝑥
0 =

𝜕𝑢0

𝜕𝑥
, 𝑘𝑥

𝑏 = −
𝜕2𝑤𝑏

𝜕𝑥2   , 𝑘𝑥
𝑠 = −

𝜕2𝑤𝑠

𝜕𝑥2  

𝜖𝑦
0 =

𝜕𝑣0

𝜕𝑦
, 𝑘𝑦

𝑏 = −
𝜕2𝑤𝑏

𝜕𝑦2   , 𝑘𝑦
𝑠 = −

𝜕2𝑤𝑠

𝜕𝑦2  

𝛾𝑥𝑦
0 =

𝜕𝑢0

𝜕𝑥
+

𝜕𝑣0

𝜕𝑦
, 𝑘𝑥𝑦

𝑏 = −2
𝜕2𝑤𝑏

𝜕𝑥𝜕𝑦
  , 𝑘𝑥𝑦

𝑠 = −2
𝜕2𝑤𝑠

𝜕𝑥𝜕𝑦
 

𝛾𝑦𝑧
𝑠 =

𝜕𝑤𝑠

𝜕𝑦
, 𝛾𝑥𝑧

𝑠 =
𝜕𝑤𝑠

𝜕𝑥
, 𝑔(𝑧) = 1 −

𝑓(𝑧)

𝑑𝑧
 

𝑓(𝑧) =  𝑧 [1 +
3𝜋

2
𝑠𝑒𝑐ℎ2(

1

2
)] −

3𝜋

2
ℎ tanh (

𝑧

ℎ
)                   (7) 

The linear constitutive relationships of a FG plate can be written as 

2 2

2 2

( ) ( )

1 1

( ) ( )

1 1

( )
0 0

2(1 )

x x

y y

xyxy

E z E z
O

E z E z
O

E z



  


 
 





 
 

− −    
    

=    − −         
 + 

 
(8) 

( )
0

2(1 )

( )
0

2(1 )

yz yz

zx zx

E z

E z

 

 



 
    +    =   
       
 + 

 
(9) 

 

2.4 Equilibrium equations 
 

To obtain the equations of motion, the energy method is adopted and the total energy of structure 

is needed. 

𝑈 =  
1

2
∫ 𝜎𝑖𝑗𝑉

𝜖𝑖𝑗𝑑𝑉 =
1

2
∫ (𝜎𝑥𝑉

𝜖𝑥 + 𝜎𝑦𝜖𝑦 + 𝜎𝑥𝑦𝛾𝑥𝑦 + 𝜎𝑦𝑧𝛾𝑦𝑧 + 𝜎𝑥𝑧𝛾𝑥𝑧)𝑑𝑉       (10) 

Also, using the Hamilton’s principle, the governing equations of motion can be obtained as the 

equilibrium equations that govern can be derived using the principle of virtual displacements as 

𝛿 ∫ (𝑈 + 𝑈𝐹
𝑡2

𝑡1
− 𝐾 − 𝑊)𝑑𝑡 = 0                           (11) 

Where U is the strain energy and K is the kinetic energy of the FG plate, UF is the strain energy 

of foundation and W is the work of external forces. Employing the minimum of the total energy 

principle leads to a general equation of motion and boundary conditions. Taking the variation of the 

above equation and integrating by parts 

∫ [∫ [𝜎𝑥𝛿𝜖𝑥 + 𝜎𝑦𝛿𝜖𝑦 + 𝜏𝑥𝑦𝛿𝛾𝑥𝑦 + 𝜏𝑦𝑧𝛿𝛾𝑦𝑧 + 𝜏𝑧𝑥𝛿𝛾𝑧𝑥 − 𝜌(𝑢̈𝛿𝑢 + 𝑣̈𝛿𝑣 + 𝑤̈𝛿𝑤)𝑑𝑣
𝑉

𝑡2

𝑡1
  

+ ∫ [𝑓𝑒𝛿𝑤]𝑑𝐴
𝐴

]] 𝑑𝑡                              (12) 

The integral represents the second derivative with respect to time and fe is the density of the 

foundation reaction force. For the Pasternak foundation model, fe can written as 
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𝑓𝑒 = 𝑘0𝑤 − 𝑘1𝛻2𝑤                             (13) 

K0 and K1 are the transverse and shear stiffness coefficients of the foundation respectively. 

The stress resultants are given as 

;

s

b s b s

s s s ss

N A B B

M B D D k S A

B D H kM





     
     

= =    
         

 (14) 

Wher 

𝑁 =  {𝑁𝑥 , 𝑁𝑦, 𝑁𝑥𝑦}
𝑡
,         𝑀𝑏 =  {𝑀𝑥

𝑏 , 𝑀𝑦
𝑏 , 𝑀𝑥𝑦

𝑏 }
𝑡
                   (15a) 

𝑀𝑠 =  {𝑀𝑥
𝑠, 𝑀𝑦

𝑠 , 𝑀𝑥𝑦
𝑠 }

𝑡
 ,          𝜖 = {𝜖𝑥

0 + 𝜖𝑦
0 + 𝜖𝑥𝑦

0 }
𝑡
                   (15b) 

𝑘𝑏 =  {𝑘𝑥
𝑏 , 𝑘𝑦

𝑏, 𝑘𝑥𝑦
𝑏 }

𝑡
 ,                 𝑘𝑠 =  {𝑘𝑥

𝑠 , 𝑘𝑦
𝑠 , 𝑘𝑥𝑦

𝑠 }
𝑡
                   (15c) 

𝐴 = [

𝐴11 𝐴12 0
𝐴12 𝐴22 0

0 0 𝐴66

]  ,      𝐵 =  [

𝐵11 𝐵12 0
𝐵12 𝐵22 0

0 0 𝐴66

]  ,     𝐷 = [

𝐷11 𝐷12 0
𝐷12 𝐷22 0

0 0 𝐷66

]       (15d)  

𝐵𝑠 = [

𝐵11
𝑠 𝐵12

𝑠 0

𝐵12
𝑠 𝐵22

𝑠 0

0 0 𝐵66
𝑠

] ,      𝐷𝑠 = [

𝐷11
𝑠 𝐷12

𝑠 0

𝐷12
𝑠 𝐷22

𝑠 0

0 0 𝐷66
𝑠

] ,     𝐻𝑠 = [

𝐻11
𝑠 𝐻12

𝑠 0

𝐻12
𝑠 𝐻22

𝑠 0

0 0 𝐻66
𝑠

]       (15e) 

𝑆 = {𝑆𝑥𝑧
𝑠  ,  𝑆𝑦𝑧

𝑠 }
𝑡
 , 𝛾 = {𝛾𝑥𝑧 , 𝛾𝑦𝑧}

𝑡
 ,              𝐴𝑠 = [

𝐴44
𝑠 0

0 𝐴55
𝑠 ]              (15f) 

Stiffness components and inertias are given as 

{𝐴𝑖𝑗, 𝐵𝑖𝑗  , 𝐶𝑖𝑗 , 𝐷𝑖𝑗, 𝐸𝑖𝑗 , 𝐺𝑖𝑗} = ∫ {1, 𝑧, 𝑓(𝑧), 𝑧2, 𝑧𝑓(𝑧), [𝑓(𝑧)]2}
ℎ/2

−ℎ/2
𝑄𝑖𝑗𝑑𝑧        (16) 

Following the Navier solution procedure, we assume that the following solution form u0, v0, wb 

and ws, satisfies the boundary conditions of rectangular FG plate simply supported 
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(17) 

Where: 𝜆 = 𝑚𝜋/𝑎 , 𝜇 = 𝑛𝜋/𝑏  and Umn, Vmn, Wbmn, Wsmn being arbitrary parameters and 

𝜔  denotes the Eigen frequency associated with (m,n)th Eigen mode. One obtains the following 

operator equation 

([𝐾] − 𝜔2[𝑀]){∆} =  {0}                             (18) 

Where: {∆} = {𝑈, 𝑉, 𝑊𝑏 , 𝑊𝑠}𝑡 and [K] and [M], stiffness and mass matrices, respectively, and 

represented as 

 
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K

a a a a

a a a a
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 

 
(19a) 
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(19b) 

In which 

𝑎11 = 𝐴11𝛼2 + 𝐴66𝛽2                              (20a) 

𝑎12 = 𝛼𝛽(𝐴12 + 𝐴66)                              (20b) 

𝑎13 = −𝐵11𝑎3                                (20c) 

𝑎14 = 𝐶11𝑎2 + 𝐶66𝛽2                              (20d) 

𝑎15 = 𝛼𝛽(𝐶12 + 𝐶66)                               (20e) 

𝑎22 = 𝐴66𝛼2 + 𝐴22𝛽2                              (20f) 

𝑎23 = −𝐵22𝛽2                                 (20g) 

𝑎24 = 𝛼𝛽(𝐶12 + 𝐶66)                               (20h) 

𝑎25 = 𝐶66𝛼2 + 𝐶66𝛽2                               (20i) 

𝑎33 = 𝐷11𝛼4 + 2𝐷12𝛼2𝛽2 + 4𝐷66𝛼2𝛽2 + 𝐷22𝛽4 + 𝑘0 + 𝑘1(𝛼2 + 𝛽2)          (20j) 

𝑎34 = −𝐸11𝛼3 − 𝐸12𝛼𝛽2 − 2𝐸66𝛼𝛽2                        (20k) 

𝑎35 = −𝐸12𝛼2𝛽 − 2𝐸66𝛼2𝛽 − 𝐸22𝛽3                         (20l) 

𝑎44 = 𝐹55 + 𝐺11𝛼2 + 𝐺66𝛽2                            (20m) 

𝑎45 = 𝛼𝛽(𝐺12 + 𝐺66)                               (20n) 

𝑎55 = 𝐹44 + 𝐺66𝛼2 + 𝐺22𝛽2                            (20o) 

And: 𝛼 = 𝑚𝜋/𝑎, 𝛽 = 𝑛𝜋/𝑏                             (21) 

The natural frequencies of FG plate can be found from the nontrivial solution of Eq. (18). 

 

 

3. Results and discussion: 
 

In the present study, the effect of the distribution shape of porosity on the normalized Eigen 

frequency parameter is investigated for rectangular FG plates resting on Winkler-Pasternak elastic 

foundations. 

In order to verify the accuracy of the present solution, some illustrative examples whose results 

are compared with the solutions available in the literature. 

The Fundamental frequency parameters in the form of 𝑤̅ = 𝜔ℎ√𝜌𝑐/𝐸𝑐 of the SSSS square FG 

plates (a/b=1) for different values of the thickness to length ratios (h/a=0.05, 0.1, and 0.2) are 

presented in Table 3, for a gradient index P=0, 1, 4 and 10. The plates are made of a mixture of 

aluminum (Al) and alumina (Al2O3). The calculated fundamental frequency parameters are 

compared with those reported in literature (Tounsi et al. 2020, Ait Atmane et al. 2019, Kaci et al. 

2020, Refrafi et al. 2020). 

As we can see on Table 3, close agreements were obtained between the results of the present 

method and those of literature, with precision up to 2 to 3 digits after the decimal point. However;  
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Table 3 Comparison of fundamental frequency parameters 𝑤̅ = 𝜔ℎ√𝜌𝑐/𝐸𝑐 for SSSS Al/Al2O3 square plates 

(a/b=1) 

Thickness-to-

length ratio h/a 
Method 

Gradient index P 

0 1 4 10 

0.05 

Tounsi et al. (2020) (FSDT) 0.01480 0.01150 0.01013 0.00963 

Ait Atmane et al.(2019) (FSDT) 0.01464 0.01118 0.00970 0.00931 

Present 

α=0 0.014799 0.011307 0.009805 0.009408 

α=0.1 0.015470 0.011911 0.010378 0.009966 

α=0.2 0.016240 0.012623 0.011055 0.010590 

0.1 

Tounsi et al. (2020) (FSDT) 0.05769 0.04454 0.03825 0.03627 

Kaci et al (2020) (2D) 0.05777 0.04427 0.03811 0.03642 

Refrafi et al (2020) (FSDT) 0.06382 0.04889 0.04230 0.04047 

Ait Atmane et al.(2019) (FSDT) 0.05673 0.04346 0.03757 0.03591 

Present 

α=0 0.057697 0.044175 0.038047 0.036365 

α=0.1 0.060236 0.046452 0.040041 0.038119 

α=0.2 0.063152 0.049122 0.042237 0.039529 

0.2 

Tounsi et al. (2020) (FSDT) 0.2112 0.1650 0.1371 0.1304 

Kaci et al (2020) (2D) 0.2121 0.1640 0.1383 0.1306 

Refrafi et al (2020) (FSDT) 0.2334 0.1802 0.1543 0.1462 

Ait Atmane et al.(2019) (FSDT) 0.2055 0.1587 0.1356 0.1284 

Present 

α=0 0.21129 0.16288 0.137513 0.129954 

α=0.1 0.219792 0.170345 0.142363 0.132317 

α=0.2 0.229497 0.178942 0.146257 0.129287 

 

Table 4 Comparison of fundamental frequency parameters 𝛽 = 𝜔𝑎2√𝜌𝑐/𝐸𝑐/ℎ  for SSSS Al/Al2O3 square 

plates (a/b=1) 

Thickness-to-

length ratio h/a 
Method 

Gradient index P 

0 1 5 10 

0.1 

Tounsi et al. (2020) (FSDT) 5.7693 4.4545 3.7837 3.6277 

Ait Atmane et al. (2019) (FSDT) 5.6763 4.3474 3.7218 3.5923 

Present 

α=0 5.76966 4.41750 3.76613 3.63654 

α=0.1 6.02364 4.64520 3.95917 3.81187 

α=0.2 6.31516 4.91219 4.16100 3.95287 

 

 

a certain difference of around 3% is recorded by comparing the results with those of Ait Atmane et 

al. (2019). It can also be noted that the results of Kaci et al (2020) obtained by the FSDT method 

deviate a little bit from the rest of the results. 

By introducing the volume fraction of porosity (α), it can be noted that the increase of this factor 

induces an increase in the results, which shows that the porosity has a significant influence on the 

free vibration behavior of FG plates. 

For the fundamental frequency parameters in the form of 𝛽̃ = 𝜔𝑎2√𝜌𝑐/𝐸𝑐/ℎ, we can extricate 

the same remarks. According to Table 4, the results of the present method are in good agreement 

with those of Tounsi et al. (2020).  
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The results presented in Tables 3 and 4 reveal that the increase in volume fraction porosity (α) 

increases the fundamental frequency parameters. In order to better visualize the effect of the 

distribution shape of porosity on the free vibration behavior of FGM plate, it is preferable to present 

the fundamental frequency parameter defined as  𝛽̃ = 𝜔𝑎2√𝜌𝑐/𝐸𝑐/ℎ. 

The study is applied to FG plate with simply supported boundary conditions, resting on an elastic 

foundation for deferent aspect ratio a/b (length to width) and thickness ratio h/a (thickness to length), 

made with Al/ Al2O3. The effect of the distribution shape of porosity on the normalized Eigen 

frequency parameter β is investigated for rectangular FG plates (a/b=3) with various values of 

Pasternak elastic foundations parameters (K0 and K1), when the thickness ration h/a=0.01, 0.05,0.1, 

0.2. 

In Fig. 2, we present the fundamental frequency parameter 𝛽̃ of FG rectangular plate (a/b=3), 

resting on an elastic foundation for deferent thickness ratio h/a, under the influence of the 

distribution shape of porosity when K0=K1=10.  
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Fig. 2 Effect of the shape of porosity distribution on fundamental frequency parameter 𝛽 versus 

thickness ratio h/a of an Al/Al2O3 FG plate resting on an elastic foundation (a) Linear expressions 

(b) Nonlinear expressions 
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Fig. 3 Effect of the shape of porosity distribution on fundamental frequency parameter 𝛽 versus 

aspect ratio a/b of an Al/Al2O3 FG plate resting on an elastic foundation (a) Linear expressions; (b) 

Nonlinear expressions 

 

 

As we can see on Fig. 2, the frequency parameter 𝛽  decreases as the thickness of the plate 

increases. The effect of the distribution shape of porosity significantly increases for the thicker 

plates. In fact, there is no effect for the thin plate (h/a=0,01) but the influence occurs when the 

thickness increases. In the case of linear expressions of the distribution shape of porosity, the curves 

are clearly separated and distant each other and located above the homogeneous shape’s curve (Fig. 

2(a)). In the case of nonlinear expressions, the curves are closer to each other and also located above 

the homogeneous shape’s curve (Fig. 2(b)). It can be noted that the distribution shape of porosity 

has a significant effect on the free vibration of FG plate. Regarding the form of the expressions of 

the distribution shape of porosity (linear or nonlinear), it seems that there is just a slight influence.  

In Fig. 3, we present the fundamental frequency parameter 𝛽̃ of FG thick plate (h/a=0.2), resting 

on an elastic foundation for deferent aspect ratio a/b, under the influence of the distribution shape 

of porosity when K0=K1=10.  
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Fig. 4 Effect of the shape of porosity distribution on fundamental frequency parameter 𝛽 versus 

Pasternak elastic foundations parameter (K0) of an Al/Al2O3 FG plate 
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Fig. 5 Effect of the shape of porosity distribution on fundamental frequency parameter 𝛽 versus 

Pasternak elastic foundations parameter (K1) of an Al/Al2O3 FG plate 

 

 

As we can see on Fig. 3, the frequency parameter 𝛽 increases gradually as the width of the plate 

increases. It can be noted that the effect of the distribution shape of porosity significantly increases 

for the wider plates. Indeed, the effect appears from a geometric aspect ratio of 1.5 and occurs when 

the width increases. Practically, we observed the same tendency as for the thickness ratio (h/a).  

The form of the expressions of the distribution shape of porosity (linear or nonlinear) has only a 

slight influence as observed for the thickness ratio effect. This is the reason why, in the following, 

only linear expressions of the distribution shape of porosity will be considered. 

The effect of Pasternak elastic foundations parameters (K0 and K1) on the normalized Eigen 

frequency parameter β is investigated for rectangular FG plates (a/b=3) with various distribution 

shape of porosity, when the thickness ratio h/a=0.2, as shown in Fig. 4 and Fig. 5.  
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Fig. 6 Effect of the shape of porosity distribution on fundamental frequency parameter 𝛽 versus 

Winkler elastic foundation parameter (K0) of an Al/Al2O3 FG plate 

 

 

By fixing the shear stiffness coefficient of the foundation (K1) to 10, we can note that the effect 

of the distribution shape of porosity decreases as the transverse stiffness coefficient increases (Fig. 

4). For a high values of transverse stiffness coefficient (K0=10000), there is no effect of the 

distribution shape of porosity, which means that for a very stiff foundation (in the vertical direction) 

this effect completely disappears.   

In Fig. 5, we present the effect of the distribution shape of porosity on the frequency parameter 

β versus the shear stiffness coefficient (K1) for a fixed transverse stiffness coefficient (K0). It is found 

that the effect of the distribution shape of porosity only appears for small values of K1 (K1=10). From 

k1=100, the effect of distribution shape of porosity completely disappears, which means that the 

shear stiffness coefficient has only a significant effect when it takes a small values. 

For the particular case of Winkler elastic foundation (K1=0), it can be noted a similar tendency 

that observed for the Pasternak elastic foundation (Fig. 6). However, the effect of the distribution 

shape of porosity decreases by increasing the Winkler elastic foundation parameter and completely 

disappears for a high values of this factor (K0=10000). 

 

 
4. Conclusions 
 

In the present study, the effect of the distribution shape of porosity on the normalized Eigen 

frequency parameter was investigated for rectangular FG plates resting on Winkler-Pasternak elastic 

foundations. A parametric study was conducted, including geometric aspect ratios (a/b), thickness 

ratios (h/a) and foundation stiffness parameters. It was found that the effect of the distribution shape 

of porosity significantly occurs when the thickness of the plate increases and the length to width 

ratio (a/b) increases. It was also found that the effect appears for small values of elastic foundations 

parameters. It can be concluded that the distribution shape of porosity has a significant effect on the 

free vibration behavior of thick rectangular FG plates for a small values of Winkler-Pasternak elastic 

foundation parameters. 
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