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Abstract.  In this manuscript, a comprehensive numerical analysis is conducted to assess the accuracy of the Tan’s 
model of obtaining the stress concentration factor, for a plate with finite dimensions containing an open hole. The 
influence of plate length on the stress distribution around the hole is studied. It is demonstrated that the plate length 
has a significant impact on the degree of accuracy of the method. Therefore, a critical length is proposed for this 
approach. Critical length is defined as the minimum length the plate requires, to ensure that the SCF which is 
obtained from the Tan’s model will have sufficient accuracy. Finally, the approach of finite-width correction factor is 
adapted to develop a new model which is applicable for plates under biaxial loading conditions. In this method, 
biaxial loading is considered as a dominant axial force along the x-direction and lambda times the load (-1≤λ≤1), 
along the y-direction. A comparison between the SCFs obtained from the proposed analytical method and the SCFs 
obtained from the extensive FE studies, revealed an excellent agreement when the plate-width to hole-diameter ratio 
is more than 3 and the lambda is between -0.5 and 1. 
 

Keywords:  stress concentration factor (SCF); composite plate; circular hole; correction factors; finite 
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1. Introduction 
 

Composites unique properties such as high stiffness and strength to weight ratio, and 

considerable corrosion and fatigue resistance, have led to their extensive use in a variety of 

industries including aerospace, transportation and off-shore structures. Therefore, a comprehensive 

understanding of their behavior is absolutely crucial. One of the important structural components 

is a plate containing a hole subjected to in-plane loading, because hole in the plate causes stress 

concentration which reduces structures strength and fatigue life.  

Various experimental, analytical, approximate and hybrid methods can be employed to obtain 

the SCF in a plate. For the first time, Lekhnitskii (1968) proposed a closed-form analytical 

solution of the stress field in an infinite anisotropic plate containing a hole. Today, this method is 

known as the “Lekhnitskii Formalism”. 

Konish and Whitney (1975) provided two approximate solutions for stress field in an infinite 

orthotropic plate with a circular hole. Tan (1987) expanded this approach and presented two 

approximate solutions for infinite orthotropic plates with elliptical holes. 
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Ukadgaonker and Rao (1999) expanded Savin’s solution (1961) and presented a closed-form 

solution for the stress around a triangular hole with a general shape in an infinite anisotropic plate. 

This method can be used for a plate under biaxial and shear loading (without using the 

superposition principle) as well as the hole under shear load and pressure. In their proceeding work, 

they developed closed-form solutions for the stress field around a hole with arbitrary shape in an 

infinite symmetric laminate under in-plane loads (Ukadgaonker 2000a) which indicated a 

satisfactory agreement with the previous results from literature and FE analysis (Ukadgaonker 

2005). Distribution of moments around a hole with arbitrary shape in an infinite symmetric 

laminate under bending moments is also presented in (Ukadgaonker 2000b). 

Hufenbach et al. (2008) employed the first-order shear deformation theory and expanded the 

Mindlin-Reissner plate theory to derive a system of coupled partial differential equations for the 

plate-bending and the membrane plate problem. The system of equations is solved by the Ritz 

method. This model provides a layer-by-layer stress analysis of thick-walled multilayered 

composites. They later proposed a method (Hufenbach 2010) which is based on the complex-

valued displacement functions and solved the set of coupled PDEs by the boundary collocation 

and least square methods to provide a layer-by-layer analysis of stress field in a multilayered 

anisotropic composite. 

Bambill et al. (2009) investigated the effect of different in-plane loading conditions, loading 

directions and fiber orientations in an orthotropic plate with square holes. Rao et al. (2010) also 

investigated the effect of fiber orientation, stacking sequence, biaxiallity ratio and loading 

direction in an infinite symmetric laminate with square and rectangular holes under in-plane 

loading.  

Yang et al. (2010) applied the double U-transformation technique to the finite element 

governing equations of an infinite plate with a rectangular hole which is subjected to a bending 

load. They used a 12-DOF plate bending element with four nodes to analytically study the SCF. 

Dai et al. (2010) proposed a theoretical solution for the three-dimensional stress field in an 

infinite plate with a through the thickness hole under in-plane loads. They employed the method in 

order to specifically investigate the effects of the plate thickness, Poisson's ratio and the far-field 

in-plane loads on the 3-dimensional stress field. 

Mahi et al. (2014) developed a procedure based on the finite-difference method to evaluate the 

stress concentrations that occur at the edges of an FRP plate in strengthened beams under thermal 

loading. They investigated the effect of tapered edges on the SCFs. 

Sharma et al. (2014a) provided the moment distribution around a polygonal hole, circular, 

elliptical and triangular holes (Patel 2015) and square holes (Sharma 2015). They (Sharma 2014b) 

also utilized a genetic algorithm to optimize the fiber orientation and stacking sequence in a 

laminate containing an elliptical hole which is under in-plane loading.  

For the first time, Lin and Ko (1988) studied the stress field around an elliptical hole in a finite 

plate under in-plane loading. They used the Laurent series as a general form of the complex 

potential function and employed the boundary collocation points method to impose boundary 

conditions and calculate general form’s unknown coefficients. 

Tan (1988) proposed a finite-width correction (FWC) factor to obtain the stress field in a finite 

plate containing an elliptical hole under uniaxial loading. For this purpose, it is assumed in this 

approach that the stress profile of the finite plate is identical to that of the same plate with infinite 

dimensions. 

Xu et al. (1995a) believed that the method proposed by Lin and Ko (1988) can be time 

consuming and inaccurate. Therefore, they used the Faber series as a general form of the complex 
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potential function. With this assumption, boundary collocation points method can be used to 

define any kind of boundary condition. In their proceeding works, they expanded this method for 

plates with multiple not loaded (Xu 1995b)/loaded (Xu 1999) holes. 

Xiong (1999) used the Laurent series as a general form for the potential function to determine 

stress field in a finite plate containing one joint fastener. He believed that in order to use the 

boundary collocation points method, one needs to have an extensive knowledge on the subject 

since using this method includes choosing the collocation points on the plate edge and hole(s) 

boundary. If these points are not been chosen wisely, the solution may become incorrect. Therefore, 

Xiong developed a method based on the minimum potential energy principle to obtain the 

unknown coefficients of the Laurent series. 

ESP (2007) adapted Xu’s approach (Xu 1995a) to obtain the stress field for a finite plate with 

several loaded/not loaded holes. The author used the least square boundary collocation points 

method to apply both internal and external boundaries. By using different orders for the positive 

and negative terms in complex potential function, the author further improved accuracy of the Xu’s 

method. 

Russo and Zuccarello (2007) investigated the results from boundary element analysis and 

demonstrated that Tan’s assumption about stress profiles in finite and infinite plates is not always 

accurate. They proposed a hybrid analytical-numerical method based on Tan’s FWC factor and 

numerical studies, for determining stress field in a finite width laminates with a circular hole under 

axial loading. This model uses a correction function which adjusts the stress profile of the infinite 

plate. 

Sevenois (2013) expanded the method proposed by Xiong (1999), to obtain stress field in a 

finite size rectangular orthotropic plate subjected to in-plane loading and has several elliptical 

(loaded/not loaded) holes. 

Jain and Mittal (2008) conducted a FE analysis in order to investigate the hole-diameter to 

plate-width ratio on the SCF and deflection of composite plates under transverse loadings. Mao 

and Xu (2013) used the complex variable method along with boundary collocation method to 

develop the stress state in a finite composite plate weakened by multiple elliptical holes subjected 

to bending.  

Zappalorto (2015) proposed an engineering formulae for obtaining SCFs in plates with shallow 

lateral or central notches, and sharp deep lateral notches under tensile loading. The author showed 

that although from strictly theoretical point of view his formulae are only valid for infinite or semi-

infinite plates, they can be used for some special cases of finite plates as well. 

Tan’s finite width correction factor (Tan 1988) is obtained under the assumption of a remote 

uniaxial load (sufficiently long plate). In the second section of the manuscript, first, the plate 

length’s effect on the accuracy of SCFs obtained from the Tan’s method is studied. Then, a critical 

length as the minimum required plate length is proposed. It will be demonstrated that the SCF 

calculated by this method will have sufficient accuracy if the length of the plate is longer than the 

proposed critical length.  

Furthermore, in the third section, Tan’s approach is adapted to develop a new analytical 

correction factor that can account for the finite dimensions of plates under biaxial loading 

conditions. Then, parameters that may affect the accuracy of the proposed model will be identified. 

Subsequently, an extensive finite element analysis for different plate configurations and layups 

will be conducted to investigate effects of those parameters on the accuracy of the model. Finally, 

the validity of the model for a wide range of orthotropic laminated composite plates containing a 

circular hole subjected to in-plane loadings will be demonstrated 
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2. Stress concentration factor in plates under uniaxial loading 
 

2.1. Finite-width correction factors 
 

Tan (1988) proposed the concept of finite width correction (FWC) factors in an orthotropic 

plate with an elliptical hole under uniaxial loading. If hole’s major diameter to minor diameter 

ratio (which is identified with 𝜉 in the following formulation) is more than 4, the exact FWC 

factor (Eq. (1)) and approximate FWC factor (Eq. (2)) are recommended: 

𝐾𝑇
∞

𝐾𝑇

= 1 −
2𝑎

𝑊
+ 𝑅𝑒 {

1

𝜇1 − 𝜇2

[ 
𝜇2

1 + 𝑖𝜇1𝜉
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2𝑎

𝑊
− 𝑖𝜇1𝜉 ( 
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𝑊
 ) − √1 − (1 + 𝜇1

2𝜉2) (2𝑎 𝑊⁄ )2)
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(
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𝑊
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6

(𝐾𝑇
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2

𝜉
) {[1 + (𝜉2 − 1)(2𝑎 𝑊⁄ )2]−5 2⁄

− (
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𝑊
)

2

[1 + (𝜉2 − 1)(2𝑎 𝑊⁄ )2]−7 2⁄ } 

(2) 

However, if the hole’s major diameter to minor diameter ratio is less than 4, the improved exact 

FWC factor (Eq. (3)) and improved approximate FWC factor (Eq. (4)) are recommended: 
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2

𝜉
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− (
2𝑎

𝑊
𝑀)

2

[1 + (𝜉2 − 1)(2𝑎𝑀 𝑊⁄ )2]−7 2⁄ } 

(4) 

In Eqs. (1)-(4), 𝐾𝑇
∞ 𝐾𝑇⁄  is the FWC factor, 𝐾𝑇

∞ = 1 + 𝑛 is the SCF of the infinite plate (𝑛 is 

given by Eq. (20)), 𝐾𝑇 is SCF of the finite-width plate, 2𝑎 is the major diameter of the elliptical 

hole, 𝑊 is the plate’s width, 𝜇1 and 𝜇2 are principal roots of characteristic equation of the basic  
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Table 1 Material properties (Tan 1990) 

𝜈𝑥𝑦 𝐺𝑥𝑦 (𝐺𝑃𝑎) 𝐸𝑦 (𝐺𝑃𝑎) 𝐸𝑥 (𝐺𝑃𝑎) Name 

0.29 6.1 10.7 143.3 𝐴𝑆4 3502⁄  

0.26 7.15 22.49 173.90 CFRP 

 

 

differential equation of the 2-D problem of elasticity, and 𝑀 is magnification factor which is used 

to magnify opening-to-width ratio 2𝑎 𝑊⁄ , and it is defined by Eq. (5) (see 3.2.3.). 

𝑀2 =

√1 − 8 [
3 ( 1 − 2𝑎 𝑊⁄  )

2 + (1 − 2𝑎 𝑊 ⁄ )3 − 1] − 1

2 (2𝑎 𝑊⁄ )2
 

(5) 

 

 

2.2. Plate length’s influence on SCF 
 
It is assumed in the Tans’s model that the loads are applied far away from the hole boundary, 

thereby, the influence of the end effects and boundary conditions on the stress field in the vicinity 

of the hole are ignored. This issue was first pointed out by Troyani et al. (2002) in the context of 

isotropic materials. It is very well known that typical composite laminates have characteristic 

decay lengths of several times their width therefore, end effects cannot be ignored in them. In spite 

of the importance of the influence of length, some researchers have used small length to width 

ratios in their investigations. As an example, Russo and Zuccarello (2007) have modeled finite 

square plates (with different width to diameter ratios) by using boundary element method to 

develop a hybrid numerical-analytical correction factor based on the Tan’s model. In this section, 

extensive finite element analyses are performed to investigate length effects on the accuracy SCFs 

that are calculated based on Tan’s correction factor. It is aimed to assess the accuracy of the 

method in plates with different length to width ratios. 

Finite element analysis using ABAQUS commercial code was employed to investigate effects 

of different length to width and width to hole diameter ratios on SCFs. For the plate under uniaxial 

loading, only half-width of the plate has been modeled due to complete material and geometrical 

symmetry. ABAQUS S8R shell elements have been used to discretize the geometries. For each 

geometry, several models with increasing number of elements had been studied to ensure that the 

convergence was achieved. Fig. 1 shows an exemplary meshed geometry and the general boundary 

conditions of the problem. One side of the plate is fixed, while a distributed shell edge force is 

applied to the other side, as it is shown in Fig. 1. 

Three different laminates, 06, (02 90⁄ )𝑠, (04 ±45 902⁄⁄ )𝑠  have been studied here. The 

mechanical properties of each lamina that were used in the analyses are available in table 1. The 

first two laminates are made from 𝐴𝑆4 3502⁄  and the last laminate is made from the CFRP. 

Figs. 2 and 3 indicate changes in SCF of 06 and (02 90⁄ )𝑠 laminates with different length to 

width ratios. These two charts show that the material properties, composite lay-up and width-to-

diameter ratio can influence how the plate length affects SCF. However, it can be concluded that 

the plate length-to-width ratio has a significant effect on the value of SCF and consequently, on the 

accuracy of the Tan’s method (also concluded in (Bakhshandeh 2007, Sanchez 2014)). As an  
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(a) 

 
(b) 

Fig. 1 A: an exemplary meshed geometry and the general B.C. of uniaxial loading, B: Magnifica

tion around point “A” 

 

 
Fig. 2 SCF against length to width ratio for 06 Laminate 

 
 

example, one can see that in 06  laminate with 𝑤𝑖𝑑𝑡ℎ 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟⁄ = 2  and 𝑙𝑒𝑛𝑔𝑡ℎ 𝑤𝑖𝑑𝑡ℎ⁄ = 1 

(square plate) SCF is 42.2% higher than the same plate with 𝑙𝑒𝑛𝑔𝑡ℎ 𝑤𝑖𝑑𝑡ℎ⁄ = 5. 

If a plate containing a hole is long enough, the stress field will be able to become uniform 

before it reaches the discontinuity. Thereby, when force lines reach the hole, they will gradually 

change direction and revolve around the hole. However, when the plate length is not long enough 

(with respect to the plate width), stress field does not reach the discontinuity uniformly. Therefore, 

the density of force lines is higher in the middle of the plate-width before reaching the  
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Fig. 3 SCF against length to width ratio for (02 90⁄ )𝑠 Laminate 

 

 
Fig. 4 Normalized stress distribution of a 06 laminate with  𝑤𝑖𝑑𝑡ℎ 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟⁄ = 2 along line 𝐴𝐵̅̅ ̅̅  

 

 

discontinuity. As a result, in a section which the hole exists, SCF will be higher in comparison with 

the former situation. Therefore, stress near the plate edge will be lower in the same cross-section. 

Fig. 4 shows the normalized stress distribution of a 06 laminate with 𝑤𝑖𝑑𝑡ℎ 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟⁄ = 2 along 

line AB (definition of line AB is available in Fig. 1). The upper line belongs to the plate with 

𝑙𝑒𝑛𝑔𝑡ℎ 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟⁄ = 2 and the other line belongs to the plate with 𝑙𝑒𝑛𝑔𝑡ℎ 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟⁄ = 10. In the 

case with 𝑙𝑒𝑛𝑔𝑡ℎ 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟⁄ = 2, SCF is higher and stress near the plate-edge is compressive. 

 

2.3 Critical length of a plate 
 

As shown in the previous section and pointed out previously in (Bakhshandeh 2007, Sanchez 

2014), using the Tan’s FWC factor may lead to significant errors in plates with small length-to-

width ratio. In order to find a suitable range for the application of Tan’s model, Bakhshandeh and 
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Rajabi (2007) presented a transition length for an orthotropic plate. Following Troyani et al. (2002) 

they defined the transition length as the length of the member for which the SCF calculated by 

Tan’s model remains within 1 percent of the corresponding long member. In 2014, Sánchez and 

Troyani demonstrated that the results presented in (Bakhshandeh 2007) are only acceptable for the 

specific material properties given in that work. This is because, unlike the isotropic case, 

theoretical SCF values and their corresponding transition lengths are a function of four 

independent constants of a two-dimensional orthotropic material. It is aimed in this section of the 

present work to use the very well established concepts regarding the Saint-Venant principle in 

composite materials to propose a critical (i.e. transition) length that can account for a general 

orthotropic material. 

Horgan (1982) used the analogy of Papkovich-Fadle Eigen functions to obtain the characteristic 

decay length for a semi-infinite rectangular strip. He analytically proved that: 

χ ∝ b√
E1

G
 (6) 

In this equation, χ is the characteristic decay length, 𝐸1 and 𝐺 are laminate’s engineering 

constants and b is plate width. Characteristic decay length is an axial distance over which the 

stress decays to fraction 1 𝑒⁄  of its value at the end of strip. 

In a plate containing a hole, (𝑊 − 𝐷)/𝑊 is a key parameter for the stress distribution in the 

vicinity of the hole. It is also evident that in a given laminate, critical length should converge to a 

fixed value when plate-width mathematically approaches infinity. Based on the mentioned 

considerations and the finite element studies, Eq. (6) is adapted and the following critical length is 

proposed: 

LC = 2√
E1

G

(W − D)

W
D (7) 

In Eq. (7), LC is the critical length, W is plate width, D is hole diameter, E1 is laminate’s 

engineering constant in the loading direction and G is laminate’s shear engineering constant in the 

same coordinate. Error of the analytical method (i.e. Tan’s model) is used for the presentation of 

data in the figures of the rest of the study. This value is used to demonstrate the functionality of the 

p r o p o s e d  c r i t i c a l  l e n g t h  a s  we l l .  T h i s  va l u e  i s  c a l c u l a t e d  a s  𝐸𝑟𝑟𝑜𝑟 (%) =

 100 × (𝐾𝑇
𝑡ℎ𝑒𝑜𝑟𝑦

− 𝐾𝑇
𝐹𝐸𝑀) 𝐾𝑇

𝐹𝐸𝑀⁄  through out the research. It was aimed in developing the critical 

length that the Tan’s model produces less than 5% error. The normalized critical lengths (𝐿𝐶 𝑊⁄ ) 

for the exemplary laminates are tabulated in table 2. For each finite element model, the minimum 

length of the model is equal to its width (square plate). So for the plates with 𝑤𝑖𝑑𝑡ℎ 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟⁄ > 6 

model’s minimum length will be definitely longer than corresponding critical length and Tan’s 

method will have sufficient accuracy. Figs. 5 to 7 indicate application of the critical length. In 

these Figures, errors of the SCF in comparison with the finite element results are plotted against 

the normalized plate length. Vertical lines are values of the normalized critical lengths. As an 

example, the vertical line 𝐿𝐶 𝑊⁄ = 2.4 in Fig. 5 is the normalized critical length for the plates with 

𝑤𝑖𝑑𝑡ℎ 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟⁄ = 2. When the normalized length is more than 2.4, error is less than 4%, but the 

error significantly increases up to 30% when the plate length is less than the critical length. In 

some cases like 𝐷 𝑊⁄ = 1 6⁄  of Fig. 7, critical length (𝐿𝐶 𝑊⁄ = 0.7) is lower than the minimum 

plate length (𝐿 𝑊⁄ = 1) and clearly, error is acceptable for all of the plates with 𝐷 𝑊⁄ = 1 6⁄ . The  
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Table 2 Critical lengths normalized to plate width 

D/W =
1

6
 D/W = 

1

4
 D/W = 

1

3
 D/W = 

1

2
 Lay-up 

1.3 1.8 2.1 2.4 06 

1.1 1.5 1.8 2.0 (02 90⁄ )𝑠 

0.7 1.0 1.1 1.3 (04 ±45 902⁄⁄ )𝑠 

 

 
Fig. 5 Error of SCFs obtained from the exact solution (Eq. (1)) against length to width ratio for

 06 laminate 
 

 
Fig. 6 Error of SCFs obtained from the improved approximate solution (Eq. (4)) against length t

o width ratio for (02 90⁄ )𝑠 laminate 
 

 

only exception is the case of [04 ±45 902⁄⁄ ]𝑠 laminate (Fig. 7) where the combined effects of the 

specific material orthotropy ratio and the specific width to diameter ratio produces relatively  
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Fig. 7 Error of SCFs obtained from the exact solution (Eq. (1)) against length to width ratio for

 (04 ±45 902⁄⁄ )𝑠 laminate 
 

 
Fig. 8 A finite plate under biaxial loading 

 

 

higher errors, regardless of the plate length (as also discussed in (Bakhshandeh 2007)). But again, 

even in this case, Tan’s model produces substantially lower errors in plates that are longer than the 

critical length of the plate. For instance, the error for the plate with 𝐿 𝑊⁄ = 1.5 is 15%, versus the 

27% error for the square plate (normalized critical length is 𝐿𝐶 𝑊⁄ = 1.3 in this case). 

It was demonstrated in this section that the application of Tan’s FWC factor, can result in 

erroneous values for the SCF of plates with low length to width ratios (depending upon the degree 

of orthotropy and the hole diameter to width ratio) which is in agreement with the previous results 

and discussions presented in (Bakhshandeh 2007, Sanchez 2014). This is due to the fact that all the 

edge effects are neglected in the development of this model, since it has been developed under the 

assumption of a remote uniaxial load. A new critical load was proposed in this section that shall be 

employed to determine the validity of the Tan’s model for a specific application with an arbitrary 

orthotropic material. 
 

 

3. Stress concentration factor for plates under biaxial loading 
 

In this section, Tan’s approach is adapted to develop a new analytical model for obtaining the 

SCF in a plate containing a hole subjected to biaxial loading. Lekhnitskii’s (1968) has provided the 
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Length effect on the stress concentration factor of a perforated orthotropic composite plate… 

exact stress distribution in an infinite anisotropic plate containing an elliptical hole, and Soutis 

(1998) has proposed an approximate stress distribution in an infinite orthotropic plate containing a 

circular hole. In this section, these two representations of the stress field in infinite plates are 

employed to obtain the correction factors for the plate under biaxial loading. 

 
3.1 Stress distribution in an infinite plate 

 
A plate under biaxial loading is defined as Fig. 8. It is assumed that a dominant load is applied 

along the x-direction and lambda (called biaxiallity ratio) times the force (−1 ≤ λ ≤ 1) is applied 

along y-direction. 

Soutis (1998) has assumed that stress distribution in an infinite orthotropic plate is 

approximately equal to the summation of stress distribution of an isotropic plate, with two 

polynomial terms of orders -6 and -8. He proposed the following approximate relations: 

𝜎𝑥𝑥
𝑜𝑟𝑡ℎ𝑜(0, 𝑦)

𝑃
= 1 +

𝜆 + 1

2
(
𝑅

𝑦
)2 +

3 (1 − 𝜆)

2
(
𝑅

𝑦
)4 − (3 − 𝜆)

[𝐻𝐴 − 1]

2
 [5(

𝑅

𝑦
)6 − 7(

𝑅

𝑦
)8] (8) 

𝜎𝑦𝑦
𝑜𝑟𝑡ℎ𝑜(𝑥, 0)

𝑃
= 𝜆 +

𝜆 + 1

2
(
𝑅

𝑥
)2 +

3 (1 − 𝜆)

2
(
𝑅

𝑥
)4 − (3𝜆 − 1)

[𝐻𝐵 − 1]

2
 [5(

𝑅

𝑥
)6 − 7(

𝑅

𝑥
)8] (9) 

In Eqs. (8) and (9): 

𝐻𝐵 =
𝐾𝐵

𝑜𝑟𝑡ℎ𝑜

𝐾𝐵
𝑖𝑠𝑜 

, 𝐾𝐵
𝑖𝑠𝑜 = 3𝜆 − 1 (10) 

𝐻𝐴 =
𝐾𝐴

𝑜𝑟𝑡ℎ𝑜

𝐾𝐴
𝑖𝑠𝑜 

 , 𝐾𝐴
𝑖𝑠𝑜 = 3 − λ (11) 

Where 𝐾𝐴
𝑜𝑟𝑡ℎ𝑜 and 𝐾𝐵

𝑜𝑟𝑡ℎ𝑜 are SCFs of the orthotropic plate at points A and B, respectively. 
 

3.2 Finite width correction factors 
 

A finite width correction factor is a scale factor which is applied to multiply the notched infinite 

plate solution to obtain the notched finite plate result (Tan 1988). It is assumed that the normal 

stress profiles (in both x and y directions) of a finite plate is identical to that of an infinite plate 

except for a FWC factor. The following relations mathematically present the definition: 

𝜎𝑥(0, 𝑦) =
𝐾𝑇

𝑥

𝐾𝑇
𝑥∞  𝜎𝑥

∞(0, 𝑦) (12) 

𝜎𝑦(𝑥, 0) =
𝐾𝑇

𝑦

𝐾𝑇
𝑦∞  𝜎𝑦

∞(𝑥, 0) (13) 

In these equations, 𝐾𝑇
𝑥 𝐾𝑇

𝑥∞⁄  and 𝐾𝑇
𝑦

𝐾𝑇
𝑦∞

⁄  are FWC factors in x and y directions, respectively. 

Infinite superscripts are for the terms regarding the infinite plate. FWC factors presented in Eqs. 

(12) and (13) can be calculated by solving the equation of static equilibrium in each direction. 

∑ 𝐹𝑥 = 0 → 2 ∫ 𝜎𝑥  𝑑𝑦
𝑊

𝑅

= 2𝑊. 𝑃 (14) 

81



 

 

 

 

 

 

Nima Bakhshi and Fathollah Taheri-Behrooz 

∑ 𝐹𝑦 = 0 → 2 ∫ 𝜎𝑦 𝑑𝑥
𝐿

𝑅

= 2𝐿. 𝜆𝑃 (15) 

In these equations, R is the circular hole’s radius, W is half of the plate width, L is half of the 

plate length (according to Fig. 8), P is the dominant force, and 𝜆 is the biaxiallity ratio. By 

substituting Eqs. (12) and (13) into Eqs. (14) and (15), one can calculate inverse of the FWC 

factors. 

𝐾𝑇
𝑥∞

 𝐾𝑇
𝑥 

=
∫ 𝜎𝑥

∞(0, 𝑦)𝑑𝑦

𝑃𝑊
,

𝐾𝑇
𝑦∞

 𝐾𝑇
𝑦 =

∫ 𝜎𝑦
∞(𝑥, 0)𝑑𝑥

𝜆𝑃𝐿
   (16) 

By substituting the stress distributions in the infinite plate into Eq. (16), basic FWC factors will 

be calculated. The FWC factors that are derived based on the exact representation of the stress 

field in the infinite plate (Lekhnitskii solution) will be denoted by exact FWC factor. On the other 

hand, those which are derived based on the approximate representations (Soutis solution) are 

denoted by approximate FWC factors in the rest of the paper.  

It is worthwhile to mention that the FWC factors are always applicable in the axial loading 

conditions since the maximum tangential stress around the hole always occurs at point A. But in 

the biaxial loading conditions the location of maximum tangential stress around the hole can 

change due to the laminate’s lay-up and biaxiallity ratio. Clearly, if the maximum tangential stress 

does not occur at points A or B, using the proposed FWC factors will lead to erroneous results. 

When Δ ≥ 0 (Δ is defined in Eq. (17)) maximum stress always occurs at one of the points A or B 

(Russo 2007).  

Δ = (
𝐸𝑥

𝐺𝑥𝑦

) − 2(𝜗𝑥𝑦 + √
𝐸𝑥

𝐸𝑦

) (17) 

In this equation 𝐸𝑥, 𝐸𝑦 and 𝐺𝑥𝑦 are laminate’s engineering constants in loading directions 

and 𝜗𝑥𝑦 is Poisson’s ratio in the same coordinate system. 

In laminates which Δ < 0, FWC factors are applicable only if the maximum stress around the 

hole occurred at A or B. Lekhnitskii (1968) has presented the following relations for obtaining the 

tangential stress around the hole. 

𝜎𝜗 = 𝑃
𝐸𝜗

𝐸1

{[−𝑘𝑐𝑜𝑠2𝜗 + (1 + 𝑛) sin2 𝜗] + 𝜆𝑘[(𝑘 + 𝑛)𝑐𝑜𝑠2𝜗 − sin2 𝜗]} (18) 

Where in this equation: 

1

𝐸𝜗
=

sin4 𝜗

𝐸1
+ (

1

𝐺
−

2𝜈21

𝐸1
) sin2 𝜗 cos2 𝜗 +

cos4 𝜗

𝐸2
 (19) 

𝑛 = √2 (√𝐸1 𝐸2⁄ − 𝜈1) + 𝐸1 𝐺⁄  (20) 

𝑘 =
𝐸1

𝐸2
 (21) 
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According to the Eq. (17), Δ = 0 is for the quasi-isotropic laminates. It can be easily shown 

that for (0𝑚 90𝑛⁄ )𝑠 laminates with 𝑚, 𝑛 ≥ 0, and (0𝑚 ±45𝑝 90𝑛⁄⁄ )
𝑠
 laminates with 

𝑚+𝑛

𝑚+𝑛+𝑝
≥ 0.5, 

Δ is positive. It’s good to note that, it is shown in (Russo 2007) that if the laminate’s lay-up is 

optimized for the loading along x direction, Δ will not be negative. 

 

3.2.1 Basic exact FWC factors 
With using Lekhnitskii’s exact stress distribution along with Eq. (16), basic exact FWC factors 

are defined. 

𝐾𝑇
𝑥∞

𝐾𝑇
𝑥 = 1 −

𝑅

𝑊
+ 𝑅𝑒 {

1

𝜇1 − 𝜇2

[
(𝜆𝜇2 − 𝑖)𝜇1

2

1 + 𝑖𝜇1

(1 −
𝑅

𝑊
−

1

𝜇1

√𝜇1
2 − (

𝑅

𝑊
)

2

(1 + 𝜇1
2) +

𝑖

𝜇1

𝑅

𝑊
)  

+  
(𝑖 − 𝜆𝜇1)𝜇2

2

1 + 𝑖𝜇2

(1 −
𝑅

𝑊
−

1

𝜇2

√𝜇2
2 − (

𝑅

𝑊
)

2

(1 + 𝜇2
2) +

𝑖

𝜇2

𝑅

𝑊
) ] } 

(22) 

𝐾𝑇
𝑦∞

𝐾𝑇
𝑦 = 1 −

𝑅

𝑊
+ 𝑅𝑒 {

1

(𝜇1 − 𝜇2)𝜆
[
𝜆𝜇2 − 𝑖

1 + 𝑖𝜇1

(1 −
𝑅

𝐿
− √1 − (

𝑅

𝐿
)

2

(1 + 𝜇1
2) +

𝑅

𝐿
√−𝜇1

2)  

+   
𝑖 − 𝜆𝜇1

1 + 𝑖𝜇2

(1 −
𝑅

𝐿
− √1 − (

𝑅

𝐿
)

2

(1 + 𝜇2
2) +

𝑅

𝐿
√−𝜇2

2) ] } 

(23) 

 

3.2.2 Basic approximate FWC factors 
By substituting the approximate stress distribution (Eqs. (8) and (9)) into Eq. (16), basic 

approximate FWC factors are defined. 

𝐾𝑇
𝑥∞

𝐾𝑇
𝑥 = 1 −

𝑅

𝑊
−

𝜆 + 1

2

𝑅

𝑊
(

𝑅

𝑊
− 1) −

1 − 𝜆

2

𝑅

𝑊
((

𝑅

𝑊
)3 − 1) −

(3 − 𝜆)(𝐻𝐴 − 1)

2
(

𝑅

𝑊
)

6

((
𝑅

𝑊
)2 − 1) (24) 

𝐾𝑇
𝑦∞

𝐾𝑇
𝑦 = 1 −

𝑅

𝐿
−

1

2

𝜆 + 1

𝜆

𝑅

𝐿
( 

𝑅

𝐿
− 1) −

1

2

1 − 𝜆

𝜆

𝑅

𝐿
((

𝑅

𝐿
)3 − 1) −

(3𝜆 − 1)(𝐻𝐵 − 1)

2𝜆
(
𝑅

𝐿
)6 ((

𝑅

𝐿
)2 − 1) (25) 

 
3.2.3 Improved exact FWC factors 
Since the accuracy of the basic FWC factor for plates containing elliptical holes with 

𝑚𝑎𝑗𝑜𝑟 𝑑𝑖𝑎𝑚𝑒𝑡𝑒r

𝑚𝑖𝑛𝑜𝑟 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟
< 4  was not satisfactory, Tan (1988) developed a magnification factor (𝑀) to 

improve the accuracy of the model. Considering the fact that Heywood correction factor has an 

excellent accuracy for the isotropic materials, Tan magnified the opening-to-width ratio by the 

factor 𝑀, and defined this factor in such a way that the anisotropic solution reduces to the 

Heywood formula under the isotropic condition. 

Biaxial loading condition reduces to axial loading in the case of 𝜆 = 0. Since the present 

method must agree with the Tan’s FWC factor under this condition, the same magnification factor 

is employed to improve the accuracy of the proposed model. All 𝑅 𝐿⁄  and 𝑅 𝑊⁄  ratios in Eqs. 
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(22) and (23) are multiplied by 𝑀 (𝑀 is defined in Eq. (5)) to obtain the improved exact FWC 

factors for biaxial loing condition. 

𝐾𝑇
𝑥∞

𝐾𝑇
𝑥 = 1 −

𝑅

𝑊
𝑀 + 𝑅𝑒 {

1

𝜇1 − 𝜇2

[
(𝜆𝜇2 − 𝑖)𝜇1

2

1 + 𝑖𝜇1

(1 −
𝑅

𝑊
𝑀 −

1

𝜇1

√𝜇1
2 − (

𝑅

𝑊
𝑀)

2

(1 + 𝜇1
2) +

𝑖

𝜇1

𝑅

𝑊
𝑀)  

+ 
(𝑖 − 𝜆𝜇1)𝜇2

2

1 + 𝑖𝜇2

(1 −
𝑅

𝑊
𝑀 −

1

𝜇2

√𝜇2
2 − (

𝑅

𝑊
𝑀)

2

(1 + 𝜇2
2) +

𝑖

𝜇2

𝑅

𝑊
𝑀) ] } 

(26) 

𝐾𝑇
𝑦∞

𝐾𝑇
𝑦 = 1 −

𝑅

𝑊
+ 𝑅𝑒 {

1

(𝜇1 − 𝜇2)𝜆
[
𝜆𝜇2 − 𝑖

1 + 𝑖𝜇1
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𝑅

𝐿
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𝑅

𝐿
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2
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𝑅

𝐿
𝑀√−𝜇1
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𝐿
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𝑅

𝐿
𝑀)

2

(1 + 𝜇2
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𝑅

𝐿
𝑀√−𝜇2
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(27) 

 

3.2.4 Improved approximate FWC factors 
To obtain the improved approximate FWC factors, all 𝑅 𝐿⁄  and 𝑅 𝑊⁄  ratios in Eqs. (24) to 

(25) are multiplied by 𝑀. 

𝐾𝑇
𝑥∞

𝐾𝑇
𝑥 = 1 −

𝑅

𝑊
𝑀 −

𝜆 + 1

2

𝑅

𝑊
𝑀(

𝑅

𝑊
𝑀 − 1) −

1 − 𝜆

2

𝑅

𝑊
𝑀 ((

𝑅

𝑊
𝑀)3 − 1)

−   
(3 − 𝜆)(𝐻𝐴 − 1)

2
(

𝑅

𝑊
𝑀)6 ((

𝑅

𝑊
𝑀)2 − 1) 

(28) 

𝐾𝑇
𝑦∞

𝐾𝑇
𝑦 = 1 −

𝑅

𝐿
𝑀 −

1

2

𝜆 + 1

𝜆

𝑅

𝐿
𝑀( 

𝑅

𝐿
𝑀 − 1) −

1

2

1 − 𝜆

𝜆

𝑅

𝐿
𝑀 ((

𝑅

𝐿
𝑀)3 − 1)

− 
(3𝜆 − 1)(𝐻𝐵 − 1)

2𝜆
(
𝑅

𝐿
𝑀)6 ((

𝑅

𝐿
𝑀)2 − 1) 

(29) 

 

3.3 Results and discussion 
 
Finite element analysis using ABAQUS was employed to investigate the influence of length to 

diameter ratio, width to diameter ratio and biaxiallity ratio, on the accuracy of the proposed 

method. For a plate under biaxial loading, the whole plate has been modeled. ABAQUS S8R shell 

elements have been used to obtain results. For each geometry, several models with increasing 

number of elements had been studied to ensure that the convergence was achieved. Fig. 9 shows 

one of the final meshed models with general boundary condition of the problem. In this section 
(0 ±45 90⁄⁄ )𝑠, (04 903⁄ )𝑠 , (02 90⁄ )𝑠  and 06  laminates are studied. 𝐴𝑆4 3502⁄ ’s mechanical 

properties (Table 1) have been used for the simulation. 

Generally, for the case of equal axial loads (𝜆 = 1), improved theories are more accurate. 

Although in small width to diameter ratios (less than 3) finite element results deviate from 
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Fig. 9 An exemplary meshed model and general B.C. of biaxial loading 

 

 
Fig. 10 Error of Eq. (26) versus plate width to hole diameter ratio (𝜆 = 1) 

 

 
analytical results due to dominant edge effects (Fig. 10). This phenomenon is clearly depicted in 

Fig. 11. This figure shows the normal stress profile of the (02 90⁄ )𝑠  laminate with 𝑤 𝑑⁄ = 2 

along the line 𝐴𝐵̅̅ ̅̅ . The trend of the profile is not descending on the entire path. The maximum 

normal stress occurs at the hole boundary, it decreases as the distance from the hole boundary 

increases and the trend reverses after a while. As a result, stress has a considerable value at the 

edge of the plate (point B) which causes a drop of stress at the hole boundary. 
Lambda’s value have a significant effect on the results too (Figs. 12 and 13). Generally, when 

lambda increases from -1 to +1, the absolute value of error decreases, consistently. When 0 ≤ 𝜆 

analytical values of SCF have a great agreement with finite element results (errors within 4%). For 

negative lambdas, when −0.5 ≤ 𝜆 ≤ 0, analytical values of SCF are still in good agreement with 

the FE solution and errors remain within 8%. However, as the lambda decreases from -0.5 to -1, 

finite element results further deviate from analytical results. 
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Fig. 11 Stress profile of the (02 90⁄ )𝑠  laminate with 𝑤𝑖𝑑𝑡ℎ 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟⁄ = 2 and 𝜆 = 1 along theli

ne 𝐴𝐵̅̅ ̅̅  
 

 
Fig. 12 Error versus lambda for (02 90⁄ )𝑠 laminates 

 

 

Studying models with different lengths and widths in Figs. 14 and 15 shows that in a specific 

width to diameter ratio, with increasing the length to diameter ratio errors will be a more 

acceptable range and they converge to a constant value, as expected. In the (02 90⁄ )𝑠 laminate 

with 𝜆 = 1 (Fig. 14) error of the basic equations remain in a very good range of 4% for plates 

with 𝐿 𝐷⁄ ≥ 4. In addition, even for the smallest plate dimension to diameter ratio (i.e. the max 

error) the error is 9.2%. The same trend also holds for other cases, e.g. for the case of 𝜆 = −0.5 

(Fig. 15), the deviation of the improved equations from the FE solution remains within 8% for 

𝐿 𝐷⁄ ≥ 4. 
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Fig. 13. Error versus lambda for (02 903⁄ )𝑠 laminates 

 

 
Fig. 14. Error of the basic exact solution (Eq. (22)) versus length to diameter ratio in (02 90⁄ )𝑠 

laminates with 𝜆 = 1 
 
 

4. Conclusions 
 

In the present manuscript, an extensive numerical analysis is conducted using ABAQUS to 

investigate the effect of plate length on the accuracy of the stress concentration factor which is 

calculated using Tan’s finite-width correction factor in a plate containing a circular hole. It is  
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Fig. 15. Error of the improved exact solution (Eq. (26)) versus length to diameter ratio in 
(02 90⁄ )𝑠 laminates with 𝜆 = −0.5 

 

 

demonstrated that the plate length has a significant impact on the degree of the accuracy of this 

method. Horgan’s analytical solution for obtaining the characteristic decay length in a composite 

plate is adapted to propose a critical length for the plate. It is demonstrated that the stress 

concentration factor which is calculated by Tan’s model will have sufficient accuracy, only if the 

plate length is longer than the proposed critical length. 

Since Tan’s analytical method is only valid for the plates subjected to uniaxial loading, this 

approach was adapted to develop a new model which is applicable for plates under biaxial loading 

conditions. Comparison between the analytical results from the proposed model and results from 

the finite element analysis for several different plate configurations and layups, revealed an 

excellent agreement for the plates with 𝑊 𝐷⁄ > 3 and −0.5 ≤ 𝜆 ≤ 1. 
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